单项式乘单项式试题精选(一)附答案

合集下载

单项式乘单项式试题精选(一)附答案

单项式乘单项式试题精选(一)附答案

单项式乘单项式试题精选(一)一.选择题(共26小题)1.(2014•日照)下列运算正确的是()A.3a3•2a2=6a6B.(a2)3=a6C.a8÷a2=a4D.x3+x3=2x6 2.(2014•盘锦)计算(2a2)3•a正确的结果是()A.3a7B.4a7C.a7D.4a63.(2014•从化市一模)计算a2•2a3的结果是()A.2a6B.2a5C.8a6D.8a54.(2012•路南区一模)下列运算中,正确的是()A.2m+m=2m2B.﹣m(﹣m)=﹣2m C.(﹣m3)2=m6D.m2m3=2m55.(2012•海曙区模拟)计算(﹣2a3)(﹣a2)结果是()A.2a6B.﹣2a6C.2a5D.﹣2a56.(2011•呼和浩特)计算2x2•(﹣3x3)的结果是()A.﹣6x5B.6x5C.﹣2x6D.2x67.(2009•保定一模)计算(﹣2a2)×(﹣3a3)的结果为()A.6a5B.﹣6a5C.6a6D.﹣6a68.(2001•重庆)若(a m+1b n+2)•(a2n﹣1b2m)=a5b3,则m+n的值为()A.1B.2C.3D.﹣39.化简:(﹣3x2)2x3的结果是()A.﹣3x5B.18x5C.﹣6x5D.﹣18x510.计算(﹣x3)2•x的结果是()A.﹣x7B.x7C.﹣x6D.x611.下列计算正确的是()A.2a3•3a2=6a6B.4x3•2x5=8x8C.2x•2x5=4x5D.5x3•4x4=9x712.下列计算正确的是()A.5a2b•2b2a=10a4b2B.3x4•3x4=9x4C.7x3•3x7=21x10D.4x4•5x5=20x2013.下列计算,正确的是()A.a6÷a2=a3B.3a2×2a2=6a2C.(ab2)2=a2b4D.5a+3a=8a2 14.下列计算中正确的是()C.(﹣3a2)•2a3=﹣6a6D.a2m=(﹣a m)2(其中m为正整数)15.计算x2•y2(﹣xy3)2的结果是()A.x5y10B.x4y8C.﹣x5y8D.x6y1216.计算﹣(a2b)3+2a2b•(﹣3a2b)2的结果为()A.﹣17a6b3B.﹣18a6b3C.17a6b3D.18a6b317.计算(﹣2a)(﹣3a)的结果是()A.﹣5a B.﹣a C.6a D.6a218.下列各式计算正确的是()A.(a2)4=(a4)2B.2x3•5x2=10x6C.(﹣c)8÷(﹣c)6=D.(ab3)2=ab6﹣c219.计算(ab2)(﹣3a2b)2的结果是()A.6a5b4B.﹣6a5b4C.9a5b4D.9a3b420.2x•(﹣3xy)2•(﹣x2y)3的计算结果是()A.﹣6x4y5B.﹣18x9y5C.6x9y5D.18x8y521.一种计算机每秒可做4×108次运算,它工作3×103秒运算的次数为()A.12×1024B.1.2×1012C.12×1012D.12×10822.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3中,结果等于66的是()A.①②③B.②③④C.②③D.③④23.计算(﹣2ab)(3a2b2)3的结果是()A.﹣6a3b3B.54a7b7C.﹣6a7b7D.﹣54a7b724.单项式与24x5y的积为()A.﹣4x7y4z B.﹣4x7y4C.﹣3x7y4z D.3x7y4z25.计算:3x2y•(﹣2xy)结果是()A.6x3y2B.﹣6x3y2C.﹣6x2y D.﹣6x2y226.8b2(﹣a2b)=()A.8a2b3B.﹣8b3C.64a2b3D.﹣8a2b3二.填空题(共4小题)27.(2014•山西)计算:3a2b3•2a2b=_________.28.计算(﹣3a3)•(﹣2a2)=_________.30.计算:2x2y•(﹣3y2z)=_________.单项式乘单项式试题精选(一)参考答案与试题解析一.选择题(共26小题)1.(2014•日照)下列运算正确的是()A.3a3•2a2=6a6B.(a2)3=a6C.a8÷a2=a4D.x3+x3=2x6考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.专题:计算题.分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:解:A、3a3•2a2=6a5,故A选项错误;B、(a2)3=a6,故B选项正确;C、a8÷a2=a6,故C选项错误;D、x3+x3=2x3,故D选项错误.故选:B.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.2.(2014•盘锦)计算(2a2)3•a正确的结果是()A.3a7B.4a7C.a7D.4a6考点:单项式乘单项式;幂的乘方与积的乘方.专题:计算题.分析:根据幂的乘方与积的乘方、单项式与单项式相乘及同底数幂的乘法法则进行计算即可.解答:解:原式==4a7,故选:B.点评:本题考查了同底数幂的乘法法则,同底数幂相乘,底数不变指数相加;幂的乘方的法则,幂的乘方,底数不变,指数相乘.3.(2014•从化市一模)计算a2•2a3的结果是()A.2a6B.2a5C.8a6D.8a5考点:单项式乘单项式.分析:本题需根据单项式乘以单项式的法则进行计算,即可求出答案.解答:解:a2•2a3=2a5故选B.点评:本题主要考查了单项式乘以单项式,在解题时要注意单项式的乘法法则的灵活应用是本题的关键.4.(2012•路南区一模)下列运算中,正确的是()考点:单项式乘单项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则,单项式的乘法法则,积的乘方法则,同底数幂的乘法的运算方法,利用排除法求解.解答:解:A、应为2m+m=3m,故本选项错误;B、应为﹣m(﹣m)=m2,故本选项错误;C、(﹣m3)2=m6,故本选项正确;D、m2m3=m5,故本选项错误.故选C.点评:本题主要考查了合并同类项,单项式的乘法法则,积的乘方法则,同底数幂的乘法,熟练掌握运算法则是解题的关键.5.(2012•海曙区模拟)计算(﹣2a3)(﹣a2)结果是()A.2a6B.﹣2a6C.2a5D.﹣2a5考点:单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:(﹣2a3)(﹣a2)=2a3+2=2a5.故选:C.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.6.(2011•呼和浩特)计算2x2•(﹣3x3)的结果是()A.﹣6x5B.6x5C.﹣2x6D.2x6考点:同底数幂的乘法;单项式乘单项式.分析:根据单项式乘单项式的法则和同底数幂相乘,底数不变,指数相加计算后选取答案.解答:解:2x2•(﹣3x3),=2×(﹣3)•(x2•x3),=﹣6x5.故选A.点评:本题主要考查单项式相乘的法则和同底数幂的乘法的性质.7.(2009•保定一模)计算(﹣2a2)×(﹣3a3)的结果为()A.6a5B.﹣6a5C.6a6D.﹣6a6考点:单项式乘单项式.专题:计算题.分析:利用单项式相乘的运算性质计算即可得到答案.解答:解:(﹣2a2)×(﹣3a3)=(﹣2)×(﹣3)a2•a3=6a5,故选A.点评:本题考查了单项式的乘法,属于基础题,比较简单.8.(2001•重庆)若(a m+1b n+2)•(a2n﹣1b2m)=a5b3,则m+n的值为()A.1B.2C.3D.﹣3考点:单项式乘单项式;同底数幂的乘法.分析:根据单项式的乘法的法则,同底数幂相乘,底数不变,指数相加的性质计算,然后再根据相同字母的次数相同列出方程组,整理即可得到m+n的值.解答:解:(a m+1b n+2)•(a2n﹣1b2m),=a m+1+2n﹣1•b n+2+2m,=a m+2n•b n+2m+2,=a5b3,∴,两式相加,得3m+3n=6,解得m+n=2.故选B.点评:本题主要考查单项式的乘法的法则和同底数幂的乘法的性质,根据数据的特点两式相加求解即可,不需要分别求出m、n的值.9.化简:(﹣3x2)2x3的结果是()A.﹣3x5B.18x5C.﹣6x5D.﹣18x5考点:单项式乘单项式.分析:利用单项式的乘法法则,同底数幂的乘法的性质,计算后直接选取答案.解答:解:(﹣3x2)2x3=[2×(﹣3)](x3•x2)=﹣6x5.故选C.点评:本题考查了单项式乘以单项式的知识,单项式乘法法则:把系数和相同字母分别相乘.同底数幂的乘法,底数不变指数相加.10.计算(﹣x3)2•x的结果是()A.﹣x7B.x7C.﹣x6D.x6考点:单项式乘单项式;幂的乘方与积的乘方.分析:本题需根据单项式乘以单项式的法则进行计算,即可求出答案.解答:解:(﹣x3)2•x=x3×2•x=x7.故选B.点评:本题主要考查了单项式乘以单项式,在解题时要注意单项式的乘法法则的灵活应用是本题的关键.11.下列计算正确的是()A.2a3•3a2=6a6B.4x3•2x5=8x8C.2x•2x5=4x5D.5x3•4x4=9x7考点:单项式乘单项式.分析:根据同底数幂的乘法的知识求解即可求得答案.解答:解:A、2a3•3a2=6a5,故A选项错误;B、4x3•2x5=8x8,故B选项正确;C、2x•2x5=4x6,故C选项错误;D、5x3•4x4=20x7,故D选项错误.故选:B.点评:此题考查了同底数幂的乘法等知识,解题的关键是熟记法则.12.下列计算正确的是()A.5a2b•2b2a=10a4b2B.3x4•3x4=9x4C.7x3•3x7=21x10D.4x4•5x5=20x20考点:单项式乘单项式.分析:运用单项式乘单项式的法则计算.解答:解:A、5a2b•2b2a=10a3b3,故A选项错误;B、3x4•3x4=9x8,故B选项错误;C、7x3•3x7=21x10,故C选项正确;D、4x4•5x5=20x9,故D选项错误.故选:C.点评:本题主要考查了单项式乘单项式,解题的关键是熟记法则.13.下列计算,正确的是()A.a6÷a2=a3B.3a2×2a2=6a2C.(ab2)2=a2b4D.5a+3a=8a2考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:利用同底数幂相除、单项式乘以单项式、积的乘方、合并同类项法则逐一判断即可.解答:解:A、a6÷a2=a4,故本项错误;B、3a2×2a2=6a4,故本项错误;C、(ab2)2=a2b4,故本项正确;D、5a+3a=8a,故本项错误.故选:C.点评:本题主要考查了同底数幂相除、单项式乘以单项式、积的乘方、合并同类项,熟练掌握法则是解题的关键.14.下列计算中正确的是()A.a5﹣a2=a3B.|a+b|=|a|+|b|C.(﹣3a2)•2a3=﹣6a6D.a2m=(﹣a m)2(其中m为正整数)考点:单项式乘单项式;绝对值;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:依据绝对值的意义、幂的乘方、同底数幂的乘法、合并同类项的法则即可解决.解答:解:A、a5与a2不是同类项,不能合并,故本选项错误;B、|a+b|≤|a|+|b|,故本选项错误;C、应为(﹣3a2)•2a3=﹣6a5,故本选项错误;D、正确.故选D.点评:(1)本题综合考查了整式运算的多个考点,包括合并同类项、幂的乘方、单项式乘单项式,需熟练掌握且区分清楚,才不容易出错;(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.15.计算x2•y2(﹣xy3)2的结果是()A.x5y10B.x4y8C.﹣x5y8D.x6y12考点:单项式乘单项式;幂的乘方与积的乘方.解答:解:x2y2•(﹣xy3)2,=x2y2•x2y3×2,=x2+2y2+6,=x4y8.故选B.点评:本题考查乘方与乘法相结合:应先算乘方,再算乘法.要用到乘方法则:幂的乘方,底数不变,指数相乘.同底数幂的乘法法则:底数不变,指数相加.16.计算﹣(a2b)3+2a2b•(﹣3a2b)2的结果为()A.﹣17a6b3B.﹣18a6b3C.17a6b3D.18a6b3考点:单项式乘单项式;幂的乘方与积的乘方.分析:先按照单项式乘单项式以及积的乘方与幂的乘方法则计算,再合并整式中的同类项即可.解答:解:﹣(a2b)3+2a2b•(﹣3a2b)2=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3.故选:C.点评:本题主要考查了单项式乘单项式以及积的乘方与幂的乘方法则,本题的关键是熟练掌握运算法则.17.计算(﹣2a)(﹣3a)的结果是()A.﹣5a B.﹣a C.6a D.6a2考点:单项式乘单项式.分析:根据单项式的乘法法则,计算后直接选取答案.解答:解:(﹣2a)(﹣3a),=(﹣2)×(﹣3)a•a,=6a2.故选D.点评:本题主要考查单项式的乘法法则,熟练掌握法则是解题的关键,是基础题.18.下列各式计算正确的是()D.(ab3)2=ab6A.(a2)4=(a4)2B.2x3•5x2=10x6C.(﹣c)8÷(﹣c)6=﹣c2考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法.分析:根据幂的乘方、积的乘方、单项式乘单项式、同底数幂相除的法则计算即可.解答:解:A、(a2)4=(a4)2=a8,故本项正确;B、2x3•5x2=10x5,故本项错误;C、(﹣c)8÷(﹣c)6=c2,故本项错误;D、(ab3)2=a2b6,故本项错误,故选:A.点评:本题主要考查了幂的乘方、积的乘方、单项式乘单项式、同底数幂相除的法则,熟练运用法则是解题的关键.A.6a5b4B.﹣6a5b4C.9a5b4D.9a3b4考点:单项式乘单项式.分析:首先利用积的乘方进行化简,进而利用单项式乘以单项式法则求出即可.解答:解:(ab2)(﹣3a2b)2=ab2•9a4b2=9a5b4,故选:C.点评:此题主要考查了单项式乘以单项式,正确把握单项式乘以单项式法则是解题关键.20.2x•(﹣3xy)2•(﹣x2y)3的计算结果是()A.﹣6x4y5B.﹣18x9y5C.6x9y5D.18x8y5考点:单项式乘单项式;幂的乘方与积的乘方.分析:根据单项式的乘法及幂的乘方与积的乘方法则,直接得出结果.解答:解:2x•(﹣3xy)2•(﹣x2y)3=2x•9x2y2•(﹣x6y3)=﹣18x9y5,故选:B.点评:本题主要考查了单项式乘单项式及幂的乘方与积的乘方,单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.注意相同字母的指数相加.21.一种计算机每秒可做4×108次运算,它工作3×103秒运算的次数为()A.12×1024B.1.2×1012C.12×1012D.12×108考点:单项式乘单项式;科学记数法—表示较大的数;同底数幂的乘法.专题:应用题.分析:根据题意列出代数式,再根据单项式的乘法法则以及同底数幂的乘法的性质进行计算即可.解答:解:它工作3×103秒运算的次数为:(4×108)×(3×103),=(4×3)×(108×103),=12×1011,=1.2×1012.故选B.点评:本题主要利用单项式的乘法法则以及同底数幂的乘法的性质求解,科学记数法表示的数在运算中通常可以看做单项式参与的运算.22.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3中,结果等于66的是()A.①②③B.②③④C.②③D.③④考点:单项式乘单项式;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同类项、同底数幂的乘法、积的乘方、幂的乘方、单项式的乘法法则,对各项计算后利用排除法求解.解答:解:①63+63=2×63;②(2×63)×(3×63)=6×66=67;③(22×32)3=(62)3=66;④(33)2×(22)3=36×26=66.所以③④两项的结果是66.点评:本题主要考查单项式的乘法,积的乘方的性质,幂的乘方的性质,熟练掌握运算法则和性质是解题的关键.23.计算(﹣2ab)(3a2b2)3的结果是()A.﹣6a3b3B.54a7b7C.﹣6a7b7D.﹣54a7b7考点:单项式乘单项式;幂的乘方与积的乘方.分析:先运用积的乘方,再运用单项式乘单项式求解即可.解答:解:(﹣2ab)(3a2b2)3=﹣2ab•27a6b6=﹣54a7b7,故选:D.点评:本题主要考查了幂的乘方与积的乘方及单项式乘单项式,解题的关键是熟记运算法则.24.单项式与24x5y的积为()A.﹣4x7y4z B.﹣4x7y4C.﹣3x7y4z D.3x7y4z考点:单项式乘单项式.分析:先列出算式,再根据单项式乘单项式的法则:把系数、同底数的幂分别相乘,即可得出答案.解答:解:•24x5y=(﹣×24)x2+5y3+1z=﹣3x7y4z,故选C.点评:本题考查了单项式乘单项式的法则和同底数幂的乘法,能熟练地运用法则进行计算是解此题的关键,注意:z也是积的一个因式.25.计算:3x2y•(﹣2xy)结果是()A.6x3y2B.﹣6x3y2C.﹣6x2y D.﹣6x2y2考点:单项式乘单项式.分析:根据单项式的乘法法则,直接得出结果.解答:解:3x2y•(﹣2xy)=﹣6x3y2,故选B.点评:单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.本题考查了单项式的乘法法则,注意相同字母的指数相加.26.8b2(﹣a2b)=()A.8a2b3B.﹣8b3C.64a2b3D.﹣8a2b3考点:单项式乘单项式.分析:根据单项式的乘法法则求解.解答:解:8b2(﹣a2b)=﹣8a2b3.故选D.点评:本题考查了单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.二.填空题(共4小题)27.(2014•山西)计算:3a2b3•2a2b=6a4b4.word格式-可编辑-感谢下载支持考点:单项式乘单项式.专题:计算题.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:3a2b3•2a2b=(3×2)×(a2•a2)(b3•b)=6a4b4.故答案为:6a4b4.点评:此题考查了单项式乘以单项式,熟练掌握运算法则是解本题的关键.28.计算(﹣3a3)•(﹣2a2)=6a5.考点:单项式乘单项式;同底数幂的乘法.分析:根据单项式的乘法法则;同底数幂相乘,底数不变,指数相加的性质计算即可.解答:解:(﹣3a3)•(﹣2a2),=(﹣3)(﹣2)•(a3•a2),=6a5.点评:本题考查单项式的乘法法则,同底数幂的乘法的性质,熟练掌握运算法则和性质是解题的关键.29.若单项式﹣3x4a﹣b y2与3x3y a+b是同类项,则这两个单项式的积为﹣9x6y4.考点:单项式乘单项式;同类项.分析:首先同类项的定义,即同类项中相同字母的指数也相同,得到关于a,b的方程组,然后求得a、b的值,即可写出两个单项式,从而求出这两个单项式的积.解答:解:根据同类项的定义可知:,解得:.∴﹣3x4a﹣b y2与3x3y a+b分别为﹣3x3y2与3x3y2,∴﹣3x3y2•3x3y2=﹣9x6y4.故答案为:﹣9x6y4.点评:本题考查了单项式的乘法及同类项的定义,属于基础运算,要求必须掌握.30.计算:2x2y•(﹣3y2z)=﹣6x2y3z.考点:单项式乘单项式.分析:利用单项式乘单项式的运算法则进行计算即可得到正确的答案.解答:解:2x2y•(﹣3y2z)=[2×(﹣3)]x2y•y2z=﹣6x2y3z;故答案为:﹣6x2y3z.点评:本题考查了单项式乘以单项式的运算,单项式乘以单项式就是将系数相乘作为结果的系数,相同字母相乘作为结果的因式.。

9.1单项式乘单项式(解析版)

9.1单项式乘单项式(解析版)

9.1单项式乘单项式单项式乘单项式单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

题型1:单项式乘单项式1.计算:2ab2•a2b= 2a3b3 .【分析】根据单项式乘单项式的运算法则计算.【解答】解:2ab2•a2b=2(a•a2)•(b2•b)=2a3b3,故答案为:2a3b3.【变式1-1】计算(﹣2a3b2)•(﹣3a)2= ﹣18a5b2 .【分析】根据单项式乘单项式,积的乘方运算法则求解即可.【解答】解:(﹣2a3b2)•(﹣3a)2=(﹣2a3b2)•9a2=﹣18a5b2,故答案为:﹣18a5b2.【变式1-2】计算(a2b﹣3)﹣2•(a﹣2b3)2= a﹣8b12 .【分析】根据积的乘方、幂的乘方、同底数幂的乘法解答.【解答】解:(a2b﹣3)﹣2•(a﹣2b3)2=a﹣4b6•a﹣4b6=a﹣8b12.故答案为:a﹣8b12.题型2:与幂的运算结合2.若(a m+1b n+2)•(a2n﹣1b2n)=a5b3,则m﹣n的值为 4 .【分析】先利用单项式乘单项式法则计算(a m+1b n+2)•(a2n﹣1b2n),再根据等式得到指数间关系,最后求出m﹣n.【解答】解:∵(a m+1b n+2)•(a2n﹣1b2n)=a m+1+2n﹣1b n+2+2n=a m+2n b3n+2,∴a m+2n b3n+2=a5b3.∴m+2n=5①,3n=1②.∴①﹣②,得m﹣n=5﹣1=4.故答案为:4.【变式2-1】若1+2+3+…+n=m,且ab=1,m为正整数,则(ab n)(a2b n﹣1)…(a n﹣1b2)(a n b)= 1 .【分析】根据单项式乘单项式的计算法则计算,得到(ab n)(a2b n﹣1)…(a n﹣1b2)(a n b)=a m b m,再根据积的乘方得到原式=(ab)m,再根据ab=1,m为正整数,代入计算即可求解.【解答】解:∵ab=1,m为正整数,∴(ab n)(a2b n﹣1)…(a n﹣1b2)(a n b)=a1+2+…+n﹣1+n b n+n﹣1+…+2+1=a m b m=(ab)m=1m=1.故答案为:1.【变式2-2】若﹣2x3m+1y2n与4x n﹣6y﹣3﹣m的积与﹣4x4y是同类项,求m、n.【分析】先求出﹣2x3m+1y2n与4x n﹣6y﹣3﹣m的积,再根据同类项的定义列出方程组,求出m,n的值即可.【解答】解:∵﹣2x3m+1y2n•4x n﹣6y﹣3﹣m=﹣8x3m+n﹣5y2n﹣3﹣m,一.选择题(共4小题)1.下列计算正确的是( )A.(﹣3a2)3=﹣9a6B.(a2)3=a5 C.a2b•(﹣2ba2)=﹣2a4b2D.a9÷a3=a3【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=﹣27a6,不符合题意;B、原式=a6,不符合题意;C 、原式=﹣2a 4b 2,符合题意;D 、原式=a 6,不符合题意.故选:C .2.现有下列算式:(1)2a +3a =5a ;(2)2a 2•3a 3=6a 6;(3)(b 3)2=b 5;(4)(3b 3)3=9b 9;其中错误的有( )A .1个B .2个C .3个D .4个【分析】利用合并同类项的法则,单项式乘单项式的法则,幂的乘方与积的乘方的法则对各项进行运算即可.【解答】解:(1)2a +3a =5a ,故(1)不符合题意;(2)2a 2•3a 3=6a 5,故B 符合题意;(3)(b 3)2=b 6,故C 符合题意;(4)(3b 3)3=27b 9,故D 符合题意;则符合题意的有3个.故选:C .3.若(﹣2a m •b m +n )3=﹣8a 9•b 15,则( )A .m =3,n =2B .m =3,n =3C .m =5,n =2D .m =2,n =4【分析】根据积的乘方的法则,可得计算结果.【解答】解:∵(﹣2a m ⋅b m +n )3=﹣8a 3m ⋅b 3m +3n =﹣8a 9⋅b 15,∴3m =9,3m +3n =15,∴m =3,n =2,故选:A .4.下列运算正确的是( )A .(a 3)4=a 7B .a 6a 3=a 2C .3a 2•4a 3=12a 5D .(a 2b )2=a 2b 2【分析】利用同底数幂的除法的法则,单项式乘单项式的法则,幂的乘方与积的乘方的法则对各项进行运算即可.【解答】解:A 、(a 3)4=a 12,故A 不符合题意;B 、a 6a 3=a 3,故B 不符合题意;C 、3a 2•4a 3=12a 5,故C 符合题意;D 、(a 2b )2=a 4b 2,故D 不符合题意;故选:C .二.填空题(共4小题)5.计算2x 2•(﹣3x )3= ﹣6x 5 .【分析】根据单项式乘单项式的法则:系数的积作为积的系数,同底数的幂分别相乘也作为积的一个因式,进行计算即可.【解答】解:2x 2•(﹣3x 3)=(﹣2×3)x 2•x 3=﹣6x 5.故答案为:﹣6x 5.6.若x 3y n +1•x m +n •y 2n +2=x 9y 9,则4m ﹣3n = 10 .【分析】利用单项式乘单项式的法则进行运算即可.【解答】解:∵x 3y n +1•x m +n •y 2n +2=x 9y 9,∴x 3+m +n y n +1+2n +2=x 9y 9,∴3+m +n =9,n +1+2n +2=9,解得:n =2,m =4,∴4m ﹣3n=4×4﹣3×2=16﹣6=10.故答案为:10.7.已知x n =2,y n =3.(1)(xy )2n 的值为 36 ;(2)若x 3n +1•y 3n +1=64,则xy 的值为 827 .【分析】(1)利用幂的乘方与积的乘方的法则进行计算,即可得出结果;(2)利用幂的乘方与积的乘方的法则进行计算,即可得出结果.【解答】解:(1)∵x n=2,y n=3,∴(xy)2n=x2n y2n=(x n)2(y n)2=22×32=4×9=36,故答案为:36;(2)∵x3n+1•y3n+1=64,∴x3n•y3n•xy=64,∴(x n)3•(y n)3•xy=64,∵x n=2,y n=3,∴23•33•xy=64,∴xy=8 27,故答案为:8 27.8.单项式3x2y与﹣2x3y3的积为mx5y n,则m+n= ﹣2 .【分析】根据单项式的乘法:系数乘系数,同底数的幂相乘,可得答案.【解答】解:由题意,得m=3×(﹣2)=﹣6,n=3+1=4,m+n=﹣6+4=﹣2,故答案为:﹣2.三.解答题(共3小题)9.计算:(1)(﹣2x2y3)2•xy;(2)a﹣2b2•(ab﹣1).【分析】(1)根据同底数幂的乘除法的计算方法进行计算即可;(2)根据负整数指数幂以及分式乘除法的计算方法进行计算即可.【解答】解:(1)原式=4x4y6•xy=4x5y7:(2)原式=b2a2×ab=ba.10.(1)计算:(2a2)3•a3(2)计算:(a3)2÷a4(3)计算:(﹣3a3)2•a3+(﹣4a)2•a7﹣(5a3)3.【分析】(1)先根据积的乘方的计算法则计算,再根据同底数幂的乘法法则计算即可;(2)先根据积的乘方的计算法则计算,再根据同底数幂的除法法则计算即可;(3)先根据积的乘方的计算法则,同底数幂的乘法法则分别计算,在合并同类项求解即可.【解答】解:(1)(2a2)3•a3=8a6•a3=8a9;(2)(a3)2÷a4=a6÷a4=a2;(3)(﹣3a3)2•a3+(﹣4a)2•a7﹣(5a3)3=9a6•a3+16a2.a7﹣125a9=9a9+16a9﹣125a9=﹣100a9.11.已知x3m=2,y2m=3,求(x2m)3+(y m)6﹣(x2y)3m•y m的值.【分析】直接利用积的乘方运算法则以及幂的乘方运算法则计算得出答案.【解答】解:∵x3m=2,y2m=3,∴(x2m)3+(y m)6﹣(x2y)3m•y m=(x3m)2+(y2m)3﹣(x6m y3m×y m)=(x3m)2+(y2m)3﹣(x3m y2m)2=22+33﹣(2×3)2=﹣5.。

9.1 单项式乘以单项式 苏科版七年级数学下册精讲精练基础篇(含答案)

9.1 单项式乘以单项式 苏科版七年级数学下册精讲精练基础篇(含答案)

专题9.2 单项式乘以单项式(基础篇)(专项练习)一、单选题1.计算的结果是( )A.B.C.D.2.下列计算中,正确的是().A.B.C.D.3.在代数式中,与y的值各减少,则该代数式的值减少了()A.B.C.D.4.x的m次方的5倍与的7倍的积是( )A.B.C.D.5.若=-10,则m-n等于()A.-3B.-1C.1D.36.若,则的值分别为( )A.3 2B.2,3C.3,3D.2,27.若单项式和的积为,则的值为()A.2B.30C.-15D.158.若□·3xy=27x3y4 ,则□内应填的单项式是()A.3x3y4B.9x2y2C.3x2y3D.9x2y39.若(am+1bn+2)•(a2n-1b2m)=a5b3,则m+n的值为( )A.1B.2C.3D.﹣310.某商品原价为a元,因需求量增大,经营者连续两次提价,两次分别提价10%,后因市场物价调整,又一次性降价20%,降价后这种商品的价格是()A.1.08a元B.0.88a元C.0.968a元D.a元二、填空题11.计算:__________.12.计算___________13.若(anb•abm)3=a9b15,则m•n=________.14.已知8×2m×16m=211,则m的值为____.15.若,则______.16.若单项式与是同类项,则这两个单项式的积是_____.17.一个长方形的长为.宽为则它的面积为________.18.我国陆地面积约是,平均每平方千米的陆地上,一年从太阳得到的能量约相当于燃烧煤所产生的能量,求在我国陆地上,一年内从太阳得到的能量约相当于燃烧______吨煤所产生的能量.三、解答题19.计算(1) (2)20.先化简,再求值:,其中21.化简再求值:,其中.22.已知单项式和单项式的积与是同类项,求的值.23.计算:(1) ;(2) ;(3) (把作为整体看作一个因式的底数).24.小王购买了一套房子,他准备将地面都铺上地砖,地面结构如图所示,请根据图中的数据(单位:米),解答下列问题:(1)用含x,y的代数式表示地面总面积;(2)若x=5,y=1,铺地砖每平方米的平均费用为100元,则铺地砖的总费用为多少元?参考答案1.A【分析】直接利用单项式乘以单项式运算法则化简求出答案即可.解:.故选:A.【点拨】此题主要考查了单项式乘以单项式,正掌握运算法则是解题关键.2.C【分析】根据幂的乘方、同底数幂的乘法、单项式乘单项式、合并同类项逐一判断即可求解.解:A、,故该选项不符合题意;B、,故该选项不符合题意;C、,故该选项符合题意;D、,故该选项不符合题意;故选:C.【点拨】本题考查幂的乘方、同底数幂的乘法、单项式乘单项式、合并同类项,解答本题的关键是明确它们各自的计算方法,计算出正确的结果.3.D【分析】x与y的值各减少,则原式可变为从而可作出判断.解:x与y的值各减少,则:原式故选:D.【点拨】本题主要考查的是代数式求值,列出x与y的值各减少后的代数式是解题的关键.4.C【分析】x的m次方的5倍为,的7倍是,据此求解即可.解:根据题意得,x的m次方的5倍与x2的7倍的积为:.故选C.【点拨】本题主要考查了单项式乘以单项式,正确理解题意是解题的关键.5.B【分析】首先根据单项式乘单项式的运算法则计算求出m,n的值,然后代入计算即可.解:∴∴解得∴m-n=1-2=-1,故选:B.【点拨】本题主要考查代数式求值,掌握单项式乘单项式的运算法则是关键.6.B【分析】利用同底数幂的乘法法则将原式变形为,从而得到7n=14,2+k=5,可得结果.解:∵,∴7n=14,2+k=5,∴n=2,k=3,故选B.【点拨】本题考查了同底数幂的乘法,解题的关键是掌握运算法则.7.D【分析】先按单项式乘以单项式的法则计算,再比较结果利用相同字母的指数相等构造等式,求出再求的值即可.解:单项式和的积为,,,,.故选择:D.【点拨】本题考查单项式与单项式相乘问题,掌握单项式与单项式的乘法法则,会用指数构造等式解决问题是本题解题关键.8.D【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解:因为9x2y3·3xy=27x3y4,则□内应填的单项式是9x2y3,故选:D.【点拨】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.9.B【分析】先利用单项式乘单项式法则,可得(am+1bn+2)•(a2n-1b2m)=am+2n•bn+2m+2,从而得到关于m,n的方程组,即可求解.解:(am+1bn+2)•(a2n-1b2m)=am+1+2n-1•bn+2+2m=am+2n•bn+2m+2,∵(am+1bn+2)•(a2n-1b2m)=a5b3,∴,两式相加,得3m+3n=6,解得m+n=2.故选:B【点拨】本题主要考查了利用单项式乘法求字母或代数式的值,熟练掌握单项式乘单项式法则是解题的关键.10.C【分析】根据题意可得,降价后这种商品的价格是a.解:根据已知可得a=0.968a(元)故选C【点拨】根据题意列出代数式,再化简;熟记常见的数量关系.11.【分析】根据单项式乘以单项式运算法则:系数、相同字母分别相乘,对于只在一个单项式中含有的字母,连同它的指数作为积的一个因式,结合同底数幂的乘法运算法则计算即可得到答案.解:,故答案为:.【点拨】本题考查整式乘法运算,涉及单项式乘以单项式、同底数幂乘法运算等知识,熟练掌握相关运算法则是解决问题的关键.12.【分析】根据幂的乘方运算、单项式乘以单项式的运算法则进行计算即可.解:.故答案为:【点拨】本题考查了整式的乘法、幂的乘方,解本题的关键在熟练掌握运算法则.单项式的乘法法则:单项式乘以单项式,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式.幂的乘方运算法则:幂的乘方,底数不变,指数相乘.13.8【分析】根据单项式乘单项式、积的乘方法则分别求出m、n,计算即可.解:(anb•abm)3=(an+1bm+1)3=a3n+3b3m+3,由题意得:3n+3=9,3m+3=15,解得:n=2,m=4,则mn=2×4=8,故答案为:8.【点拨】本题主要考查单项式乘单项式、积的乘方,掌握单项式乘单项式、积的乘方的法则是关键.14.【分析】先把式子左边化简成2n的形式,即可求得m的值.解:8×2m×16m=211故答案为【点拨】此题重点考察学生对整式乘法的应用,正确化简是解题的关键.15.8【分析】先把等号左边的代数式进行化简,然后指数相等求出m、n的值,进行计算即可.解:,∴,,∴,,∴;故答案为8.【点拨】本题考查了单项式乘以单项式,以及积的乘方运算,幂的乘方运算,同底数幂相乘,解题的关键是掌握单项式乘以单项式的运算法则.16.【分析】由同类项定义求出a,b的值,再求单项式的乘积即可.解:∵单项式与是同类项,∴,,即:,∴单项式的积为故答案为.【点拨】本题考查同类项定义以及单项式乘单项式,关键是根据同类项定义:所含字母相同,并且相同字母的指数也分别相等的项,求出a,b的值.17.4×106【分析】直接利用单项式乘以单项式运算法则求出即可.解:长方形的长为,宽为,∴长方形的面积为:8×103×5×102=4×106.故答案为:4×106.【点拨】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.18.【分析】根据每平方千米的土地上,一年从太阳得到的能量相当于燃烧1.3×105吨煤所产生的能量乘以我国陆地面积,计算即可得到所求的结果.解:根据题意得:()×(1.3×105)=.故答案为:【点拨】此题考查了整式的混合运算,是一道应用题,弄清题意是解本题的关键.19.(1) (2)【分析】(1)按照单项式乘以单项式的运算法则计算即可;(2)先计算积的乘方运算,再计算单项式乘以单项式,最后合并同类项即可.(1)解:;(2).【点拨】本题考查的是积的乘方运算,单项式乘以单项式,合并同类项,掌握“单项式乘以单项式的运算法则”是解本题的关键.20.,12【分析】先对整式进行化简,然后再代值求解即可.解:原式==,把代入得:原式=.【点拨】本题主要考查整式的化简求值,熟练掌握积的乘方、同底数幂的乘法及单项式乘单项式是解题的关键.21.,【分析】先根据积的乘方和单项式乘以单项式的计算法则化简,然后代值计算即可.解:,当时,原式.【点拨】本题主要考查了单项式乘以单项式,积的乘方,代数式求值,熟知相关计算法则是解题的关键.22.-16【分析】先将两个单项式相乘,再根据同类项的含义列出关于m、n、p的三元一次方程组,解方程即可求出m、n、p,再代入计算即可.解:,∵与是同类项,∴,解得,∵,∴,即所求式子的值为-16.【点拨】本题主要考查了单项式乘以单项式,同类项的含义等知识.理解互为同类项的含义得出关于m、n、p的三元一次方程组是解答本题的关键.23.(1) (2) (3)【分析】(1)根据单项式乘单项式法则计算即可;(2)根据单项式乘单项式法则计算即可;(3)根据单项式乘单项式法则计算即可.解:(1);(2);(3).【点拨】本题考查单项式乘单项式.掌握其运算法则是解题关键,注意(3)整体思想的运用.24.(1)地面总面积为6x+2y+18(m2);(2)铺地砖的总费用为5000元.【分析】(1)利用长方形面积公式,分块计算各房间结构的面积,再求和;(2)将x=5,y=1,铺地砖每平方米的平均费用为100元,代入(1)中式子计算即可解:(1)地面总面积为:6x+2×(6﹣3)+2y+3×(2+2)=6x+6+2y+12=6x+2y+18(m2);(2)当x=5,y=1,铺1m2地砖的平均费用为100元,总费用=(6×5+2×1+18)×100=50×100=5000元答:铺地砖的总费用为5000元.【点拨】本题考查代数式与图形面积,是常见考点,难度较易,掌握相关知识是解题关键.。

八年级数学上册单项式乘以单项式同步训练(含解析)

八年级数学上册单项式乘以单项式同步训练(含解析)

单项式乘以单项式·一.选择题;;1.(2015•铜仁市)下列计算正确的是();A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a62.(2015•珠海)计算﹣3a2×a3的结果为()A.﹣3a5B.3a6C.﹣3a6D.3a53.(2015•江西样卷)下列运算中正确的是()A.2a3•a4=2a7B.2(a+1)=2a+1 C.(2a4)3=8a7D.a8÷a2=a44.(2015•滑县二模)下列各式计算正确的是()A.(x3)3=x6B.﹣2x﹣3=﹣C.3m2•2m4=6m8D.a6÷a2=a4(a≠0)5.(2015春•雅安期末)下列计算正确的是();;A.a3+a4=a7B.a3•a3•a3=3a3C.3a4•2a3=6a7D.(﹣a3)4=a76.(2015秋•重庆校级月考)计算(﹣x2y3)3•(﹣xy2)的结果是()A.﹣x7y11B.x7y11C.x6y8D.﹣x7y87.(2014•扬州)若□×3xy=3x2y,则□内应填的单项式是()A.xy B.3xy C.x D.3x8.(2014秋•宜宾期末)若x m+n y m﹣1(xy n+1)2=x8y9,则4m﹣3n=()A.10 B.9C.8 D.以上结果都不正确二.填空题;;9.(2015•绵阳模拟)2a2•a3的结果是.10.(2015春•临清市期中)计算(﹣4×103)2×(﹣2×103)3= .11.(2015春•娄底期中)如果单项式﹣3x4a﹣b y2与x3y a+b是同类项,那么这两个单项式的积是.12.(2015春•大冶市校级月考)(﹣3×106)•(4×104)的值用科学记数法表示为.13.(2013秋•桐梓县校级期中)“三角”表示3abc,“方框”表示﹣4x y w z,则= .三.解答题14.(2015春•崇安区期中)计算:(1)(π﹣2013)0﹣()﹣2+|﹣4|(2)(﹣x2y)3•(﹣2xy3)2.15.(2014春•揭西县校级月考)有一个长方体模型,它的长为8×103cm,宽为5×102cm,高为3×102cm,它的体积是多少cm3?16.(2013秋•万载县校级月考)(﹣2a n b n+1)•4ab•(﹣a2c)17.若a m=2,b n=5,求2a m+1b2•5a m﹣1b n﹣2的值.人教版八年级数学上册《14.1.4.1单项式乘以单项式》同步训练习题(教师版)一.选择题1.(2015•铜仁市)下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项法则、单项式乘法、幂的乘方的运算方法,利用排除法求解.解答:解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=1,故本选项错误;D、(a2)3=a6,正确.故选:D.点评:本题主要考查了合并同类项的法则,幂的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.2.(2015•珠海)计算﹣3a2×a3的结果为()A.﹣3a5B.3a6C.﹣3a6D.3a5考点:单项式乘单项式.分析:利用单项式相乘的运算性质计算即可得到答案.解答:解:﹣3a2×a3=﹣3a2+3=﹣3a5,故选A.点评:本题考查了单项式的乘法,属于基础题,比较简单,熟记单项式的乘法的法则是解题的关键.3.(2015•江西样卷)下列运算中正确的是()A.2a3•a4=2a7B.2(a+1)=2a+1 C.(2a4)3=8a7D.a8÷a2=a4考点:单项式乘单项式;去括号与添括号;幂的乘方与积的乘方;同底数幂的除法.分析:根据单项式乘单项式法则、去括号法则、积的乘方法则和同底数幂的除法法则计算各个选项即可.解答:解:2a3•a4=2a7,A正确;2(a+1)=2a+2,B不正确;(2a4)3=8a7,C不正确;a8÷a2=a6,C不正确.故选:A.点评:本题考查的是单项式乘单项式、去括号、积的乘方和同底数幂的除法,灵活运用法则解题的关键.4.(2015•滑县二模)下列各式计算正确的是()A.(x3)3=x6B.﹣2x﹣3=﹣C.3m2•2m4=6m8D.a6÷a2=a4(a≠0)考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;负整数指数幂.分析: A.运用幂的乘方法则运算即可;B.运用负整数指数幂进行运算;C.运用单项式乘单项式的运算法则即可;D.运用同底数幂的除法可得结果.解答:解:A.(x3)3=x9,此选项错误;B.﹣2x﹣3=﹣2×=﹣,此选项错误;C.3m2•2m4=6m6,此选项错误;D.a6÷a2=a4(a≠0),此选项正确,点评:本题主要考查了幂的乘方,同底数幂的除法,负整数指数幂等运算法则,熟练掌握各法则是捷达此题的关键.5.(2015春•雅安期末)下列计算正确的是()A.a3+a4=a7B.a3•a3•a3=3a3C.3a4•2a3=6a7D.(﹣a3)4=a7考点:单项式乘单项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项、同底数幂的乘法、幂的乘方的计算法则进行判断.解答:解:A、a3•a4=a7,故本选项错误;B、a3•a3•a3=a3+3+3=a9,故本选项错误;C、3a4•2a3=6a7,故本选项正确;D、(﹣a3)4=a12,故本选项错误;故选:C.点评:本题考查了单项式乘以单项式,合并同类项以及同底数幂的乘法等知识点.熟记计算法则的解题的关键.6.(2015秋•重庆校级月考)计算(﹣x2y3)3•(﹣xy2)的结果是()A.﹣x7y11B.x7y11C.x6y8D.﹣x7y8考点:单项式乘单项式.分析:根据单项式乘单项式的运算法则进行计算,选择正确答案即可.解答:解:(﹣x2y3)3•(﹣xy2)=x7y11,故选:B.点评:本题考查的是单项式乘单项式,单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式.7.(2014•扬州)若□×3xy=3x2y,则□内应填的单项式是()A.xy B.3xy C.x D.3x考点:单项式乘单项式.专题:计算题.分析:根据题意列出算式,计算即可得到结果.解答:解:根据题意得:3x2y÷3xy=x,故选:C点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.8.(2014秋•宜宾期末)若x m+n y m﹣1(xy n+1)2=x8y9,则4m﹣3n=()A.10 B.9C.8 D.以上结果都不正确考点:单项式乘单项式.分析:利用积的乘方运算法则结合同底数幂的乘法运算法则得出关于m,n的方程组求出即可.解答:解:∵x m+n y m﹣1(xy n+1)2=x8y9,∴x m+n y m﹣1•x2y2n+2=x8y9,∴,解得:,故4m﹣3n=4×4﹣3×2=10.点评:此题主要考查了单项式乘以单项式以及同底数幂的乘法运算,正确掌握运算法则是解题关键.二.填空题9.(2015•绵阳模拟)2a2•a3的结果是2a5.考点:单项式乘单项式.分析:本题需根据单项式乘以单项式的法则进行计算,即可求出答案.解答:解:2a2•a3=2a5.故答案为2a5点评:本题主要考查了单项式乘以单项式,在解题时要注意单项式的乘法法则的灵活应用是本题的关键.10.(2015春•临清市期中)计算(﹣4×103)2×(﹣2×103)3= ﹣1.28×1017.考点:单项式乘单项式.分析:根据同底数幂的乘法法则,系数与系数相乘,同底数幂相乘,底数不变,指数相加.解答:解:原式=(﹣4)2×(﹣2)3×106+9=﹣128×1015=﹣1.28×1017.故答案是:﹣1.28×1017.点评:本题考查了幂的乘方与积的乘方运算,把系数与同底数幂分别相乘.11.(2015春•娄底期中)如果单项式﹣3x4a﹣b y2与x3y a+b是同类项,那么这两个单项式的积是﹣x6y4.考点:单项式乘单项式;同类项;解二元一次方程组.分析:首先同类项的定义,即同类项中相同字母的指数也相同,得到关于a,b的方程组,然后求得a、b 的值,即可写出两个单项式,从而求出这两个单项式的积.解答:解:由同类项的定义,得,解得:∴原单项式为:﹣3x3y2和x3y2,其积是﹣x6y4.故答案为:﹣x6y4点评:本题考查同类项定义、解二元一次方程组的方法和同类项相乘的法则,要准确把握法则同类项相乘系数相乘,指数相加是解题的关键.12.(2015春•大冶市校级月考)(﹣3×106)•(4×104)的值用科学记数法表示为﹣1.2×1011.考点:单项式乘单项式;科学记数法—表示较大的数.分析:根据乘法交换律、结合律,可得同底数的结合,根据同底数幂的乘法,可得答案.解答:解:(﹣3×106)×(4×104)=(﹣3×4)×(106×104)=﹣12×1010=﹣1.2×1011,故答案为:﹣1.2×1011.点评:本题考查了单项式乘单项式,运用交换律、结合律是解题关键.13.(2013秋•桐梓县校级期中)“三角”表示3abc,“方框”表示﹣4x y w z,则= ﹣36m6n3.考点:单项式乘单项式.专题:新定义.分析:根据题中的新定义化简所求式子,计算即可得到结果.解答:解:根据题意得:原式=9mn×(﹣4n2m5)=﹣36m6n3.故答案为:﹣36m6n3点评:此题考查了单项式乘单项式,熟练题中的新定义是解本题的关键.三.解答题14.(2015春•崇安区期中)计算:(1)(π﹣2013)0﹣()﹣2+|﹣4|(2)(﹣x2y)3•(﹣2xy3)2.考点:单项式乘单项式;幂的乘方与积的乘方;零指数幂;负整数指数幂.分析:(1)涉及零指数幂、负整数指数幂、绝对值等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)根据单项式的乘方法则进行计算即可.解答:解:(1)原式=1﹣9+4=﹣4;(2)原式=﹣x6y3•4x2y6=﹣4x8y9.点评:本题考查单项式的乘法,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值等考点的运算.15.(2014春•揭西县校级月考)有一个长方体模型,它的长为8×103cm,宽为5×102cm,高为3×102cm,它的体积是多少cm3?考点:单项式乘单项式.分析:直接利用单项式乘以单项式运算法则求出即可.解答:解:长方体的体积为:8×103×5×102×3×102=1.2×109.答:这个长方体模型的体积是1.2×109cm3.点评:本题主要考查了单项式乘以单项式以及科学记数法的表示方法,正运用同底数幂的乘法法则是解题关键.16.(2013秋•万载县校级月考)(﹣2a n b n+1)•4ab•(﹣a2c)考点:单项式乘单项式.专题:计算题.分析:原式利用单项式乘单项式法则计算即可得到结果.解答:解:原式=8a n+3b n+2c.点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.17.若a m=2,b n=5,求2a m+1b2•5a m﹣1b n﹣2的值.考点:单项式乘单项式.分析:直接利用单项式乘以单项式运算法则化简,进而利用已知代入求出即可.解答:解:∵a n=2,b n=5,∴2a m+1b2•5a m﹣1b n﹣2=10a2m b n=10(a m)2b n=10×4×5=200.点评:此题主要考查了单项式乘以单项式,正确应用运算法则是解题关键.。

(完整版)单项式乘以单项式练习题

(完整版)单项式乘以单项式练习题

整式的乘法----单项式乘以单项式一、选择题1.计算2322)(xy y x -⋅的结果是( ) A. 105y x B. 84y x C. 85y x - D.126y x2.)()41()21(22232y x y x y x -⋅+-计算结果为( )A. 36163y x -B. 0C. 36y x -D. 36125y x -3.2233)108.0()105.2(⨯-⨯⨯ 计算结果是( ) A. 13106⨯ B. 13106⨯- C. 13102⨯ D. 14104.计算)3()21(23322y x z y x xy -⋅-⋅的结果是( )A. z y x 663B. z y x 663-C. z y x 553D. z y x 553-5.计算22232)3(2)(b a b a b a -⋅+-的结果为( )A. 3617b a -B. 3618b a -C. 3617b aD. 3618b a6.x 的m 次方的5倍与2x 的7倍的积为( )A. m x 212B. m x 235C. 235+m xD. 212+m x7.22343)()2(yc x y x -⋅-等于( )A. 214138c y x -B. 214138c y xC. 224368c y x -D. 224368c y x8.992213y x y x y x n n m m =⋅⋅++-,则=-n m 34( )A. 8B. 9C. 10D.无法确定 9. 计算))(32()3(32m n m y y x x -⋅-⋅-的结果是( )A. mn m y x 43B. m m y x 22311+-C. n m m y x ++-232D. n m y x ++-5)(31110.下列计算错误的是( ) A.122332)()(a a a =-⋅ B.743222)()(b a b a ab =-⋅-C.212218)3()2(++=-⋅n n n n y x y x xyD.333222))()((z y x zx yz xy -=--- 二、填空题:1..___________))((22=x a ax2.3522)_)((_________y x y x -=3..__________)()()3(343=-⋅-⋅-y x y x4.._____________)21(622=⋅-abc b a5.._____________)(4)3(523232=-⋅-b a b a6..______________21511=⋅⋅--n n n y x y x7.._____________)21()2(23=-⋅-⋅mn mn m8.._______________)104)(105.2)(102.1(9113=⨯⨯⨯三、解答题1.计算下列各题(1))83(4322yz x xy -⋅ (2))312)(73(3323c b a b a -(3))125.0(2.3322n m mn - (4))53(32)21(322yz y x xyz -⋅⋅-(5))2.1()25.2()31(522y x axy ax x ⋅-⋅⋅ (6)3322)2()5.0(52xy x xy y x ⋅---⋅(7))47(123)5(232y x y x xy -⋅-⋅- (8)23223)4()()6()3(5a ab ab ab b b a -⋅--⋅-+-⋅2、已知:81,4-==y x ,求代数式52241)(1471x xy xy ⋅⋅的值.3、已知:693273=⋅m m ,求m .二、填空题:1..___________))((22=x a ax 2.3522)_)((_________y x y x -= 3..__________)()()3(343=-⋅-⋅-y x y x4.._____________)21(622=⋅-abc b a5.._____________)(4)3(523232=-⋅-b a b a6..______________21511=⋅⋅--n n n y x y x7.._____________)21()2(23=-⋅-⋅mn mn m8.._______________)104)(105.2)(102.1(9113=⨯⨯⨯三、解答题 1.计算下列各题(1))83(4322yz x xy -⋅ (2))312)(73(3323c b a b a -(3))125.0(2.3322n m mn - (4))53(32)21(322yz y x xyz -⋅⋅-(5))2.1()25.2()31(522y x axy ax x ⋅-⋅⋅ (6)3322)2()5.0(52xy x xy y x ⋅---⋅(7))47(123)5(232y x y x xy -⋅-⋅- (8)23223)4()()6()3(5a ab ab ab b b a -⋅--⋅-+-⋅2、已知:81,4-==y x ,求代数式52241)(1471x xy xy ⋅⋅的值.3、已知:693273=⋅m m ,求m .整式的乘法----单项式乘以单项式一、选择题1.计算2322)(xy y x -⋅的结果是( ) A. 105y x B. 84y x C. 85y x - D.126y x2.)()41()21(22232y x y x y x -⋅+-计算结果为( )A. 36163y x -B. 0C. 36y x -D. 36125y x -3.2233)108.0()105.2(⨯-⨯⨯ 计算结果是( ) A. 13106⨯ B. 13106⨯- C. 13102⨯ D. 14104.计算)3()21(23322y x z y x xy -⋅-⋅的结果是( )A. z y x 663B. z y x 663-C. z y x 553D. z y x 553- 5.计算22232)3(2)(b a b a b a -⋅+-的结果为( ) A. 3617b a - B. 3618b a - C. 3617b a D. 3618b a 6.x 的m 次方的5倍与2x 的7倍的积为( ) A. m x 212 B. m x 235 C. 235+m x D. 212+m x 7.22343)()2(yc x y x -⋅-等于( )A. 214138c y x -B. 214138c y xC. 224368c y x -D. 224368c y x 8.992213y x y x y x n n m m =⋅⋅++-,则=-n m 34( )A. 8B. 9C. 10D.无法确定9. 计算))(32()3(32m n m y y x x -⋅-⋅-的结果是( )A. mn m y x 43B. m m y x 22311+-C. n m m y x ++-232D. n m y x ++-5)(31110.下列计算错误的是( )A.122332)()(a a a =-⋅B.743222)()(b a b a ab =-⋅-C.212218)3()2(++=-⋅n n n n y x y x xyD.333222))()((z y x zx yz xy -=---。

乘法公式精选题(含答案)

乘法公式精选题(含答案)
4、已知 中不含x3的项,求a的值。
5、已知 ,求 的值。
=6
6、若多项式 加上一个单项式后,能成为一个整式的完全平方,请你尽可能多的写出这个单项式。
7、设 ,
求① 的值。② 的值。
知识点4.平方差公式:a2-b2=______________
知识点5.完全平方公式:①(a+b)2=______________②(a-b)2=______________
知识点6.完全平方公式的常用变形(应用):①(a+b)(a-b)=a2-b2
②a2+b2=(a+b)2-2ab③a2+b2=(a-b)2+2ab④(a-b)2=(a+b)2-4ab
(3) (4)
(A)(1)(2)(3)(B)(1)(2)(4)(C)(1)(3)(4)(D)(2)(3)(4)
4、无论x、y取何值时, 的值都是(A)
(A)正数(B)负数(C)零(D)非负数
5、如果一个多项式与 的积是 ,则这个多项式是(C)
(A) (B)
(C) (D)
6、若(x+a)(x+b)中不含x的一次项,那么a、b一定是(B)
8.①已知a2+b2+c2=18,ab+bc+ac=13,则(a+b+c)2=________
②已知a2+b2+c2=18,a+b+c=6,则ab+bc+ac=__________
③a-b=5,b-c=2,则a2+b2+c2-ab-bc-ac=__________
初一练习卷
一、填空
1、 =-1 ,则 =2
5.①求(2x+2)(x2-3x)展开式中x2的系数。

单项式与单项式相乘(含答案)

单项式与单项式相乘(含答案)

第1课时 单项式与单项式相乘一、选择题1.计算(2a )·(ab )的结果为( )A .2abB .2a 2bC .3abD .3a 2b2.计算-a 2b 2·(-2ab 3c )的结果是( )A .2a 3b 5cB .2a 3b 5C .-2a 3b 5cD .-2a 3b 53.如果□×3ab =3a 2b ,那么“□”内应填的代数式是( )A .abB .3abC .aD .3a4.下列计算正确的是 ( )A .6x 2·3xy =9x 3yB .(2ab 2)·(-3ab )=-a 2b 3C .(mn )2·(-m 2n )=-m 3n 3D .(-3x 2y )·(-3xy )=9x 3y 25.计算x 3y 3·(-xy 3)2的结果是( )A .x 5y 10B .x 5y 9C .-x 5y 8D .x 6y 126.若mx 4·4x k =-12x 12,则适合条件的m ,k 的值分别是( )A .3,8B .-3,8C .8,3D .-3,3二、填空题7.计算:(1)(-5a 4)·(-8ab 2)=________; (2)计算:12x ·(-2x 2)3=________. 8.计算:13x 3y ·38xy 2z 2=________. 9.已知(a n b ·ab m )5=a 10b 15,则mn =________. 10.已知单项式2a 3y 2与-4a 2y 4的乘积为ma 5y n,则m +n =________.11.计算:5x 3y ·(-3y )2+(-6xy )2·(-xy )=________.三、解答题 12.计算:(1)(-2x )3·(-3xy 2); (2)(-12a 2bc )·⎝ ⎛⎭⎪⎫-14abc 22;(3)(-2xy 3)·(-xy )2·(14x 2y ); (4)(2x 3y )2·x 3y +(-14x 6)·(-xy )3.13.已知-5x2m -1y n 与-15x 2y 的积与x 3y 2是同类项,试求(-2m 2n )·(-m 2n )2的值.14 某商家为了给新产品做宣传,向全社会征集商标图案,结果如图所示的商标(图中阴影部分)中标.(1)求此商标图案的面积S ; (2)当a =5米时,求此商标图案的面积S (π≈3).【详解详析】1.B2.A [解析] -a 2b 2·(-2ab 3c)=2a 3b 5c.故选A .3.C4.D [解析] A 选项系数计算错误;B 选项系数计算错误;C 选项m 的指数计算错误;D 选项计算正确.故选D .5.B [解析] x 3y 3·(-xy 3)2= x 3y 3·x 2y 6=x 5y 9.故选B .6.B [解析] 由单项式乘单项式的法则可知mx 4·4x k =4mx 4+k ,所以4mx 4+k=-12x 12,根据单项式相等的条件,得⎩⎨⎧4m =-12,4+k =12,解得⎩⎨⎧m =-3,k =8.故选B . 7.(1)40a 5b 2 (2)-4x 78.18x 4y 3z 2 [解析] 13x 3y ·38xy 2z 2=18x 4y 3z 2. 9.2 [解析] 因为(a n b ·ab m )5=a 5n +5b 5m +5= a 10b 15,所以5n +5=10,5m +5=15,解得n =1,m =2,所以mn =2.10.-2 [解析] (2a 3y 2)·(-4a 2y 4)=-8a 5y 6,所以m =-8, n =6,所以m +n =-2.11.9x 3y 3 [解析] 原式=45x 3y 3-36x 3y 3=9x 3y 3.[点评] 此题综合考查了积的乘方、单项式乘单项式、同底数幂的乘法和合并同类项的知识.12.解:(1)(-2x)3·(-3xy 2)=24x 4y 2.(2)(-12a 2bc)·⎝ ⎛⎭⎪⎫-14abc 22=(-12a 2bc)·⎝ ⎛⎭⎪⎫116a 2b 2c 4=-34a 4b 3c 5. (3)(-2xy 3)·(-xy)2·(14x 2y)=(-2xy 3)·x 2y 2·(14x 2y)=(-2×14)·(x ·x 2·x 2)·(y 3·y 2·y)=-12x 5y 6. (4)(2x 3y)2·x 3y +(-14x 6)·(-xy)3=4x 9y 3+14x 9y 3=18x 9y 3.13.解:依题意得(-5x 2m -1y n )·(-15x 2y)=x 2m -1+2y n +1=x 2m +1y n +1=x 3y 2, 所以2m +1=3,n +1=2,解得m =1,n =1.(-2m 2n)·(-m 2n)2=(-2m 2n)·(m 4n 2)=-2m 6n 3.当m =1,n =1时,原式=-2×16×13=-2.14 解:(1)S =2a ·a +14π·a 2-12·3a ·a =2a 2+14πa 2-32a 2=12a 2+14πa 2.1 2×52+14×3×52=252+754=1254(米2).(2)当a=5米时,S≈。

沪科版七年级下册数学8.2.1单项式与单项式、多项式相乘同步练习(含解析)

沪科版七年级下册数学8.2.1单项式与单项式、多项式相乘同步练习(含解析)

沪科版七年级下册数学8.2整式的乘法(1)单项式与单项式、多项式相乘同步练习一、选择题(本大题共8小题)1. 计算3a·2b的结果是( )A.3abB.6aC.6abD.5ab2. 下列说法正确的是( )A.单项式乘以多项式的积可能是一个多项式,也可能是单项式B.单项式乘以多项式的积仍是一个单项式C.单项式乘以多项式的结果的项数与原多项式的项数相同D.单项式乘以多项式的结果的项数与原多项式的项数不同3. 下列计算中,错误的是( )A.(2xy)3(-2xy)2=32x5y5B.(-2ab2)2(-3a2b)3=-108a8b7C.=x4y3D.=m4n44. 当x=2时,代数式x2(2x)3-x(x+8x4)的值是( )A.4B.-4C.0D.15. 现规定一种运算:a*b=ab+a-b,其中a,b为有理数.求a*(a-b)+(b+a)*b的值.A. a2+a+b2+bB. a2+a+b2-bC. a2+a-b2+bD. -a2+a+b2+b6. 某商场4月份售出某品牌衬衣b件,每件c元,营业额a元.5月份采取促销活动,售出该品牌衬衣3b件,每件打八折,则5月份该品牌衬衣的营业额比4月份增加( )A.1.4a元B.2.4a元C.3.4a元D.4.4a元7. 如图,表示这个图形面积的代数式是( )A.ab+bcB.c(b-d)+d(a-c)C.ad+cb-cdD.ad-cd 8. 设P=a 2(-a+b-c),Q=-a(a 2-ab+ac),则P 与Q 的关系是( ) A.P=Q B.P >Q C.P <Q D.互为相反数 二、填空题(本大题共6小题) 9. (-2x 2)·(x 2-2x-12)=___ ____; 10. 计算:= .11. 若单项式-3a4m -n b 2与13a 3b m +n是同类项,则这两个单项式的积是( )A .-a 3b 2B .a 6b 4C .-a 4b 4D .-a 6b 412. 已知ab 2=-4,则-ab(a 2b 5-ab 3-b)的值是 . 13. 已知-2x3m+1y 2n 与7x n-6y-3-m的积与x 4y 是同类项,则m 2+n 的值是 .14. 设计一个商标图案如图中阴影部分所示,长方形ABCD 中,AB=a,BC=b,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F,则商标图案的面积是 .三、计算题(本大题共4小题)15.先化简,再求值.x(x 2-6x-9)-x(x 2-8x-15)+2x(3-x),其中x=-.16. 如图,一长方形地块用来建造住宅、广场、商厦,求这块地的面积.17.有理数x,y满足条件|2x-3y+1|+(x+3y+5)2=0,求代数式(-2xy)2·(-y2)·6xy2的值.18.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高12a米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长600米,那么这段防洪堤坝的体积是多少立方米参考答案:一、选择题(本大题共8小题)1.C分析:利用单项式乘单项式的乘法法则即可得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十九中学周末试题
班级------ -------
一.选择题(共22小题每题2分)
1.(2014•日照)下列运算正确的是()
4.(2012•路南区一模)下列运算中,正确的是()
5.(2012•海曙区模拟)计算(﹣2a3)(﹣a2)结果是()
7、计算- b2·(-b3)2的结果是()
A、-b8
B、-b11
C、b8
D、b11
8.(2001•)若(a m+1b n+2)•(a2n﹣1b2m)=a5b3,则m+n的值为()
13.下列计算中正确的是()
20.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;
④(33)2×(22)3中,结果等于66的是()
21.计算(﹣2a3+3a2﹣4a)(﹣5a5)等于()
5.一个长方体的长、宽、高分别3a﹣4,2a,a,它的体积等于()
6.适合2x(x﹣1)﹣x(2x﹣5)=12的x的值是()
7.计算a(1+a)﹣a(1﹣a)的结果为()
二.填空题(共12小题每题3分)
23.﹣3x2•2x= _________ .
25.计算:﹣3a3b2(﹣2b3)= _________ .
26.(3×104)(5×106)= _________ .
27.计算:(2a)3= _________ ;﹣3x(2x﹣3y)= _________ .
31.若(mx 3)•(2x k )=﹣8x 18,则适合此等式的m= _________ ,k= _________ .
32.(﹣6a n b )2•(3a n ﹣1b )= _________ . .
33. 若单项式﹣3x 4a ﹣b y 2与3x 3y a+b 是同类项,则这两个单项式的积为 _________ .
20.(2014•)已知x (x+3)=1,则代数式2x 2+6x ﹣5的值为 _________ .
三.简答题(34题4分,35题4分,36,37每题5分)
34. 用简便方法计算0.1252005×(﹣8)2005
35. 若
922)2(162=⋅n ,解关于x 的方程24=+nx .
.
36.若52=m ,62=n ,求n m 22+的值.
37.计算:
(1)(﹣4ab3)(﹣ab)﹣(ab2)2;
(2)(1.25×108)×(﹣8×105)×(﹣3×103).(3)a(3+a)﹣3(a+2);
(4)(x﹣)•(﹣12y).
30.阅读下列文字,并解决问题.
已知x2y=3,求2xy(x5y2﹣3x3y﹣4x)的值.
分析:考虑到满足x2y=3的x、y的可能值较多,不可以逐一代入求解,故考虑整体思想,将x2y=3整体代入.
解:2xy(x5y2﹣3x3y﹣4x)=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.
请你用上述方法解决问题:已知ab=3,求(2a3b2﹣3a2b+4a)•(﹣2b)的值.
2.(2014•)计算(2a2)3•a正确的结果是()
3.(2014•从化市一模)计算a2•2a3的结果是()
4.(2012•路南区一模)下列运算中,正确的是()
5.(2012•海曙区模拟)计算(﹣2a3)(﹣a2)结果是()
6.(2011•呼和浩特)计算2x2•(﹣3x3)的结果是()
7.(2009•一模)计算(﹣2a2)×(﹣3a3)的结果为()
8.(2001•)若(a m+1b n+2)•(a2n﹣1b2m)=a5b3,则m+n的值为()
9.化简:(﹣3x2)2x3的结果是()
10.计算(﹣x3)2•x的结果是()
11.下列计算正确的是()
12.下列计算正确的是()
13.下列计算,正确的是()
14.下列计算中正确的是()
15.计算x2•y2(﹣xy3)2的结果是()
16.计算﹣(a2b)3+2a2b•(﹣3a2b)2的结果为()
17.计算(﹣2a)(﹣3a)的结果是()
18.下列各式计算正确的是()
19.计算(ab2)(﹣3a2b)2的结果是()
20.2x•(﹣3xy)2•(﹣x2y)3的计算结果是()
21.一种计算机每秒可做4×108次运算,它工作3×103秒运算的次数为()
22.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;
④(33)2×(22)3中,结果等于66的是()
23.计算(﹣2ab)(3a2b2)3的结果是()
24.单项式与24x5y的积为()
25.计算:3x2y•(﹣2xy)结果是()
26.8b2(﹣a2b)=()
二.填空题(共4小题)27.(2014•)计算:3a2b3•2a2b= 6a4b4.
28.计算(﹣3a3)•(﹣2a2)= 6a5.
29.若单项式﹣3x4a﹣b y2与3x3y a+b是同类项,则这两个单项式的积为﹣9x6y4.
30.计算:2x2y•(﹣3y2z)= ﹣6x2y3z .。

相关文档
最新文档