《组合图形的面积》1
统编教材小学五年级数学上册《组合图形的面积》名师教案(1)

《组合图形的面积》名师教案一、学习目标(一)学习内容《义务教育教科书数学》(人教版)五年级上册第99页例题4,是学生在学习了长方形、正方形、平行四边形、三角形和梯形面积后进行教学的。
(二)核心能力在运用转化的思想,将组合图形面积转化为计算简单图形面积的过程中,进一步发展空间观念。
(三)学习目标1.结合生活实例认识组合图形,自主地能够将组合图形分解成已学过的平面图形。
2.结合具体情境,通过小组合作交流掌握“割”、“补”等方法来计算组合图形的面积,发展空间观念。
3.运用所学到的知识和方法,根据问题和具体数据选择适当方法解决实际问题。
(四)学习重点探索并掌握组合图形的面积计算方法。
(五)学习难点理解并掌握组合图形的组合及分解方法。
(六)配套资源实施资源:《组合图形的面积》名师课件二、学习设计(一)课前设计1.复习任务(1)整理已经学过了哪些平面图形面积的计算,写出它们的面积公式。
(2)分别编一道这些图形在生活中应用的题目,并解答。
【设计意图:复习已有的平面图形面积计算公式,可以帮助激活旧知在接下来的教学中,较容易的认识组合图形的组成及其之后的计算。
】(二)课堂设计1.导入(1)认识组合图形交流复习任务。
师:像这些比较简单的图形,我们把它叫做简单图形。
而生活中可不是只有简单图形,还有着更复杂的图形,他们叫做组合图形。
同学们请看大屏幕。
这三个图形就是组合图形。
我们把由几个简单图形组合而成的图形叫组合图形。
(板书:组合图形)这节课我们就一起来探究组合图形的有关知识。
师:认真观察这三个图形,同桌之间说一说它们分别是由哪些简单图形组成的?预设:第一个三角形和长方形。
追问第二个呢?三角形、两个梯形和长方形。
最后一个呢?三角形和长方形。
【设计意图:通过出示简单的组合图形分隔情况,为接下来的正式教学打下铺垫,利于学生更易掌握组合图形面积计算方法。
考察目标1】师:同学们,开动脑筋想想:生活中哪些地方还有组合图形?你能给大家举个例子吗?预设:远处的楼房、窗户框等等。
五年级数学 组合图形的面积(一)

第6讲组合图形的面积(一)月日姓名【知识要点】1、组合图形的意义:由几个简单的图形,通过不同的方式组合而成的图形。
2、求组合图形面积的方法:(1)分割法:根据图形和所给条件的关系,将图形进行合理分割,形成基本图形,基本图形的面积和就是组合图形的面积。
(2)添补法:将图形所缺部分进行添补,组成几个基本图形。
几个基本图形的面积减去添补图形的面积就是组合图形的面积。
(3)割补法3、分割规则:分得越少,计算越简单。
4、不规则图形面积的估计与计算的方法:(1)数格子:数格子时,不满一格的可采用凑整法将几个合拼成一格。
(2)根据图形确定近似基本图,量出基本图计算面积的条件算出面积。
5、常见基本图形的面积。
长方形的面积=()正方形的面积=()平行四边形的面积=()。
三角形的面积公式:()梯形的面积=()。
【典型题例】例1、如图,梯形的高为4米,下底长度为5米.空白部分大的三角形的高为3米.分别求出图中阴影部分的两个三角形的面积.4m 3m5m例2、1、小丽家装修需要30块木板,木板的形状如下图。
(1)1块木板的面积是多少?30cm72cm48cm(2)如果每块木板需要15元,那么小丽需要花多少钱?例3、一块平行四边形的草坪中有一条长8米、宽1米的小路,草坪的面积是多少。
如果铺每平方米草坪的价格是16元,那么铺好这些草坪需要多少钱?例5、如下图所示,长方形的长是10厘米,宽是5厘米,三角形的底边与长方形的长重合,高是3厘米,阴影部分的面积是多少?10cm5cm【课堂练习】一、估计下面图形的面积。
(每个小方格的面积表示1cm2)11面积约为()面积约为()面积约为()2、甲、乙两个工程队修一条长2100米的公路,他们从两端同时开工,甲队每天修80米,乙队每天修60米,多少天后能够修完这条公路?3、在公路中间有一块三角形草坪(见右图),1m2 草坪的价格是12元,种这块草坪需要多少钱?(8分)4、一张正方形红纸,边长66厘米,可用它做成底是33厘米,高是22厘米的三角形小红旗,最多可以做多少面?(8分)5、下图中正方形的周长是32cm。
五年级《组合图形的面积》教学设计4篇

五年级《组合图形的面积》教学设计4篇五年级《组合图形的面积》教学设计1【教学内容】人教版五年级上册第六单元《组合图形的面积》【教材分析】本课是五年级上册第六单元内容,是在学生学习了长方形与正方形.平行四边形.三角形与梯形的面积计算的基础上学习的,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。
【设计理念】儿童思维发展的一般规律是从具体操作开始的,再逐步形成抽象的思维。
教学设计时,充分考虑学生原有认知水平及儿童心理发展水平,从描述组合图形入手,让学生自主探究,注重让学生在观察、操作、合作交流、比较等数学活动中,找出计算组合图形面积的多种方法,并进行优化选择。
学生在解决问题的过程中,获得数学学习方法。
在对学习过程与结果的反思中,提高解决问题的能力。
【教学目标】1.能结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积2.能运用所学知识解决生活中组合图形的实际问题。
3.自主探索,合作交流。
养成认真思考,团结协作的能力。
4.通过找一找.分一分.拼一拼,培养学生识图的能力和综合运用有关知识的能力,能合理地运用“割”.“补”等方法来计算组合图形的面积。
【教学重点】探索并掌握组合图形的面积计算方法【教学难点】理解并掌握组合图形的组合及分解方法。
【数学思想】分类、化归【教学过程】一.创设情境,引出问题教师活动学生活动及达成目标1.说一说:(1)让学生快速说出老师出示的平面图形的名字(正方形.长方形.平行四边形.三角形.梯形)。
(2)说出上面各种图形的面积计算公式及字母表达式(并适时出示多媒体)。
2.看一看:老师出示一些组合图形,让学生仔细观察,思考:这些图形跟我们刚才复习的基本图形有什么不同?(这些图形都是由几个基本图形组合而成的。
)出示生活中常见的组合图形(如房子的侧面.风筝.七巧板拼图.中队旗等),问:要想知道做一面中队旗用多少布就是求什么?3.揭示课题并板书:组合图形的'面积学生观察回答让学生在说一说,看一看的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关。
组合图形的面积__小学奥数专题

组合图形的面积(一)例1一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?练习一1、求四边形ABCD的面积。
(单位:厘米)2、已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。
3、有一个梯形,它的上底是5厘米,下底7厘米。
如果只把上底增加3厘米,那么面积就增加4.5平方厘米。
求原来梯形的面积。
例2正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
练习二1、已知大正方形的边长是12厘米,求中间最小正方形的面积。
2、如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。
3、求下图长方形ABCD的面积(单位:厘米)。
例3四边形ABCD和四边形DEFG都是正方形,已知三角形AFH 的面积是7平方厘米。
三角形CDH的面积是多少平方厘米?练习三1、图中两个正方形的边长分别是6厘米和4厘米,求阴影部分面积。
2、下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。
3、下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?例4下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?练习四1、如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。
2、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG 的面积大10平方厘米。
求平行四边形的面积。
例5图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。
练习五1、如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。
求AH长多少厘米?2,图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。
《组合图形的面积》教学设计优秀4篇

《组合图形的面积》教学设计优秀4篇《组合图形的面积》数学教案篇一教材分析:《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。
教学目标:知识目标1、在自主探索的活动中,理解计算组合图形面积的多种方法。
2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
3、能运用所学的知识,解决生活中有关组合图形的实际问题。
过程和方法让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。
情感、态度与价值观1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。
2、渗透转化的数学思想和方法。
教学重点:学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。
教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。
教学准备:多媒体课件和组合图形图片。
教学过程:一、激趣导入、复习铺垫、认识组合图形1、介绍笑笑和她家的新房子师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)2、引导学生观察,复习有关平面图形面积的计算公式师:从这座房子中可以找到哪些平面图形?会求它们的。
面积吗?3、欣赏图片(课件出示一组图片)师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)4、教师总结,揭示课题并板书师:说得真好!像这样由两个或两个以上的简单的图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)二、创设情境、探究新知笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。
《组合图形的面积》数学教案

《组合图形的面积》数学教案《组合图形的面积》数学教案3篇《组合图形的面积》数学教案1教学目标知识与技能:明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
过程与方法:能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
情感态度与价值观:渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
教学重难点教学重点:在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
教学难点:根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
教学工具多媒体设备教学过程教学过程设计1、创设情境,引导探索师:生活中有许多图形,老师今天准备了4幅,大家观察一下,这些图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?图一图二图三图四课件逐一出示图一、图二、图三,图四让学生发表意见。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:队旗的面是由一个梯形和一个三角形组成的。
生4:七巧板是由三角形,长方形,正方形和平行四边形组成的。
师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的图形是组合图形。
师小结:组合图形是由几个简单的图形组合而成的。
图一:是由三角形、长方形、加上长方形中间的正方形组成的,面积=三角形面积+长方形面积―正方形面积。
图二:作辅助线使它分成一个大梯形和一个三角形。
方法一:分割法:将整体分成几个基本图形,求出它们的面积和。
是由两个梯形组成的。
师:为什么要分成两个梯形?怎样分成两个梯形?引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。
师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计算。
(板书:转化)大家想想,用辅助线的方法还有不同的作法吗?方法二:添补法:用一个大图形减去一个小图形求出组合图形的面积。
第2讲 组合图形的面积(一)(5年级)

5820组合图形是由两个或两个以上的基本图形组合而成的,因此,它具有条件相共,图形重叠、条件隐蔽等特点。
其次要应用一些解题技巧,掌握一些解题方法:加减法、分割重组法、割补法、旋转平移法、对折法、抵消法、等积变形法、等量代换法、添辅助线法。
总之,把所求图形转化成基本图形本解问。
一、求组合图形面积的基本思想和方法 求面组合图形的面积。
(单位:厘米)一张边长4㎝的正方形纸(如图),从相邻两边的中点连一条线段,沿着这条线段剪去一个角,剩下的面积是多少?二、典型方法:◆底、高对应:如图所示,在长方形ABCD 中,AB 为6厘米,BC 为10厘米,E 、F 分别为AD 、CD 中点,EG 是FC 的2倍。
求阴影部分的面积。
下图中正方形的周长是32cm 。
求出平行四边形的面积。
◆放缩法:四边形ABCG 、DEFG 为长方形,AB=7厘米,AG=4厘米,DE=2厘米,EF=10厘米,那么 三角形BCM 比三角形DEM 的面积大多少平方厘米?边长分别为5厘米和4厘米的两个正方形没有重叠部分面积的差是多少平方厘米?◆重叠法:把一个长方形分成多个部分(如图),已知其中三个部分的面积,求阴影部分的面积。
(单位:厘米)1至100的100个数中,3的倍数和5的倍数一共有多少个?◆等量代换: 式 下图是两个相同的直角梯形重叠在一起,求阴影部分的面积(单位:厘米)。
蓝色镭霆专题篇组合图形的面积(一)2AB DC F E G 10cm5cm12cm6cm 4 54.5分米10.5分米ABD E F CAB如图,正方形ABCD的边长为4厘米,长方形DEFG 的长DG 为5厘米。
长方形的宽是多少厘米?◆平衡法(方程): 如图三角形EFD 的面积比三角形ABF 的面积大6平方厘米,求ED 的长度是多少厘米?如图,梯形ABCD 的面积为45平方厘米,高6厘米,三角形AED 的面积为5厘米,求阴影部分的面积。
1、如图,阴影部分的面积是42平方分米,梯形的面积是多少平方分米?2、如图已知正方形ABCD 的周长是36厘米,DE 是的CE 的2倍,阴影部分的面积是多少平方厘米?3、如图,在直角梯形ABCD 中,AB=15厘米,AD=12厘米,阴影部分的面积为15平方厘米,梯形ABCD 的面积为多少平方厘米? 5、下图中大平行四边形的面积是36平方厘米。
《组合图形的面积》数学教案

《组合图形的面积》数学教案《组合图形的面积》数学教案《组合图形的面积》数学教案1一、教材分析:《组合图形的面积》是人教版五年级上册第五单元的内容。
在三年级时,学生已经学习了长方形与正方形的面积计算,在本册又学习了平行四边形、三角形与梯形的面积计算,本课时的组合图形面积的计算是这两方面知识的发展,也是日常生活中经常需要解决的问题。
在此基础上学习组合图形,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生综合能力。
发展学生的空间观念,为下面立体图形的学习做好铺垫。
二、学生分析本课的授课对象是五年级的学生,学生通过之前的学习对于平面图形直观感知和认识上已有了一定的基础,也掌握一些解决基本图形问题的方法。
根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难。
尤其是对转化思想的渗透,学生在探索组合图形面积的计算方法时,应该能通过自主探索、合作交流,达到方法的多样化。
但是对于方法的交流、借鉴、反思及优化上需要教师的引导,所以,要重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。
三、教学目标根据新课标的要求及教材的特点,充分考虑到五年级学生的心智水平,并在对教学效果进行全面预测的基础上,确立如下教学目标1、知识与技能(1)在自主探索的活动中,理解计算组合图形的多种方法。
(2)能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
(3)能运用所学的知识,解决生活中有关组合图形面积的实际问题。
2、过程与方法让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。
3、情感态度与价值观结合装修房子的情境,让学生感受学习组合图形面积的必要性,再学生探索、解决的过程中激活学生思维,通过师生互动、生生互动,学生动手操作、合作交流,让学生在活动中得到积极体验数学在生活中的必要性,从而产生积极的数学学习情感。
四、教学重、难点:为了更好的达到目标,考虑到学生掌握新知的能力,从而确定本节课的教学重难点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
+
S长方形
8×2÷2 + 8×3.5 = 8 + 28 = 36(平方米) 36×0.5×10 = 180(元) 答:粉刷这面墙需要180元钱。
你有什么收获?
四、回顾反思
10米
40 米
20 米
30米
• 同学们,大胆的猜一猜,地面占地面积大 约有多大?
这是我们学过的基本图形吗?
10米
40 米
20 米
30米
能不能把这个组合图形转化成我们学过 的图形求面积呢?
合作探究
1、请同学们利用手中的学具,画一画、分一 分、补一补,看能不能把这个组合图形转 化成我们学过的基本图形? 2、独立完成后在小组内交流方法,说一说你 是怎样转化的。
=20×20÷2 =200(平方米)
组合图形的面积: 1200-200=1000(平方米)
二、合作探索
割补法是我们计算组合 图形常用的方法。
想一想,怎样求组合图形的面积?
分割法
添补法
这些虚线我们称为 辅助线
转化成基本图形
30 米
90 米
虾池的形状 是……
虾池的面积是多少平方米?
40 米 80 米
30
米
=40×20÷2 =400(平方米)
长方形的面积: 30×20=600(平方米)
返回
20
30 米
组合图形的面积:
400+600=1000(平方米)
二、合作探索
S组合图形=S长方形 - S三角形
10 米
长方形的面积: 40×30=1200(平方米)
40 米 20 米 30 米
返回
三角形的面积: (30-10)×(40-20)÷2
它是由什么图形组成的 呢?
像这些图,都是由几个基本图形组合而成 的图形,我们称为组合图形。
组合图形的面积
教学目标
• 联系生活实际认识组合图形,会求组合图 形的面积。
• 学会利用“割”‘’补‘’法,把组合图 形分解成学过的平面图形,体会转化策略 。
暑假的时候,明明家 刚买了新房~~~
这是明明家的平面图,爸爸请了工 人叔叔,打算铺制一层新木地板, 需要买多少平方米的木地板呢?
S组合图形 = S梯形
+
添补法
S三角形
分割法
(24+36)×8÷2 + 36×30÷2 = 60×8÷2 + 1080÷2 = 240 + 540 = 780(cm2)
三、自主练习
5.小明家一面外墙墙皮脱落,要重新粉刷(如图),每平 方米需要用0.5千克涂料。如果涂料的价钱是每千克10 元,粉刷这面墙需要多少钱?
虾池示意图
根据这些信息,你能提出什么问题? 从图中,你知道了哪些数学信息?
你敢挑+ S长方形
分割法
30×6 +30×10 = 180 +300 = 480(平方厘米) S组合图形 = S长方形-S正方形 15×12 - 5×5 = 180 - 25 = 155(平方分米)
合作探索
10 米 10 米
40
40 米 20
米 米
30
20 米
30 米
30 米
S组合= S梯形 + S长方形
合作探索
S组合图形=S长方形 - S三角形
40 米 20 米 30 米
返回
10 米
二、合作探索
S组合= S梯形 + S长方形
梯形的面积: (10+30)×(40-20)÷2
40 米
10 米