最新人教版高中数学选修2-2第二章《数学归纳法》知识梳理
人教版高中 数学选修二 全册知识点 归纳总结3篇

人教版高中数学选修二全册知识点归纳总结第一篇:数学选修二必修内容详解第一章函数及其应用1.函数及其概念:定义域、值域、图象、单调性、奇偶性、周期性、对称性等2.函数的运算:加法、减法、乘法、除法、复合函数、反函数等3.函数的应用:函数模型、函数方程、函数关系、函数表示、函数求值等第二章三角函数1.三角函数的基本概念:正弦、余弦、正切、余切、正割、余割2.三角函数的相互关系:借助单位圆解释正弦、余弦函数,借助正切函数解释余割、正割函数3.三角函数的简单运算:倍角公式、半角公式、和差公式、化简公式、合并公式、差积定理等4.三角函数的应用:角度关系、角度测量、三角函数图像、三角函数方程、三角函数求解等第三章解析几何1.二维平面直角坐标系的基本概念:点、直线、圆等2.二维坐标系中的直线方程:斜截式、截距式、一般式、交点式等3.圆的相关概念:圆的标准方程、圆的一般方程、圆心、半径、切线等4.解析几何的应用:确定方程、矢量运算、空间几何、曲线分析等第四章微积分1.导数及其基本概念:导数定义、导数运算、高阶导数、柯西—罗尔定理等2.微积分基本定理:牛顿—莱布尼茨公式、区分反函数、定积分、不定积分等3.微积分应用:函数极值、函数图像分析、相关变化率、微分方程、微积分定理等以上是数学选修二的必修内容,掌握这些知识点,能够帮助学生扎实掌握高中数学基本概念和方法,为进一步发展数学能力打下基础。
第二篇:数学选修二选修内容详解第五章数列及其应用1.数列的概念:等差数列、等比数列等2.数列的性质:通项公式、求和公式、收敛性、发散性等3.数列的应用:数学归纳法、数列问题的解答、计算器计算数列等第六章概率论与数理统计1.随机事件及其概率:基本概念、事件关系、样本空间等2.概率分布及其函数:二项分布、泊松分布、正态分布、指数分布等3.抽样分布及其统计推论:抽样中心极限定理、参数估计、假设检验等4.应用:概率模型、统计图表、数据分析、随机模拟等第七章矩阵论与线性代数1.基本知识:矩阵基本运算、行列式、逆矩阵、秩等2.线性方程组:高斯消元法、矩阵表示、特解、齐次线性方程组、基础解系等3.特征值和特征向量:特征方程、特征值、特征向量、对角化、相似变换等4.应用:向量分析、投影、方程求解、几何变换、矩阵算法等以上是数学选修二的选修内容,掌握这些知识点,能够帮助学生进一步拓展数学领域,学会使用不同的数学方法解决实际问题。
最新人教版高中数学选修2-2第二章《数学归纳法》教材梳理

庖丁巧解牛知识·巧学一、数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)(归纳奠基)证明当n取第一个值n0时命题成立;(2)(归纳推理)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.深化升华①数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须是真实可靠的;它的第二步称为递推步骤,是命题具有后继传递性的保证,即命题只要对某个正整数成立,就能保证该命题对后继正整数都成立,两步合在一起为完全归纳步骤,称为数学归纳法.这两步各司其职,缺一不可.特别指出的是,第二步不是判断命题的真伪,而是证明命题是否具有传递性.如果没有第一步而仅有第二步,命题也有可能是假命题.②数学归纳法的优点是克服了完全归纳法的繁杂、不可行的缺点,又克服了不完全归纳法结论不可靠的不足,是一种科学的方法,使我们认识到由繁到简,由特殊到一般,由有限到无穷的数学思想.知识拓展归纳法由一系列有限的特殊事例得出一般结论的推理方法,通常叫做归纳法,根据考察的对象是全部还是部分,归纳法又分为完全归纳法与不完全归纳法.二、数学归纳法的主要应用1.用数学归纳法证明不等式问题对与正整数有关的不等式的证明,如果用其他的方法比较困难,此时可考虑利用数学归纳法证明.使用数学归纳法的难点在第二个步骤上,这时除了一定要运用归纳假设外,还要较多地运用不等式的证明等其他方法,对所要证明的不等式加以变形,寻求其与归纳假设的联系是问题的突破口.要点提示在数学归纳法中,由n=k时成立推证n=k+1时也成立是关键和难点,在推证时一般要用到比较法、放缩法、配凑法、分析法等.2.用数学归纳法证明整除问题对于整数a,b,如果a=b·c,c为整数,则称a能被b整除;对于多项式A,B,如果A=B·C,C为整式,则称A能被B整除.由多项式的定义容易得出:对多项式A,B,C,P,如果A能被C整除,那么PA也能被C整除;如果A,B能被C整除,那么A+B或A-B也能被C整除.疑点突破用数学归纳法证明整除问题,P(k) P(k+1)的整式变形是难点,找出它们之间的差异,从而决定n=k时,P(k)做何种变形是关键的一步.一般地,将n=k+1时P(k+1)的整式分拆配凑成P(k)的形式,再利用归纳假设和基本事实,这个变形是难点.3.用数学归纳法证明几何问题用数学归纳法证明几何问题时,难点就是在P(k) P(k+1)递推时,找出从n=k到n=k+1时的递推公式,这是关键所在.方法点拨分析增加一条曲线或直线后,点、线段、曲线段、平面块在P(k)的基础上增加了多少,就能找出相应的递推关系.问题·探究问题有两堆棋子数目相等,均为n颗,两人做游戏,轮流取子,规定每人可在其中任一堆里每次取走若干颗,但不能不取,也不能同时从两堆里取,直至取尽,取到最后一颗棋子者为胜者.你能用数学知识证明后者取胜吗?思路:这是一个与正整数有关的问题,所以可以考虑利用数学归纳法来处理.探究:(1)当n=1时,即两堆中,每堆各一颗,先取者只能在其中一堆里取一颗,则另一堆的一颗是最后一颗,由后者取得,问题得证.(2)假设当n≤k 时,命题正确,即后者取胜;那么当n=k+1时,若先取者取走l 颗棋子(1≤l≤k+1),这样一堆还剩下(k+1-l)≤k 颗,另一堆仍有k+1颗,这时候取者可在较多的一堆里也取走l 颗,使两堆棋子数保持相等,且都不大于k.由归纳假设推得后者取胜.由(1)(2)可知对于任意自然数n,后取者都能得胜.典题·热题例1用数学归纳法证明:(n+1)(n+2)…(n+n)=2n ·1·3·…·(2n -1),其中n ∈N *.思路分析:用数学归纳法证明一个与正整数有关的命题时,关键是第二步,要注意当n=k+1时,等式两边的式子与n=k 时等式两边的式子的联系,增加了哪些项或减少了哪些项,问题就容易解决了.证明:(1)当n=1时,左边1+1=2,右边=21·1=2,等式成立.(2)假设当n=k 时,等式成立,即(k+1)(k+2)…(k+k)=2k ·1·3·…·(2k -1).则当n=k+1时,(k+2)…(k+1+k)(k+1+k+1)=(k+2)(k+3)…(k+k)(2k+1)(2k+2)=(k+1)(k+2)…(k+k)·2(2k+1)=2k ·1·3…(2k -1)·2(2k+1)=2k+1·1·3…(2k -1)(2k+1).即当n=k+1时,等式也成立.由(1)(2)可知对一切n ∈N *,等式成立.误区警示 当n=k+1时,等式的左边容易错写成(k+1)(k+2)…(k+k )(k+k+1).这时我们要注意式子(n+1)(n+2)…(n+n)的结构特征以及该式与n 之间的关系.例2求证:65312111>+++++n n n ,(n≥2,n ∈N *). 思路分析:本题在由n=k 到n=k+1的推证过程中应用了“放缩”的技巧,使问题简单化,这是利用数学归纳法证明不等式常用的方法之一.证明:(1)当n=2时,右边=6561514131>+++,不等式成立. (2)假设当n=k(k≥2,k ∈N *)时命题成立,即65312111>+++++k k k . 则当n=k+1时,)1(31231131312)1(11)1(1+++++++++++++k k k k k k )11331231131(312111+-+++++++++++=k k k k k k k 65)113313(65)11331231131(65=+-+⨯+>+-++++++>k k k k k k 所以当n=k+1时不等式也成立.由(1)(2)知原不等式对一切n≥2,n ∈N *均成立.深化升华 数学归纳法的应用通常与其他方法联系在一起,如比较法,放缩法,配凑法,分析法和综合法等.例3利用数学归纳法证明:(3n+1)·7n -1(n ∈N *)能被9整除.思路分析:第一步当n=1时,可计算(3n+1)·7n -1的值,从而验证它是9的倍数;第二步要设法变形成为“假设”+“9的倍数”的形式,进而论证能被9整除.证明:(1)当n=1时,(3×1+1)×71-1=27,能被9整除,所以命题成立.(2)假设当n=k(k ∈N *)时命题成立,即(3k+1)·7k -1能被9整除.那么当n=k+1时,[3(k+1)+1]·7k+1-1=(3k+4)·7k+1-1=(3k+1)·7k+1-1+3·7k+1=[(3k+1)·7k -1]+3·7k+1+6·(3k+1)·7k=[(3k+1)·7k -1]+7k (21+6×3k+6)=[(3k+1)·7k -1]+9·7k (2k+3).由归纳假设知(3k+1)·7k -1能被9整除,而9·7k (2k+3)也能被9整除,故[3(k+1)+1]·7k+1-1能被9整除.这就是说,当n=k+1时,命题也成立.由(1)(2)知对一切n ∈N *,(3n+1)·7n -1能被9整除.深化升华 涉及整除的问题,常利用提取公因式凑成假设、凑出整除式等方法,其中等价变换的技巧性往往较强.例4平面内有n(n≥2)条直线,其中任何两条不平行,任何三条不过同一个点,证明交点的个数f(n)等于2)1( n n . 思路分析:本例的关键是弄清增加一条直线能够增加多少个不同的交点,解此类问题时常运用几何图形的性质.证明:(1)当n=2时,两条直线的交点只有1个,又f(2)=21×2×(2-1)=1, 因此,当n=2时,命题成立.(2)假设当n=k(k≥2)时命题成立,就是说,平面内满足题设的任何k 条直线的交点的个数f(k)= 21k(k-1).现在来考虑平面内有k+1条直线的情况.任取其中的1条直线,记为l(如图2-3-1).图2-3-1由上面的假设,除l 以外的其他k 条直线的交点的个数为f(k)=21k(k-1).另外,因为已知任何两条直线不平行,所以直线l 必与平面内其他k 条直线都相交(有k 个交点);又因为已知任何三条直线不过同一点,所以上面的k 个交点两两不同,且与平面内其他的21k(k-1)个交点也两两不相同,从而平面内交点的个数为21k(k-1)+k=21k [(k-1)+2] =21(k+1)[(k+1)-1].这就是说,当n=k+1时,k+1条直线的交点个数f(k+1)=21(k+1)[(k+1)-1]. 根据(1)(2),可知命题对任何大于1的正整数都成立.拓展延伸 有n 个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点.求证:这n 个圆把平面分成f(n)=n 2-n+2个部分.思路分析:由k 到k+1时,研究第k+1个圆与其他k 个圆的交点的个数问题.证明:(1)当n=1时,即一个圆把平面分成2个部分,f(1)=2;又n=1时,n 2-n+2=2,所以命题成立.(2)假设n=k 时,命题成立,即k 个圆把平面分成f(k)=k 2-k+2个部分;那么设第k+1个圆记为⊙O,由题意,它与k 个圆中每个圆交于两点,又无三圆交于同一点,于是它与其他k 个圆相交于2k 个点.把⊙O 分成2k 条弧而每条弧把原区域分成2块,因此该平面的总区域增加2k 块,即f(k+1)=k 2-k+2+2k=(k+1)2-(k+1)+2,即n=k+1时命题成立.由(1)(2)知对任何n ∈N *命题均成立.深化升华 用数学归纳法证明这类几何问题,关键是弄清从k 到k+1的变化规律,也就是找出新增加的相应的元素的个数.例5(2006辽宁高考)已知函数f(x)=13++x x (x≠-1).设数列{a n }满足a 1=1,a n+1=f(a n ),数列{b n }满足b n =|a n 3-|,S n =b 1+b 2+…+b n (n ∈N *).(1)用数学归纳法证明b n ≤12)13(--n n; (2)证明S n <332. 思路分析:本题考查数列、等比数列、不等式等基础知识及运用数学归纳法解决有关问题的能力.证明:(1)当x≥0时,f(x)=1+12+x >1. ∵a 1=1,∴a n ≥1(n ∈N *). 下面用数学归纳法证明不等式b n ≤12)13(--n n. ①当n=1时,b 1=3-1,不等式成立.②假设当n=k 时,不等式成立,即b k ≤12)13(--k k, 那么b k+1=|a k+1-3|=k k k k k b a a 2)13(2131|3|)13(1+-≤-≤+-- 所以当n=k+1时,不等式也成立.根据①②可知不等式对任意n ∈N *都成立.(2)由(1)知b n ≤12)13(--n n.∴S n =b 1+b 2+…+b n ≤(3-1)+2131)213(1)13(2)13(2)13(12----∙-=-++--n n n 33221311)13(=--∙-<. 故对任意n ∈N *,S n <332.。
最新人教版高中数学选修2-2第二章《数学归纳法》示范教案(第2课时)

第2课时教学目标1.知识与技能目标(1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.(2)进一步掌握数学归纳法的实质与步骤,掌握用数学归纳法证明等式、不等式、整除问题、几何问题等数学命题.(3)掌握证明n =k +1成立的常见变形技巧:提公因式、添项、拆项、合并项、配方等.2.过程与方法目标(1)利用“归纳—猜想—证明”模式解决问题,培养学生自觉运用数学归纳法的意识.(2)培养学生综合运用知识的能力及解题时的目标意识.(3)培养学生思维的严谨性,培养学生观察、归纳、发现的能力,并能以递推的思想作指导,理解数学归纳法的操作步骤,使学生的抽象思维和概括能力进一步提升.3.情感、态度与价值观通过对数学归纳法的学习,培养学生勇于探索、创新的个性品质,培养大胆猜想,小心求证的辩证思维素质,进一步培养学生思维的严密性.通过学生之间的交流和讨论,增强学生之间的团结合作意识,提高学生的语言交流能力.重点难点重点:(1)由“n =k ”到“n =k +1”时项的确定.(2)处理P(k +1)时“拆、分、并、补”等配凑技巧的应用.难点:(1)初步形成“观察—归纳—猜想—证明”的思维模式.(2)处理P(k +1)时“拆、分、并、补”等配凑技巧的应用.(3)运用数学归纳法时,在“归纳递推”的步骤中发现递推关系.教学过程复习巩固让学生独立完成下列练习题1.某个命题与正整数有关,如果当n =k(k ∈N )时,该命题成立,那么可推得n =k +1时,该命题也成立.现在已知当n =5时,该命题成立,那么可推导出( )A .当n =6时命题不成立B .当n =6时命题成立C .当n =4时命题不成立D .当n =4时命题成立2.某个命题与正整数有关,如果当n =k(k ∈N )时,该命题成立,那么可推得n =k +1时,该命题也成立.现在已知当n =5时,该命题不成立...,那么可推导出( ) A .当n =6时命题不成立 B .当n =6时命题成立C .当n =4时命题不成立D .当n =4时命题成立3.已知f(n)=1n +1n +1+1n +2+…+1n 2,则下列说法正确的是( ) A .f(n)中共有n 项,当n =2时,f(2)=12+13B .f(n)中共有n +1项,当n =2时,f(2)=12+13+14C .f(n)中共有n 2-n 项,当n =2时,f(2)=12+13D .f(n)中共有n 2-n +1项,当n =2时,f(2)=12+13+144.设f(n)=1n +1+1n +2+1n +3+…+12n (n ∈N ),那么f(k +1)-f(k)等于…( ) A.12k +1 B.12k +2C.12k +1+12k +2D.12k +1-12k +2活动结果:1.B 2.C 3.D 4.D设计意图练习中4个题难度不大,但题目小巧灵活,用来复习旧知,为师生共同探讨下面的例题作准备.5.用数学归纳法证明12+22+…+n 2=n (n +1)(2n +1)6(n ∈N ). 思路分析:注意数学归纳法的两步一结论,特别是归纳假设的利用.证明:(学生板演)(1)当n =1时,左边=12=1,右边=1×(1+1)×(2×1+1)6=1等式成立. (2)假设当n =k(k ∈N )时等式成立,即12+22+…+k 2=k (k +1)(2k +1)6, 那么,当n =k +1时左边=12+22+…+k 2+(k +1)2=k (k +1)(2k +1)6+(k +1)2=k (k +1)(2k +1)+6(k +1)26=(k +1)(2k 2+7k +6)6=(k +1)(k +2)(2k +3)6=(k +1)[(k +1)+1][2(k +1)+1]6=右边,即当n =k +1时等式成立. 根据(1)和(2)可知等式对任何n ∈N 都成立.点评:应用归纳假设的过程中要注意变形的目的性,否则由n =k 到n =k +1的变形不易完成.设计意图通过本题复习数学归纳法的证明步骤,体会由“n =k ”到“n =k +1”时归纳假设的应用及在证明过程中强化“目标意识”.典型示例类型一:用数学归纳法证明“等式”例1设数列{a n }满足a 1=2,a n +1=a 2n -na n +1,n ∈N *.求a 2,a 3,a 4,由此猜想a n 的一个通项公式,并证明你的结论.思路分析:在“推理与证明”一节课中已经熟悉了这种模式,由于这是一个与正整数有关的命题,可以考虑用数学归纳法证明.由于上节课刚学完数学归纳法,此题学生想到用数学归纳法证明很容易.证明:由a 1=2,得a 2=a 21-a 1+1=3,由a 2=3,得a 3=a 22-2a 2+1=4,由a 3=4,得a 4=a 23-3a 3+1=5.由此猜想a n =n +1,下面用数学归纳法证明:(1)当n =1时,a 1=1+1,猜想成立.(2)假设当n =k 时,猜想成立,即a k =k +1,那么当n =k +1时,a k +1=a 2k -ka k +1=(k+1)2-k(k +1)+1=k +2=(k +1)+1.所以,当n =k +1时,猜想也成立.由(1)(2)知,对于任意n ∈N *都有a n =n +1成立.点评:此例属于用数学归纳法证明“等式”.以数列为背景,培养学生“观察→分析→归纳→猜想→证明”这种从特殊到一般的数学思维,体会数学归纳法在数列中的应用.巩固练习是否存在常数a 、b 、c ,使得等式1×22+2×32+3×42+…+n(n +1)2=n (n +1)12(an 2+bn +c)对一切正整数成立?并证明你的结论.解:假设存在a 、b 、c 使上式对n ∈N 均成立,则当n =1,2,3时上式显然也成立,此时可得⎩⎪⎨⎪⎧ 1×22=16(a +b +c ),1×22+2×32=12(4a +2b +c ),1×22+2×32+3×42=9a +3b +c ,解此方程组可得a =3,b =11,c =10,下面用数学归纳法证明等式1×22+2×32+3×42+…+n(n +1)2=n (n +1)12(3n 2+11n +10)对一切正整数均成立.(1)当n =1时,命题显然成立.(2)假设n =k 时,命题成立.即1×22+2×32+3×42+…+k(k +1)2=k (k +1)12(3k 2+11k +10), 那么当n =k +1时,左边=1×22+2×32+3×42+…+k(k +1)2+(k +1)(k +2)2=k (k +1)12(3k 2+11k +10)+(k +1)(k +2)2=k +112[k(3k 2+11k +10)+12(k +2)2]=(k +1)(k +2)12(3k 2+17k +24)=(k +1)[(k +1)+1]12[3(k +1)2+11(k +1)+10].所以,当n =k +1时,命题也成立. 综上所述,存在常数a =3,b =11,c =10,使得等式1×22+2×32+3×42+…+n(n +1)2=n (n +1)12(an 2+bn +c)对一切正整数均成立. 类型二:用数学归纳法证明“不等式”例2(2009山东高考理20题改编)已知数列{b n }的通项公式为b n =2n ,求证:对任意的n ∈N ,不等式b 1+1b 1·b 2+1b 2·…·b n +1b n >n +1都成立. 思路分析:没有要求用哪种方法来证明,首先要综合分析是选用分析法?综合法、反证法、还是数学归纳法来证明.此题与正整数有关可以考虑数学归纳法,当然也不能把学生试图用其他方法证明的想法一棍子打死.证明方法的选用体现了新学知识与旧知识的融合,而不能仅停留在刚学完什么方法就用什么方法证明的思维误区中,以至于在复习考试时非常被动.证明:由b n =2n ,得b n +1b n =2n +12n,所以b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n. 下面用数学归纳法证明不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n >n +1成立. ①当n =1时,左边=32,右边=2,因为32>2,所以不等式成立. ②假设当n =k(k ≥1且k ∈N )时不等式成立,即b 1+1b 1·b 2+1b 2·…·b k +1b k =32·54·76·…·2k +12k >k +1成立. 则当n =k +1时,左边=b 1+1b 1·b 2+1b 2·…·b k +1b k ·b k +1+1b k +1=32·54·76·…·2k +12k ·2k +32k +2 >k +12k +32k +2=(2k +3)24(k +1)=4k 2+12k +94(k +1) >4k 2+12k +84(k +1)=4(k 2+3k +2)4(k +1)=4(k +1)(k +2)4(k +1) =k +2 =(k +1)+1. 所以当n =k +1时,不等式也成立.由①、②可得不等式b 1+1b 1·b 2+1b 2·…·b n +1b n =32·54·76·…·2n +12n>n +1对任意的n ∈N 都成立.点评:本题属高考改编题,与高考题相比,删去了与数学归纳法无关的某些内容,一方面提高了课堂效率,突出了本节课的重点,同时也体现了数学归纳法在证明不等式中的应用,结合了分析法、放缩法等其他方法证明不等式.用数学归纳法证明不等式要有目标意识,考虑到n =k +1时不等式的左边为分式右边为根式,所以一般先将要证明的不等式两端都化成同一种形式(同为分式或根式),再根据目标进行合理放缩.本题证法的关键是“4k 2+12k +94(k +1)>4k 2+12k +84(k +1)”这一步的放缩. 巩固练习证明不等式1+12+13+…+1n <2n(n ∈N ). 证明:①当n =1时,左边=1,右边=2.左边<右边,不等式成立.②假设n =k 时,不等式成立,即1+12+13+ (1)<2k. 那么当n =k +1时,左边=1+12+13+…+1k +1k +1<2k +1k +1=2k k +1+1k +1<k +(k +1)+1k +1=2(k +1)k +1=2k +1=右边, 这就是说,当n =k +1时,不等式成立.由①、②可知,原不等式对任意正整数都成立.类型三:用数学归纳法证明整除性问题例3对于n ∈N *,求证:(x +1)n +1+(x +2)2n -1可被(x 2+3x +3)整除.思路分析:此题既不是证明等式也不是证明不等式,代数式的整除性是第一次遇到,用以前学过的方法不好处理,又由于此命题与正整数有关,故考虑用数学归纳法来证明.证明:(1)当n =1时,(x +1)n +1+(x +2)2n -1=(x +1)2+(x +2)1=x 2+3x +3可被(x 2+3x+3)整除,命题成立.(2)假设n =k 时命题成立,即(x +1)k +1+(x +2)2k -1=(x 2+3x +3)·f(x).当n =k +1时,(x +1)k +2+(x +2)2k +1=(x +1)(x +1)k +1+(x +2)2(x +2)2k -1=(x +1)(x +1)k +1+(x +2)2(x +2)2k -1+(x +1)(x +2)2k -1-(x +1)(x +2)2k -1=(x +1)[(x +1)k +1+(x +2)2k -1]+[(x +2)2-(x +1)](x +2)2k -1=(x +1)(x 2+3x +3)·f(x)+(x 2+3x +3)(x +2)2k -1=(x 2+3x +3)·[(x +1)f(x)+(x +2)2k -1],∴当n =k +1时命题成立.由(1)(2)知对一切n ∈N *,(x +1)n +1+(x +2)2n -1可被(x 2+3x +3)整除.点评:整除问题一般要面临因式分解,所以在证明n =k +1时,要对式子进行合理的添加项使得既能提取公因式进行因式分解又能利用归纳假设,一般添加项的项是从两项中各取一个因式然后相乘得到.本题中添加的项是(x +1)(x +2)2k -1,也可以是(x +1)k +1(x +2)2.巩固练习求证:对于任意n ∈N ,3×52n -1+23n -2可被17整除.证明:(1)当n =1时,即3×5+2=15+2=17命题成立.(2)假设n =k 时命题成立,即3×52k -1+23k -2=17M ,M ∈N .则当n =k +1时,3×52k +1+23k +1=25×3×52k -1+8×23k -2=25×3×52k -1+8×23k -2+25×23k -2-25×23k -2=25(3×52k -1+23k -2)-17×23k -2=25×17M -17×23k -2=17(25M -23k -2),∴n =k +1时命题成立.由(1)(2)可知对于任意n ∈N ,3×52n -1+23n -2可被17整除.类型四:用数学归纳法证明相关问题例4平面上有n(n ∈N *,n ≥2)条直线,任意两条不平行,任意三条不共点,求证:(1)共有交点a n =12n(n -1)个; (2)构成线段或射线b n =n 2条.思路分析:用数学归纳法证明平面几何中与自然数有关的证明题的时候,关键是分析好由n =k 到n =k +1时的证明思路,而要找到证明思路就要通过分析当直线的条数由n =2增加到n =3时交点(线段或射线)增加的数目以及为什么增加,这样由特殊到一般就容易找到由n =k 到n =k +1时交点(线段或射线)增加的数目以及为什么增加,从而找到证明思路.证明:(1)①当n =2时,a 2=1,结论成立,②假设n =k 时结论成立,即a k =12k(k -1), 则当n =k +1时,第k +1条直线与前k 条有k 个交点,∴a k +1=a k +k =12k(k -1)+k =12k(k +1).∴结论成立. 由①②知,结论共有交点a n =12n(n -1)(n ≥2)个成立.(2)①n =2时,b 2=4,结论成立.②假设n =k 时结论成立,即b k =k 2,则当n =k +1时,第k +1条直线上有k 个交点,将第k +1条直线分成k +1部分,k 个交点在原k 条线上,每一点将所在线段或射线分成两部分,增加了k 部分.∴b k +1=b k +(k +1)+k =k 2+2k +1=(k +1)2.∴结论成立.由①②知,对一切n ∈N ,n ≥2,b n =n 2成立.巩固练习平面上有n(n ∈N *,n ≥2)条直线,任意两条不平行,任意三条不共点,求证:将平面分成c n =12n(n +1)+1部分. 证明:①n =2时,两条相交直线将平面分成4部分,c 2=12·2·(2+1)+1=4,结论成立. ②假设n =k 时结论成立,即c k =12k(k +1)+1, 当n =k +1时,第k +1条直线被分成k +1段,每一段将原来那一部分分成两部分,即增加了k +1部分.∴c k +1=c k +(k +1)=12k(k +1)+(k +1)+1=12(k +1)(k +2)+1, 即n =k +1时结论成立.由①②知对一切n ∈N ,n ≥2,c n =12n(n +1)+1成立. 变练演编用数学归纳法证明(n +1)(n +2)(n +3)…(n +n)=2n ·1·3·…·(2n -1)(n ∈N )时,从“n =k →n =k +1”两边需同乘以一个代数式,它是( )A .2k +2B .(2k +1)(2k +2)C.2k +2k +1D.(2k +1)(2k +2)k +1解析:当n =k 时,(k +1)(k +2)…(k +k)=2k ·1·3·…·(2k -1),当n =k +1时,(k +1+1)(k +1+2)…(k +1+k +1)=2k +1·1·3·…·[2(k +1)-1].通过对比等式左边可知,增加了两个因式(2k +1)(2k +2),减少了一个因式k +1.故答案选D.答案:D达标检测1.如果命题P(n)对于n =k(k ∈N *)时成立,则它对n =k +2也成立,若P(n)对于n =2时成立,则P(n)对所有的________都成立.①正整数 ②正偶数 ③正奇数 ④大于1的正整数2.如果命题p(n)对n =k 成立,则它对n =k +1也成立,现知p(n)对n =4不成立,则下列结论正确的是( )A .p(n)对n ∈N 成立B .p(n)对n>4且n ∈N 成立C .p(n)对n<4且n ∈N 成立D .p(n)对n ≤4且n ∈N 不成立3.利用数学归纳法证明不等式1n +1+1n +2+1n +3+…+1n +n >1324时,由k 递推到k +1不等式左边应添加的项是( )A.12(k +1)B.12k +1+12(k +1)C.12k +1-12(k +1)D.12k +1答案:1.② 2.D 3.C反考老师已知m 为正整数,用数学归纳法证明当x>-1时,(1+x)m ≥1+mx.证明:(ⅰ)当m =1时,原不等式成立;当m =2时,左边=1+2x +x 2,右边=1+2x , ∵x 2≥0,所以左边≥右边,原不等式成立;(ⅱ)假设当m =k 时,不等式成立,即(1+x)k ≥1+kx ,则当m =k +1时,∵x>-1,∴1+x>0,于是在不等式(1+x)k ≥1+kx 两边同乘以1+x 得(1+x)k ·(1+x)≥(1+kx)(1+x)=1+(k +1)x +kx 2≥1+(k +1)x ,所以(1+x)k +1≥1+(k +1)x ,即当m =k +1时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m ,不等式都成立.课堂小结1.知识收获:(1)数学归纳法的证明步骤.(2)用数学归纳法证明等式、不等式、整除等问题的主要思路.2.方法收获:目标意识,用数学归纳法证明时有一个技巧,即当n =k +1时,代入假设后再写出结论,然后往中间”凑”.3.思维收获:体会数学的严谨性,提高思维的深刻性和批判性,养成严谨缜密的思维习惯.布置作业教材习题2.3 A 组第2题,B 组第1,2题.补充练习基础练习1.用数学归纳法证明1+2+22+…+2n -1=2n -1(n ∈N *)的过程如下:①当n =1时,左边=1,右边=21-1=1,等式成立.②假设当n =k 时,等式成立,即1+2+22+…+2k -1=2k -1,则当n =k +1时,1+2+22+…+2k -1+2k=1-2k +11-2=2k +1-1. 所以,当n =k +1时等式成立.由此可知,对任何n ∈N *,等式都成立.上述证明的错误..是__________. 2.对于n ∈N *,n ≥2,求证:1+122+132+…+1n 2<2-1n. 答案:1.没有用上归纳递推2.证明:(1)当n =2时,左边=1+14=54<32=2-12=右边,所以不等式成立. (2)假设n =k 时不等式成立,即1+122+132+…+1k 2<2-1k, 当n =k +1时,左=1+122+132+…+1k 2+1(k +1)2<2-1k +1(k +1)2<2-1k +1k (k +1)=2-(k +1)-1k (k +1)=2-1k +1, 即n =k +1时不等式成立.由(1)(2)知对一切n ∈N *,n ≥2不等式成立.拓展练习3.首项为正数的数列{a n }满足a n +1=14(a 2n +3),n ∈N *. 证明若a 1为奇数,则对一切n ≥2,a n 都是奇数.证明:已知a 1是奇数,可假设a k =2m -1,其中m 为正整数,则由递推关系得a k +1=a 2k +34=m(m -1)+1是奇数. 根据数学归纳法,对任何n ∈N ,a n 都是奇数.设计说明第1课时已经理解了数学归纳法的原理及步骤,本节课主要熟悉用数学归纳法证明各种题型,进一步加深对数学归纳法的理解,特别是证明当n =k +1时有一个技巧:即代入假设后再写出结论,然后往中间”凑”.对于教学中学生可能遇到的障碍也通过例题得到清除.常见障碍:1.由“n =k ”到“n =k +1”时项的确定(产生此障碍的原因:没弄清计数规律,这类问题,通常按“找规律,定项数”的方法来处理).2.若命题中n 为正奇数(或正偶数),在第二步假设“n =k 时命题成立”,误认为需证明“n =k +1时命题也成立”(错因:忽略相邻的正奇数相差2).3.处理P(k +1)时不善于“拆、分、并、补”等配凑技巧的应用(原因:缺乏目标意识).4.不能灵活运用其他证明不等式的方法,如比较法、分析法、综合法、放缩法(原因:对“数学归纳法”缺乏认识,忽略了应用数学归纳法证题时可以结合其他数学方法).备课资料例1:(2009陕西卷理)已知数列{x n }满足,x 1=12,x n +1=11+x n,n ∈N *. 猜想数列{x 2n }的单调性,并证明你的结论.思路分析:用数学归纳法证明一个与正整数有关的命题,关键是第二步,要注意当n =k +1时,等式两边的式子与n =k 时等式两边的式子的联系,增加了哪些项,或减少了哪些项,问题就容易解决.解:由x 1=12及x n +1=11+x n得x 2=23,x 4=58,x 6=1321. 由x 2>x 4>x 6猜想:数列{x 2n }是递减数列.下面用数学归纳法证明:(1)当n =1时,x 2>x 4,命题成立.(2)假设当n =k 时命题成立,即x 2k >x 2k +2.易知x 2k >0,那么x 2k +2-x 2k +4=11+x 2k +1-11+x 2k +3=x 2k +3-x 2k +1(1+x 2k +1)(1+x 2k +3) =x 2k -x 2k +2(1+x 2k )(1+x 2k +1)(1+x 2k +2)(1+x 2k +3)>0, 即x 2(k +1)>x 2(k +1)+2.也就是说,当n =k +1时命题也成立,结合(1)和(2)知,命题成立.例2:求证:(1+1)(1+13)…(1+12n -1)>2n +1,n ∈N *. 思路分析:与正整数有关的不等式证明可以考虑数学归纳法,关键在于由假设n =k 时不等式成立推出当n =k +1时不等式成立,在这个过程中可以应用分析法或者是放缩法.证明:(1)当n =1时,左边=1+1=2=4>3=右边,所以不等式成立.(2)假设n =k 时不等式成立,即(1+1)(1+13)…(1+12k -1)>2k +1, 当n =k +1时,左=(1+1)(1+13)…(1+12k -1)(1+12k +1)>2k +1(1+12k +1)=2k +22k +1, 欲证:左边>2(k +1)+1=右边,只需证(2k +22k +1)2-(2k +3)2=(2k +2)2-(2k +1)(2k +3)2k +1=12k +1>0. ∴2k +22k +1>2k +3.∴n =k +1时不等式成立. 由(1)(2)知对一切n ∈N *不等式成立.点评:由假设n =k 时不等式成立推出当n =k +1时不等式成立的过程中也可以应用放缩法:左边=(1+1)(1+13)…(1+12k -1)+(1+12k +1)>2k +1(1+12k +1) =2k +22k +1=(2k +2)22k +1=4k 2+8k +42k +1>4k 2+8k +32k +1=(2k +1)(2k +3)2k +1 =2k +3=2(k +1)+1=右边.(设计者:张建霞)。
数学选修2-2知识点总结

数学选修2-2知识点总结导数及其应用 一.导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数()y f x =在0xx =处的瞬时变化率是000()()lim x f x x f x x∆→+∆-∆,我们称它为函数()y f x =在x x =处的导数,记作0()f x '或|x x y =',即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。
容易知道,割线n PP 的斜率是00()()n nn f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即00()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数.()y f x =的导函数有时也记作y ',即()()()limx f x x f x f x x∆→+∆-'=∆二.导数的计算基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x x αα-'=;3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-;5 若()x f x a =,则()ln x f x a a '= 6 若()x f x e =,则()x f x e '=7 若()log xaf x =,则1()ln f x x a '= 8 若()ln f x x =,则1()f x x'=导数的运算法则1.[()()]()()f x g x f x g x '''±=± 2.[()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数(())()y f g x g x '''=• 三.导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系: 在某个区间(,)a b 内(1)如果()0f x '>,那么函数()y f x =在这个区间单调递增;(2)如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况.求函数()y f x =的极值的方法是:(1)如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值(2)如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数求函数()y f x =在[,]a b 上的最大值与最小值的步骤: (1)求函数()y f x =在(,)a b 内的极值; (2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.推理与证明考点一 合情推理与类比推理根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理.类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的.(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠.考点二 演绎推理(俗称三段论)由一般性的命题推出特殊命题的过程,这种推理称为演绎推理. 考点三 数学归纳法1. 它是一个递推的数学论证方法.2. 步骤:A.命题在n=1(或0n )时成立,这是递推的基础;B.假设在n=k 时命题成立; C.证明n=k+1时命题也成立,完成这两步,就可以断定对任何自然数(或n>=0n ,且n N ∈)结论都成立。
人教版高中数学选修2-2数学归纳法教学讲义学生版

励学国际学科学生讲义年级:上课次数:学员姓名:辅导科目:数学学科教师:宋冰洁课题数学归纳法课型□预习课□同步课■复习课□习题课授课日期及时段教学内容数学归纳法【要点梳理】要点一:数学归纳法的概念与原理1.数学归纳法的定义对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(k N*,k≥n0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法要点诠释:即先验证使结论有意义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(k≥n0,k∈N*)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n0+1,n0+2,…,命题都成立.2.数学归纳法的原理数学归纳法是专门证明与正整数集有关的命题的一种方法,它是一种完全归纳法。
它的证明共分两步:①证明了第一步,就获得了递推的基础。
但仅靠这一步还不能说明结论的普遍性.在第一步中,考察结论成立的最小正整数就足够了,没有必要再考察几个正整数,即使命题对这几个正整数都成立,也不能保证命题对其他正整数也成立;②证明了第二步,就获得了递推的依据。
但没有第一步就失去了递推的基础.只有把第一步和第二步结合在一起,才能获得普遍性的结论。
其中第一步是命题成立的基础,称为“归纳基础”(或称特殊性),第二步是递推的证据,解决的是延续性问题(又称传递性问题)。
3.数学归纳法的功能和适用范围1.数学归纳法具有证明的功能,它将无穷的归纳过程根据归纳公理转化为有限的特殊演绎(直接验证和演绎推理相结合)过程.2. 数学归纳法一般被用于证明某些与正整数n(n取无限多个值)有关的数学命题。
但是,并不能简单地说所有与正整数n有关的数学命题都可使用数学归纳法证明。
要点二:运用数学归纳法的步骤与技巧1.用数学归纳法证明一个与正整数有关的命题的基本步骤:(1)证明:当n取第一个值n0(如n0=1或2等)命题正确;(2)假设当n=k(k∈N*,且k≥n0)时命题成立,以此为前提,证明当n=k+1时命题也成立.根据(1),(2)可以断定命题对于一切从n0开始的所有正整数n都成立.要点诠释:(1)不要弄错起始n0:n0不一定恒为1,也可能n0=2或3(即起点问题).(2)项数要估算正确:特别是当寻找n=k与n=k+1的关系时,项数的变化易出现错误(即跨度问题).(3)必须利用归纳假设:归纳假设是必须要用的,假设是起桥梁作用的,桥梁断了就过不去了,整个证明过程也就不正确了(即伪证问题).(4)切忌关键步骤含糊不清:“假设n=k时结论成立,利用此假设证明n=k+1时结论也成立”是数学归纳法的关键一步,也是证明问题最重要的环节,推导的过程中要把步骤写完整,另外要注意证明过程的严谨性、规范性(即规范问题).2.用数学归纳法证题的关键:运用数学归纳法由n=k到n=k+l的证明是证明的难点,突破难点的关键是掌握由n=k到n=k+1的推证方法.在运用归纳假设时,应分析由n=k到n=k+1的差异与联系,利用拆、添、并、放、缩等手段,或从归纳假设出发,或从n=k+1时分离出n=k时的式子,再进行局部调整;也可以考虑二者的结合点,以便顺利过渡.要点三:用数学归纳法证题的类型:1.用数学归纳法证明与正整数n 有关的恒等式...对于证明恒等的问题,在由证等式也成立时,应及时把结论和推导过程对比,也就是我们通常所说的两边凑的方法,以减小计算的复杂程度,从而发现所要证明的式子,使问题的证明有目的性. 2.用数学归纳法证明与正整数n 有关的整除性问题.....用数学归纳法证明整除问题时,由到时,首先要从要证的式子中拼凑出假设成立的式子,然后证明剩余的式子也能被某式(数)整除,这是数学归纳法证明问题的一大技巧。
选修2-2第二章 《数学归纳法》

学科教师辅导讲义讲义编号学员编号: 年 级: 课 时 数:3 学员姓名: 辅导科目:数学 学科教师: 课 题 数学归纳法授课日期及时段教学目的1、了解由有限多个特殊事例得出的一般结论不一定正确,初步理解数学归纳法原理。
2、 能以递推思想为指导,理解数学归纳法证明数学命题的两个步骤一个结论。
3、初步会用数学归纳法证明一些与正整数相关的简单的恒等式。
4、进一步发展学生的抽象思维能力和创新能力,让学生经历知识的构建过程, 体会类比的数学思想。
教学内容一、课前检测1用数学归纳法证明3k ≥n 3(n ≥3,n ∈N )第一步应验证( )A.n =1B.n =2C.n =3D.n =4 答案:C2用数学归纳法说明:1+111(1)2321n n n ++⋅⋅⋅+<>-,在第二步证明从n=k 到n=k+1成立时,左边增加的项数是( )。
【2】(A)k 2个 (B) 12-k 个 (C) 12-k 个 (D) 12+k 个答案:A3已知f (n )=(2n +7)·3n +9,存在自然数m ,使得对任意n ∈N ,都能使m 整除f (n ),则最大的m 的值为( )A.30B.26C.36D.6 答案:C 4已知a 1=21,a n +1=33+n na a ,则a 2,a 3,a 4,a 5的值分别为_________,由此猜想a n =_________. 答案:73、83、93、103 53=n5楼梯共有n 级,每步只能跨上1级或2级,走完该n 级楼梯共有)(n f 种不同的走法,则)(n f 、)1(-n f 、)2(-n f 的关系为 。
答案:)2()1()(-+-=n f n f n f 6观察下列式子:222543=+,222221413121110+=++,222222227262524232221++=+++,222222222444342414039383736+++=++++,…,则第n 个式子是 。
人教版数学高二选修2-2讲义2.3数学归纳法

2.3数学归纳法1.了解数学归纳法的原理.(难点、易混点)2.能用数学归纳法证明一些简单的数学命题.(重点、难点)[基础·初探]教材整理数学归纳法阅读教材P92~P94“例1”以上内容,完成下列问题.1.数学归纳法的定义一般地,证明一个与正整数n有关的命题,可按下列步骤进行只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.这种证明方法叫做数学归纳法.2.数学归纳法的框图表示判断(正确的打“√”,错误的打“×”)(1)与正整数n有关的数学命题的证明只能用数学归纳法.()(2)数学归纳法的第一步n0的初始值一定为1.()(3)数学归纳法的两个步骤缺一不可.()【答案】(1)×(2)×(3)√[小组合作型]用数学归纳法证明等式(1)用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N*)时,第一步验证n=1时,左边应取的项是()A.1 B.1+2C.1+2+3 D.1+2+3+4(2)用数学归纳法证明(n+1)·(n+2)·…·(n+n)=2n×1×3×…×(2n-1)(n∈N*).【自主解答】(1)当n=1时,左边应为1+2+3+4,故选D.【答案】 D(2)①当n=1时,左边=1+1=2,右边=21×1=2.等式成立.②假设当n=k(k∈N*)时等式成立,即(k+1)(k+2)·…·(k+k)=2k×1×3×…×(2k-1)那么当n=k+1时,[(k+1)+1]·[(k+1)+2]·…·[(k+1)+(k+1)]=2(k+1)(k+2)(k+3)·…·(k+k)(2k+1)=2×2k×1×3×…×(2k-1)(2k+1)=2k+1×1×3×…×(2k-1)×[2(k +1)-1]即当n=k+1时,等式也成立.根据①和②,可知等式对任何n∈N*都成立.数学归纳法证题的三个关键点1.验证是基础找准起点,奠基要稳,有些问题中验证的初始值不一定是1.2.递推是关键数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程中,要正确分析式子项数的变化.关键是弄清等式两边的构成规律,弄清由n =k 到n =k +1时,等式的两边会增加多少项、增加怎样的项.3.利用假设是核心在第二步证明n =k +1成立时,一定要利用归纳假设,即必须把归纳假设“n =k 时命题成立”作为条件来导出“n =k +1”,在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项,这是数学归纳法的核心,不用归纳假设的证明就不是数学归纳法.[再练一题]1.(1)下面四个判断中,正确的是( )A .式子1+k +k 2+…+k n (n ∈N *)中,当n =1时,式子的值为1B .式子1+k +k 2+…+k n -1(n ∈N *)中,当n =1时,式子的值为1+kC .式子1+12+13+…+12n +1(n ∈N *)中,当n =1时,式子的值为1+12+13 D .设f (n )=1n +1+1n +2+…+13n +1(n ∈N *),则f (k +1)=f (k )+13k +2+13k +3+13k +4(2)用数学归纳法证明:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n . 【解析】 (1)A 中,n =1时,式子=1+k ;B 中,n =1时,式子=1;C 中,n =1时,式子=1+12+13;D 中,f (k +1)=f (k )+13k +2+13k +3+13k +4-1k +1. 故正确的是C.【答案】 C(2)【证明】①当n=1时,左边=1-12=12,右边=12,等式成立;②假设当n=k(k≥1,且k∈N*)时等式成立,即:1-12+13-14+…+12k-1-12k=1k+1+1k+2+…+12k.则当n=k+1时,左边=1-12+13-14+…+12k-1-12k+12(k+1)-1-12(k+1)=1k+1+1k+2+…+12k+12k+1-12(k+1)=1k+2+1k+3+…+12k+12k+1+⎣⎢⎡⎦⎥⎤1k+1-12(k+1)=1(k+1)+1+1(k+1)+2+…+1(k+1)+k+12(k+1)=右边,所以当n=k+1时等式也成立.由①②知对一切n∈N*等式都成立.用数学归纳法证明不等式(1)用数学归纳法证明不等式1n+1+1n+2+…+1n+n>1324(n≥2,n∈N*)的过程中,由n=k推导n=k+1时,不等式的左边增加的式子是__________.(2)证明:不等式1+12+13+…+1n<2n(n∈N*).【精彩点拨】(1)写出当n=k时左边的式子,和当n=k+1时左边的式子,比较即可.(2)在由n=k到n=k+1推导过程中利用放缩法,在利用放缩时,注意放缩的度.【自主解答】(1)当n=k+1时左边的代数式是1k+2+1k+3+…+12k+1+1 2k+2,增加了两项12k+1与12k+2,但是少了一项1k+1,故不等式的左边增加的式子是12k +1+12k +2-1k +1=1(2k +1)(2k +2). 【答案】 1(2k +1)(2k +2)(2)①当n =1时,左边=1,右边=2,左边<右边,不等式成立.②假设当n =k (k ≥1且k ∈N *)时,不等式成立,即1+12+13+ (1)<2k . 则当n =k +1时,1+12+13+…+1k +1k +1<2k +1k +1=2k k +1+1k +1 <(k )2+(k +1)2+1k +1=2(k +1)k +1=2k +1. ∴当n =k +1时,不等式成立.由①②可知,原不等式对任意n ∈N *都成立.[再练一题] 2.试用数学归纳法证明例2(1)中的不等式.【证明】 ①当n =2时,12+1+12+2=712>1324. ②假设当n =k (k ≥2且k ∈N *)时不等式成立,即1k +1+1k +2+…+12k >1324, 那么当n =k +1时,1k +2+1k +3+…+12(k +1)=1k +2+1k +3+…+12k +12k +1+12k +2+1k +1-1k +1=⎝ ⎛⎭⎪⎫1k +1+1k +2+1k +3+…+12k +12k +1+12k +2-1k +1>1324+12k +1+12k +2-1k +1=1324+12k +1-12k +2=1324+12(2k+1)(k+1)>1324.这就是说,当n=k+1时,不等式也成立.由①②可知,原不等式对任意大于1的正整数都成立.[探究共研型]用数学归纳法解决“归纳—猜想—证明”问题探究【提示】解决此类问题的基本思路是:可以先从观察入手,发现问题的特点,以形成解决问题的初步思路,然后用归纳的方法进行试探,提出猜想,最后用数学归纳法给出证明.已知数列{a n}的前n项和为S n,其中a n=S nn(2n-1)且a1=13.【导学号:62952086】(1)求a2,a3;(2)猜想数列{a n}的通项公式,并证明.【精彩点拨】(1)令n=2,3可分别求a2,a3.(2)根据a1,a2,a3的值,找出规律,猜想a n,再用数学归纳法证明.【自主解答】(1)a2=S22(2×2-1)=a1+a26,a1=13,则a2=115,类似地求得a3=1 35.(2)由a1=11×3,a2=13×5,a3=15×7,…,猜得:a n=1(2n-1)(2n+1).证明:①当n=1时,由(1)可知等式成立;②假设当n=k时猜想成立,即a k=1(2k-1)(2k+1),那么,当n=k+1时,由题设a n=S nn(2n-1),得a k=S kk(2k-1),a k+1=S k+1(k+1)(2k+1),所以S k=k(2k-1)a k=k(2k-1)1(2k-1)(2k+1)=k2k+1,S k+1=(k+1)(2k+1)a k+1,a k+1=S k+1-S k=(k+1)(2k+1)a k+1-k2k+1.因此,k(2k+3)a k+1=k2k+1,所以a k+1=1(2k+1)(2k+3)=1[2(k+1)-1][2(k+1)+1].这就证明了当n=k+1时命题成立.由①②可知命题对任何n∈N*都成立.1.“归纳—猜想—证明”的一般环节2.“归纳—猜想—证明”的主要题型(1)已知数列的递推公式,求通项或前n项和.(2)由一些恒等式、不等式改编的一些探究性问题,求使命题成立的参数值是否存在.(3)给出一些简单的命题(n=1,2,3,…),猜想并证明对任意正整数n都成立的一般性命题.[再练一题]3.已知函数y=f(n)(n∈N*),设f(1)=2,且任意的n1,n2∈N*,有f(n1+n2)=f(n1)·f(n2).(1)求f (2),f (3),f (4)的值;(2)试猜想f (n )的解析式,并用数学归纳法给出证明.【解】 (1)因为f (1)=2,f (n 1+n 2)=f (n 1)·f (n 2),所以f (2)=f (1+1)=f (1)·f (1)=22=4,f (3)=f (2+1)=f (2)·f (1)=22·2=23=8.f (4)=f (3+1)=f (3)·f (1)=23·2=24=16.(2)猜想:f (n )=2n (n ∈N *).用数学归纳法证明如下:①当n =1时,f (1)=21=2,所以猜想正确.②假设当n =k (k ≥1,k ∈N *)时猜想正确,即f (k )=2k ,那么当n =k +1时,f (k +1)=f (k )·f (1)=2k ·2=2k +1,所以,当n =k +1时,猜想正确.由①②知,对任意的n ∈N *,都有f (n )=2n .1.用数学归纳法证明“凸n 边形的内角和等于(n -2)π”时,归纳奠基中n 0的取值应为( )A .1B .2C .3D .4【解析】 边数最少的凸n 边形为三角形,故n 0=3.【答案】 C2.用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a (n ∈N *,a ≠1),在验证n =1成立时,左边所得的项为( )【导学号:62952087】A .1B .1+a +a 2C .1+aD .1+a +a 2+a 3【解析】 当n =1时,n +1=2,故左边所得的项为1+a +a 2.【答案】 B3.用数学归纳法证明关于n的恒等式时,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1时,表达式为________.【解析】当n=k+1时,应将表达式1×4+2×7+…+k(3k+1)=k(k+1)2中的k更换为k+1.【答案】1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)24.以下是用数学归纳法证明“n∈N*时,2n>n2”的过程,证明:(1)当n=1时,21>12,不等式显然成立.(2)假设当n=k(k∈N*)时不等式成立,即2k>k2.那么,当n=k+1时,2k+1=2×2k=2k+2k>k2+k2≥k2+2k+1=(k+1)2.即当n=k+1时不等式也成立.根据(1)和(2),可知对任何n∈N*不等式都成立.其中错误的步骤为________(填序号).【解析】在2k+1=2×2k=2k+2k>k2+k2≥k2+2k+1中用了k2≥2k+1,这是一个不确定的结论.如k=2时,k2<2k+1.【答案】(2)5.用数学归纳法证明:对于任意正整数n,(n2-1)+2(n2-22)+…+n(n2-n2)=n2(n-1)(n+1)4.【证明】(1)当n=1时,左边=12-1=0,右边=12×(1-1)×(1+1)4=0,所以等式成立.(2)假设当n=k(k∈N*)时等式成立,即(k2-1)+2(k2-22)+…+k(k2-k2)=k2(k-1)(k+1)4.那么当n=k+1时,有[(k+1)2-1]+2[(k+1)2-22]+…+k·[(k+1)2-k2]+(k +1)[(k+1)2-(k+1)2]=(k2-1)+2(k2-22)+…+k(k2-k2)+(2k+1)(1+2+…+k)=k2(k-1)(k+1)4+(2k+1)k(k+1)2=14k(k+1)[k(k-1)+2(2k+1)]=14k(k+1)(k2+3k+2)=(k+1)2[(k+1)-1][(k+1)+1]4.所以当n=k+1时等式成立.由(1)(2)知,对任意n∈N*等式成立.。
人教版高中数学选修2-2第二章2.3数学归纳法

(2)第二步——归纳递推
“假设n=k(kN*,k≥n0)时命题成立,证 明当n=k+1时命题也成立”,其本质是证明一个递 推关系,归纳递推的作用是从前往后传递,有了 这种向后传递的关系,就能从一个起点(例如 n=1)不断发展,以至无穷.如果没有它,即使前 面验证了命题对许多正整数n都成立,也不能保 证命题对后面的所有正整数都成立.
这个游戏中,能使所有多米诺 骨牌全部倒下的条件是什么? 大家想一想,自 己总结出倒下的条件.
动动脑
观看动画:多米诺骨牌
只要满足以下两个条件,所有多 米诺骨牌就都能倒下: (1)第一块骨牌倒下; (2)任意相邻的两块骨牌,前一块 倒下一定导致后一块倒下;
你认为条件(2)的作 用是什么?
可以看出,条件(2)事实上给出 了一个递推关系:当第k块倒下时,相 邻的第k+1块也倒下. 这样,只要第一块骨牌倒 下,其他所有的骨牌就能够相 继倒下.事实上,无论有多少块 骨牌,只要保证(1)(2)成立,那 么所有的骨牌一定可以全部倒 下.
• 培养学生的逻辑思维能力,使思维严谨.
• 递推思想的形成,能够扩展思维.
教学重难点
重点
借助具体实例了解数学归纳法的基本思 想,掌握它的基本步骤,运用它证明一些与 正整数n(n取无限多个值)有关的数学命题.
难点
•理解数学归纳法的思想实质,了解第二个 步骤的作用,根据归纳假设作出证明; •运用数学归纳法时,在“归纳递推”的步 骤中发现具体问题的递推关系.
对于数列{an },已知a1 = 1, an+1 an = (n = 1, 2, 3, ), 1 + an
1 此数列的通项公式an = . n
大家现在能证明这个猜想吗? 这个猜想和多米诺骨牌游戏有相 似性吗?你能类比多米诺骨牌游戏解 决这个问题吗?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 数学归纳法1.了解数学归纳法的原理.2.能用数学归纳法证明一些简单的数学命题.1.数学归纳法证明一个与正整数n 有关的命题,可按下列步骤进行:第一步,归纳奠基:证明当n 取______________时命题成立.第二步,归纳递推:假设____________时命题成立,证明当________时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.数学归纳法的第一步中n 的初始值怎样确定? 【做一做1】 用数学归纳法证明1+a +a 2+…+a n +1=1-a n +21-a(a ≠1),在验证n =1时,等式左边为( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3【做一做2】 设S k =1k +1+1k +2+1k +3+…+12k ,则S k +1为( )A .S k +12k +2B .S k +12k +1+12k +2C .S k +12k +1-12k +2D .S k +12k +2-12k +1【做一做3】 在应用数学归纳法证明凸n 边形的对角线有12n (n -3)条时,第一步验证n等于__________.2.数学归纳法的框图表示答案:1.第一个值n 0(n 0∈N *) n =k (k ≥n 0,k ∈N *) n =k +1 思考讨论提示:数学归纳法的第一步中n 的初始值应根据命题的具体情况而确定,不一定是n 0=1,如证明n 边形的内角和为(n -2)·180°时,其初始值n 0=3.【做一做1】 C 因为左边式子中a 的最高指数是n +1,所以当n =1时,a 的最高指数为2,根据左边式子的规律可得,当n =1时,左边=1+a +a 2.【做一做2】 C 因式子右边各分数的分母是连续正整数,则由S k =1k +1+1k +2+…+12k ,①得S k +1=1k +2+1k +3+…+12k +12k +1+12(k +1).②由②-①,得S k +1-S k =12k +1+12(k +1)-1k +1=12k +1-12(k +1).故S k +1=S k +12k +1-12(k +1),故选C. 【做一做3】 3 ∵三角形是边数最少的凸多边形, ∴需验证的第一个n 值为3. 2.n =n 0 n =k +1 正整数1.如何理解数学归纳法? 剖析:数学归纳法是专门证明与正整数集有关的命题的一种方法,它是一种完全归纳法,是对不完全归纳法的完善.证明分两步,其中第一步是命题成立的基础,称为“归纳奠基”;第二步解决的是延续性问题,又称“归纳递推”.运用数学归纳法证明有关命题应注意以下几点:(1)两个步骤缺一不可.(2)在第一步中,n 的初始值不一定从1取起,也不一定只取一个数(有时需取n =n 0,n 0+1等),证明应视具体情况而定.(3)第二步中,证明n =k +1时,必须使用假设,否则就会打破数学归纳法步骤间的严密逻辑关系,造成推理无效.(4)证明n =k +1成立时,要明确求证的目标形式,一般要凑出假设里给出的形式,以便使用假设,然后再去凑出当n =k +1时的结论,这样就能有效减少论证的盲目性.数学归纳法的理论根据是皮亚诺的归纳公理:任何一个正整数集A ,若①1∈A ;②由k ∈A 可推出k +1∈A ,则A 含有所有的正整数.2.运用数学归纳法要注意哪些?剖析:正确运用数学归纳法应注意以下几点: (1)验证是基础.数学归纳法的原理表明:第一个步骤是要找一个数n 0,这个n 0就是我们要证明的命题对象的最小自然数,这个自然数并不一定都是“1”,因此“找准起点,奠基要稳”是我们正确运用数学归纳法第一个要注意的问题.(2)递推是关键.数学归纳法的实质在于递推,所以从“k ”到“k +1”的过程,必须把归纳假设“n =k ”作为条件来导出“n =k +1”时的命题,在推导过程中,要把归纳假设用上一次或几次.(3)正确寻求递推关系.我们已经知道数学归纳法的第二步递推是至关重要的,那么如何寻求递推关系呢? ①在第一步验证时,不妨多计算几项,并争取正确写出来,这样对发现递推关系是有帮助的.②探求数列通项公式要善于观察式子或命题的变化规律,观察n 处在哪个位置.③在书写f (k +1)时,一定要把包含f (k )的式子写出来,尤其是f (k )中的最后一项.除此之外,多了哪些项,少了哪些项都要分析清楚.题型一 用数学归纳法证明等式 【例题1】 用数学归纳法证明:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19⎝⎛⎭⎫1-116…⎝⎛⎭⎫1-1n 2=n +12n(n ≥2,n ∈N *). 分析:第一步先验证等式成立的第一个值n 0;第二步在n =k 时等式成立的基础上,等式左边加上n =k +1时新增的项,整理出等式右边的项.反思:在应用数学归纳法证题时应注意以下几点:①验证是基础:找准起点,奠基要稳,有些问题中验证的初始值不一定为1.②递推是关键:正确分析由n =k 到n =k +1时式子项数的变化是应用数学归纳法成功证明问题的保障.③利用假设是核心:在第(2)步证明中一定要利用归纳假设,这是数学归纳法证明的核心环节,否则这样的证明方法就不是数学归纳法.题型二 用数学归纳法证明不等式【例题2】 已知函数f (x )=13x 3-x ,数列{a n }满足条件:a 1≥1,a n +1≥f ′(a n +1),(1)证明:a n ≥2n -1(n ∈N *). (2)试比较11+a 1+11+a 2+…+11+a n与1的大小,并说明理由. 分析:(1)求f ′(x )→得到式子a n +1≥(a n +1)2-1→利用数学归纳法证明a n ≥2n -1(n ∈N *)(2)由a n ≥2n -1得1+a n ≥2n →11+a n ≤12n →利用放缩法证明不等式成立 反思:利用数学归纳法证明与n 有关的不等式是数学归纳法的主要应用之一,应用过程中注意:①证明不等式时,从n =k 到n =k +1的推导过程中要应用归纳假设,有时需要对目标式进行适当的放缩来实现.②与n 有关的不等式的证明有时并不一定非用数学归纳法不可,还经常用到不等式证明中的比较法、分析法、配方法、放缩法等.题型三 用数学归纳法证明几何问题【例题3】 有n 个圆,其中每两个圆相交于两点,并且每三个圆都不相交于同一点,求证:这n 个圆把平面分成f (n )=n 2-n +2部分.分析:解答本题的关键是在第二步中如何正确地应用假设.反思:用数学归纳法证明几何问题的关键是“找项”,即几何元素从k 个变成(k +1)个时,所证的几何量将增加多少,这需用到几何知识或借助于几何图形来分析,在实在分析不出来的情况下,将n =k +1和n =k 分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧.题型四 易错辨析【例题4】 用数学归纳法证明:1+4+7+…+(3n -2)=12n (3n -1).错解:证明:(1)当n =1时,左边=1,右边=1,左边=右边,等式成立. (2)假设当n =k (k ≥1,k ∈N *)时等式成立,即1+4+7+…+(3k -2)=12k (3k -1),则当n =k +1时,需证1+4+7+…+(3k -2)+[3(k +1)-2]=12(k +1)(3k +2)(*).由于等式左边是一个以1为首项,公差为3,项数为k +1的等差数列的前n 项和,其和为12(k +1)(1+3k +1)=12(k +1)(3k +2),所以(*)式成立,即n =k +1时等式成立.根据(1)和(2),可知等式对一切n ∈N *都成立.错因分析:判断用数学归纳法证明数学问题是否正确,关键要看两个步骤是否齐全,特别是第二步假设是否被应用,如果没有用到假设,那就是不正确的.错解在证明当n =k +1等式成立时,没有用到假设“当n =k (k ≥1,k ∈N *)时等式成立”,故不符合数学归纳法证题的要求.答案:【例题1】 证明:(1)当n =2时,左边=1-14=34,右边=2+12×2=34,∴左边=右边.(2)假设n =k (k ≥2,k ∈N *)时结论成立,即⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19…⎝⎛⎭⎫1-1k 2=k +12k . 那么n =k +1时,利用归纳假设有:⎝⎛⎭⎫1-14⎝⎛⎭⎫1-19…⎝⎛⎭⎫1-1k 2⎣⎡⎦⎤1-1(k +1)2=k +12k ⎣⎡⎦⎤1-1(k +1)2=k +12k ·k (k +2)(k +1)2 =k +22(k +1)=(k +1)+12(k +1).∴即n =k +1时等式也成立.综合(1)(2)知,对任意n ≥2,n ∈N *等式恒成立. 【例题2】 (1)证明:∵f ′(x )=x 2-1, ∴a n +1≥(a n +1)2-1=a 2n +2a n .①当n =1时,a 1≥1=21-1,命题成立;②假设当n =k (k ≥1,k ∈N *)时命题成立,即a k ≥2k -1; 那么当n =k +1时,a k +1≥a 2k +2a k =a k (a k +2)≥(2k -1)(2k-1+2)=22k -1≥2k +1-1.即当n =k +1时,命题成立, 综上所述,命题成立. (2)解:11+a 1+11+a 2+…+11+a n<1. ∵a n ≥2n -1,∴1+a n ≥2n .∴11+a n ≤12n . ∴11+a 1+11+a 2+…+11+a n≤12+122+…+12n =1-12n <1. 【例题3】 证明:(1)当n =1时,分为两部分,f (1)=2,命题成立; (2)假设n =k (k ≥1,k ∈N *)时,被分成f (k )=k 2-k +2部分;那么当n =k +1时,依题意,第k +1个圆与前k 个圆产生2k 个交点,第k +1个圆被截为2k 段弧,每段弧把所经过的区域分为两部分,∴平面上增加了2k 个区域.∴f (k +1)=f (k )+2k =k 2-k +2+2k =(k +1)2-(k +1)+2,即n =k +1时命题成立, 由(1)(2)知命题成立.【例题4】 正解:证明:(1)当n =1时,左边=1,右边=1,左边=右边,等式成立.(2)假设当n =k (k ≥1,k ∈N *)时等式成立,即1+4+7+…+(3k -2)=12k (3k -1),则当n =k +1时,1+4+7+…+(3k -2)+[3(k +1)-2]=12k (3k -1)+(3k +1)=12(3k 2+5k +2)=12(k +1)(3k +2)=12(k +1)[3(k +1)-1], 即当n =k +1时等式成立.根据(1)和(2),可知等式对一切n ∈N *都成立.1用数学归纳法证明3n≥n 3(n ≥3,n ∈N ),第一步应验证( ) A .n =1 B .n =2 C .n =3 D .n =42已知f (n )=11112n n n +++++ (21),则( ) A .f (n )共有n 项,当n =2时,f (2)=1123+B .f (n )共有n +1项,当n =2时,f (2)=111234++C .f (n )共有n 2-n 项,当n =2时,f (2)=1123+D .f (n )共有n 2-n +1项,当n =2时,f (2)=111234++3已知n 为正偶数,用数学归纳法证明1111234-+-+…+11n -=1112242n n n ⎛⎫++⋅⋅⋅+ ⎪++⎝⎭时,若已假设n =k (k ≥2为偶数)时命题为真,则还需要用归纳假设再证( )A .n =k +1时等式成立B .n =k +2时等式成立C .n =2k +2时等式成立D .n =2(k +2)时等式成立4设平面内有n 条直线,其中任何两条直线不平行,任何三条直线不共点.若k 条直线将平面分成f (k )个部分,k +1条直线将平面分成f (k +1)个部分,则f (k +1)=f (k )+__________.5用数学归纳法证明2222111111234n n+++⋅⋅⋅+<-(n ≥2,n ∈N *).答案:1.C 由题知,n 的最小值为3,所以第一步验证n =3是否成立,选C. 2.D 由题意知f (n )最后一项的分母为n 2, 故f (2)=2111232++,排除选项A ,选项C. 又f (n )=211101()n n n n n ++++++-…, 所以f (n )的项数为n 2-n +1项.故选D.3.B 因为假设n =k (k ≥2为偶数),故下一个偶数为k +2,故选B.4.k +1 第k +1条直线与原来的k 条直线相交,有k 个交点,这k 个交点把第k +1条直线分成k +1部分(线段或射线),这k +1部分把它们所在的平面区域一分为二,故平面增加了k +1部分.5.分析:证明:(1)当n =2时,左边=21124=,右边=11122-=. 因为1142<,所以不等式成立. (2)假设n =k (k ≥2,k ∈N *)时,不等式成立, 即2222111111234k k++++<-…, 则当n =k +1时,22222211111111234(1)(1)k k k k +++++<-+++… =22222(1)1(1)111(1)(1)(1)k k k k k k k k k k k k +-+++-=-<-+++ =111k -+. 所以当n =k +1时,不等式也成立.综上所述,对任意n ≥2的正整数,不等式都成立.。