联系实际的应用题

合集下载

三年级数学应用题(集合24篇)

三年级数学应用题(集合24篇)

三年级数学应用题(集合24篇)三年级数学应用题第1篇第二步,找出应用题中给出的已知条件、未知条件(即所要求解决的问题)。

例如:欢乐队的王强身高是148厘米,谢明身高是米,李蕾身高是139厘米,王小飞身高是米,刘思身高是140厘米。

欢乐队的平均身高是多少厘米?对题目细致阅读之后发现题目中的已知条件是:欢乐队的王强身高是148厘米,谢明身高是米,李蕾身高是139厘米,王小飞身高是米,刘思身高是140厘米。

未知条件是:欢乐队的平均身高是多少厘米?在这一步骤中,应当注意题目中的关键词词语。

如表示数量的“一共”、“几倍”、“平均值”等,此外也应当特别注意单位的统一。

第三步,分析题目中的数量关系,也是正确解答数学应用题的关键,这一步骤中对学生的逻辑思维能力的要求特别高。

一般来说,三年级学生解答应用题的最基本的思路有两种分别是综合法与分析法,综合法就是根据题目中的已知条件运用数学知识或者运算法则进行分步骤的计算,最后求得答案。

分析法正好与综合法相反是从所要求的问题出发,分析要得出答案需要什么样的已知条件。

若所需的已知条件,题目中全部具备,则可以直接作答,否则还要先求出所需条件。

三年级数学应用题第2篇31、坐碰碰车每人3元,20人要多少钱?3×20 = 60(元)答:人要60元。

32、每张门票8元,29个同学参观,带250元够吗?8× 29 = 232(元)250元>232元答:带250元钱够了。

33、每瓶矿泉水2元,买20瓶需要多少钱?2×20 = 40(元)答:买20瓶需要40元。

35、每箱苹果30千克,8箱有多少千克?30×8 = 240(千克)答:8箱有240千克。

36、一盒胶卷能照36张相片,3盒胶卷大约能照多少张相片? 36×3≈120(张)答:3盒胶卷大约能照120张相片。

37、湖边种着4排柳树,每排有62棵。

一共约有多少棵?62×4≈240(张)答:一共约有240棵。

用加减法解决实际问题

用加减法解决实际问题

用加、减法解决生活中问题的整理和复习用加、减法解决生活中问题的整理和复习教学目的:1、创设情境,让学生在生活中发现并提出简单的数学问题,通过对这些问题的整理和复习,使学生比较系统地了解加、减法在生活中的应用。

2、明白加法:把数合起来;减法:(1)从总数里去掉;(2)求()比()多几或少几?3、使学生感受到数学与实际生活的联系,培养学生学习数学的兴趣。

教学重点:用恰当的方法解决生活中的问题教学难点:指导学生正确的看图方法和审题方法教学准备:自制CAI课件,自学生练习纸。

教学过程:一、猜数游戏:师:我们来玩个猜数游戏好吗?我左手拿7个珠子,右手拿6个珠子,合起来有几个珠子?你是怎样猜的?预算;我是用加法算的:7+6=13师:真棒!你懂得用加法解决问题。

如果我一共有16颗珠子,左手有9颗,那我右手有几颗?预算:我是用减法算的:16-9=7,右手有7颗。

二、揭题:师:真棒!其实生活中还有很多的问题可以用加法和减法解决的!今天我们就来整理一下我们生活中的加减法问题。

三、收集生活素材,梳理加减法知识。

1、梳理加法知识:师:课前老师让同学收集了一些加减法问题,请把你的收集到的加法问题跟同位读一读。

汇报:全班读出自己的加法题目;集体判断是否加法问题。

设疑:其实像这样的题目我们都能用加法解决,想想这些题目的问题都有什么共同的特点?预算:(1)表示把数合起来(2)表示求总数(3)求原来的部分小结:对表示把数合起来我们可以用加法解决。

(板书)2、梳理减法知识师:那你在生活中又找到哪些减法问题呢?预设:提有关求剩下的问题师:对表示求剩下的,要从总数里去掉的(板书),我们说这是减法1谁提的问题跟他类似?找3个同学找出自己类似的题读一读。

师要求其它同学把自己跟这个同学提的问题差不多画出来,小组里读一读。

师问:有没有减法问题跟这个问题提法不同的?预设:提有关()比()少几和多几的问题师:对求()比()少几和多几的问题,就是求相差多少,这是减法第2种(板书)。

2020年中考数学 有关方程和不等式的实际问题(含答案)-

2020年中考数学    有关方程和不等式的实际问题(含答案)-

联系实际问题一、方程问题考试目标导引:1.重点热点: 将与市场经济、成本计算、利润、商品价格等实际生活中的应用题建立为方程(组)模型.2.目标要求:会通过分析数量关系,找出题中的等量关系,列出方程(组).命题趋热分析:例1 (1)我市某企业为节约用水,自建污水净化站,3月份净化污水3000吨,5月份增加到3630吨,则这两个月净化污水的量平均每月增长的百分率为_______.(2)北京至石家庄的铁路长392千米,为适应经济发展,自2001年10月21日起,某客运列车的行车速度每小时比原来增加40千米,使得石家庄到北京的行车时 间缩短了1小时,如果设该列车提速前的速度为每小时X 千米,那么为求X 所列出的方程为________.(3)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调价后售出可获利10%(相对于进价),另一台空调价后售出则要亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( )A.既不获利也不亏本B.可获利1%C.要亏本2%D.要亏本1%【特色】以上几道题与课本中的基本题型一致,且与实际生活紧密结合.【解答】(1)设平均每月增长的百分率为x ,则依题意列方程3000(1+X)2=3630 解答x 1=0.1 x 2=-2.1(舍去)故平均每月增长的百分率为10%; (2)140392392=+-X X ; (3)设一种型号空调进价为a ,另一种为b ,则1.1a=0.96 得b=a 911 代入下式101.0)(9.01.0-=-=++-+ba b a b a % 故选D. 【拓展】解产销问题时,关键在于理解成本价、销售价、利润、利率之间的关系: 利润=售价-进价,利率=销售利润÷成本×100%等.例2 (2002北京市西城区)(1)据2001年中国环境状况公报,我国由水蚀和风蚀造成的水土流失面 积达356万平方公里,其中风蚀造成的水土流失面积比水蚀造成的水土流失面积多26万平方公里.问水蚀与风蚀造成的水土流失面积各多少万平方公里?(2)某省重视治理水土流失问题,2001年治理了水土流失面积400平方公里,该省逐年加大治理力度,计划今明两年每年治理水土流失面积都比前一年增长一个相同的百分数,到2003年底,使这三年治理的水土流失面积达到1324平方公里.求该省今明两年治理水土流失面积每年增长的百分数.【特色】这是一道贴近社会热点的方程应用题,它不仅可以对学生的阅读理解能力进行考查,而且也是让学生了解我国环境状况的一份很好的资料.【解答】(1)设水蚀造成的水土流失面积为X 万平方公里,依题意得X+(X+26)=356 解得 X=165 ∴X+26=191答:水蚀和风蚀造成的水土流失面积分别为165万平方公里和191万平方公里.(2)设该省今明两年治理水土流失面积每年增长的百分数为x,依题意得 400+400(1+x)+400(1+x)2=1324整理,得100x 2+300x-31=0 解得x 1=0.1 x 2=-3.1(舍去)答:平均每年增长的百分数为10%.【拓展】增长率问题可归结为a(1±x)2=b 的形式,其中a 为初始数,b 为末数,x 为增长率(或下降率).例3 黄冈百货商品服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每 件盈利40元,为了迎接“六·一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?【特色】在近几年各地中考试卷中常能见到这种类型的问题.【解答】设每件童装应降价x元,依题意得(40-x)(20+2x)=1200整理,得x2-30x+200=0,解得x1=10 x2=20因要尽量减少库存,故x应取20.答:每件童装应降价20元.【拓展】当用一元二次方程的解法求出两个解后,一定要注意检验是否符合题意. 中考动向前瞻:贴近社会热点的方程应用题,以选择题、填空题的题型出现时,一般都较为基本,而以解答题出现时,具有一定的综合性,主要考查学生收集和处理信息、分析和解决实际问题的能力.中考佳题自测1.(2002南宁市)革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元?2.(2002武汉市)武汉市某校组织甲、乙两班学生参加“美化校园”的义务劳动,若甲班做2小时,乙班做3小时则恰好完成全部工作的一半;若甲班先做2小时后另有任务,剩下工作由乙班单独完成,则乙班所用的时间恰好比甲班单独完成全部工作的时间多1小时,问单独完成这项工作,甲、乙两班各需多少时间?3.(2001浙江绍兴)光明中学现有校舍面积20000平方米,为改善办学条件,计划拆除部分旧校舍,建造新校舍,使新造校舍的面积是拆除旧校舍面积的3倍还多1000平方米.这样,计划完成后的校舍总面积可比现有校舍面积增加20%,已知拆除旧校舍每平方米需用80元,建造新校舍每平方米需费用700元,问完成该计划需多少费用?中考新题演练1.两条都是长1.5千米的绿化带上有废弃物,甲、乙两组共青团员在星期日上午各清扫一条,乙组的清扫速度是甲组的1.2倍,乙组比甲组少用半小时就完成任务,求甲、乙两组的清扫速度各是多少.2.某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,需要将原定的工作效率提高12%.问原计划完成这项工程用多少个月?3.某公园有东、西两个门,开园半小时内东门售出成人票65张,儿童票12张,收票款568元,西门售出成人票81张,儿童票8张,收票款680元,问此公园成人票、儿童票每张售价各几元?4.甲、乙两名职工接受相同数量的生产任务,开始时,乙比甲每天少做4件,乙比甲多用2天时间,这样甲、乙两人各剩624件;随后,乙改进了生产技术,每天比原来多做6件,而甲每天的工作量不变,结果两人完成全部生产任务所用.......求原来甲、........的时间相同乙两人每天各做多少件?每人的全部生产任务是多少?5.小明的妈妈上周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场搞酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,问她上周三买了几瓶酸奶?6.为落实“珍惜和合理利用每一寸土地”的基本国策,某地区计划经过若干年开发“改造后可利用土地”360平方千米,实际施工中,每年比原计划多开发2平方千米,按此进度预计可提前6年完成开发任务,问实际每年可开发多少平方千米?7.美化城市,改善人们的居住环境已成为城市建设的一项重要内容,某市城区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息,回答下列问题:2001年底的绿地面积为____公顷,比2000年底增加了_____公顷;在1999年,2000年,2001年这三年中,绿地面积增加最多的是____年.(2)为满足城市发展的需要,计划到2003年底使城区绿地总面积达到72.6公顷,试求今明两年绿地面积的年平均增长率.参考答案中考佳题自测:1.设去年收入是x 万元,支出是y 万元,依题意得5001510(1)(1)960100100x y x y -=⎧⎪⎨+--=⎪⎩,解得20401540x y =⎧⎨=⎩答:去年收入2040万元,支出1540万元.2.设单独完成这项工作,甲班需x 小时,乙班需y 小时, 依题意得2312211x y x x y ⎧+=⎪⎪⎨+⎪+=⎪⎩, 解得 11812x y =⎧⎨=⎩2212x y =⎧⎨=-⎩答:单独完成这项工作,甲班需8小时,乙班需12小时.3.设拆除旧校舍的面积为x 平方米,依题意得20000-x+3x+1000=20000(1+20%)解得x=15001500×80+(3×1500+1000)×700=3970000这时完成该计划需费用3970000元.中考新题演练:1.设甲组的清扫速度为x 千米/时,根据题意得, 212.15.15.1=-x x解得x=0.5,经检验为原方程的解,当x=0.5时,1.2x=0.6.2.设原计划完成这项工程用x 个月,根据题意得(1+12%)×311-=x x 解得x=28.3.设此公园成人票每张售价x 元,儿童票每张售价y 元.根据题意得6512568818680x y x y +=⎧⎨+=⎩, 得 84x y =⎧⎨=⎩4.设原来甲每天做x 件,则乙每天做(x-4)件,由题意得 22624624=+-x x 解得x 1=24,x 2=-26(舍去)设每人的全部生产任务为y 件,则 22462420624=---y y ,解得y=864.5.设小明的妈妈上周三买了x 瓶酸奶,根据题意得 22105.010++=-x x 解得x 1=4,x 2=-10(舍去).6.设实际每年可开发x 平方千米,依题意得 .63602360=--x x 解得x 1=12, x 2=-10(舍去).7.(1)60,4,2000(2)设今明两年绿地面积的年平均增长率为x.根据题意, 得60(1+x)2=72.6 解得x 1=0.1,x 2=-2.1(舍去).二、不等式问题考试目标导引:1.重点、热点:将与市场经济、成本计算、利润、商品价格,人物分配等应用题建立为不等式(组)模型.2.目标要求:会通过分析数量关系列出不等式(组)命题趋势分析:例1 (1)恩格尔系数表示家庭日常饮食开支家庭经济总收入的比例,它反映了居民家庭的实际生活水平,各种类型家庭的恩格尔系数如下表所示:则用含n的不等式表示小康家庭的恩格尔系数__________.(2)(2001荆门市)有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要使总收入不低于15.6万元,则最多只能安排____________.(3)(2002重庆市)韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A、B两个出租车队,A队比B队少3辆车,若全部安排乘A队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B队的车,每辆车坐4人,车不够,每辆车坐5人,有的车未坐满,则A队有出租车()A.11辆B.10辆C.9辆D.8辆【特色】这几道题都是运用不等式的基本知识解决实际问题的.【解答】(1)40%≤n≤49%(2)设最多只能安排x人种甲种蔬菜,则0.5×3x+0.8×2(10-x)≥15.6 解得x ≤4 ,故x 取4.(3)设A 队有X 辆车,依题意得55664(3)565(3)x x x x <<⎧⎨+<<+⎩ 易得x 取10 故选B.【拓展】求不等式(组)的整数解的方法是:(1)求出不等式(组)的解集;(2)找出适合解集范围的整数解.例2 某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们. 如果每人送3本,则还余8本;如果前面每人送5本,最后一人得到的课外读物不足3本.设该校买了m 本课外读物,有x 名学生获奖,请解答下列问题:(1)用含x 的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数.【特色】本题立意于对学生基础知识的考查.【解答】(1)m=3x+8(2)根据题意得385(1)0385(1)3x x x x +--≥⎧⎨+--<⎩ 不等式组解集为5<x ≤621∵x 为正整数,∴x=6把x=6代入m=3x+8中,得m=26.【拓展】先根据题意列出不等式组,再求出整数解.例3 香港受潮汐的影响,近日每天24小时港内的水深变化大体如下图:一艘货轮于上午7时在该港码头开始卸货,计划当天卸完货后离港,已知这艘货轮货后吃水深度为2.5m(吃水深度即船底离开水面的距离).该港口规定:为保证航全,只有当航底与港内水底间的距离不少于3.5m时,才能进出该港.根据题目中所给的条件,回答下列问题:(1)要使该船能在当天卸完货并安全出港,则出港的水深不能少于______m,卸货只能用____小时;(2)已知该船装有1200吨货,先由甲装卸队单独卸,每小时卸180吨,工作了一段后,交由乙队接着单独卸,每小时卸120吨,如果要保证该船能在当天卸完货并出港,则甲队至少应工作几小时,才能交给乙方接着卸?【特色】这是一道很有创意的好题,不仅考查了学生数形结合的解题思想,而且也考查了学生运用不等式的有关知识解决实际问题的能力.【解答】(1)6,8;(2)设甲队工作y小时,令180y+120(8-y)≥1200,解得y≥4,答:甲队至少应工作4小时.【拓展】第(2)小题是在前面提供的数据信息的基础上,利用不等式知识求甲队至少工作的时间,确保该船能在当天卸完货并安全出港.中考动向前瞻:贴近社会热点的不等式(组)应用题,一般很少以选择题、填空题出现,而以解答题出现时,主要考查数形结合以及通过分析数量关系建立不等式(组)模型的解题思想.中考佳题自测1.(2001陕西)乘某城市的一种出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租汽车从甲地到乙地支付车费17.2元,从甲地到乙地的路程大约是多少?2.(2001荆州)在双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派一个人去了解船只的租金情况,这个人看到的租金价格表如下:那么,怎样设计租船方案才能使所付租金最少?(严禁超载)3.(2001安徽)某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?中考新题演练1.某商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么,商店最多降_________元出售此商品.(利润=销售价-进货价,利润率=利润÷进货价×100%).2.某种植物适宜生长在温度为18℃~22℃的山区,已知山区海拔每升高100m,气温下降0.5℃,现测出山脚下的平均气温为22℃,问该植物种在山上的哪一部分为宜(设山脚下的平均海拔高度为 0m).3.商场出售的A 型冰箱每台售价2190元,每日耗电量为1度,而B 型节能冰箱每台售价虽比A 型冰箱高出10%,但每日耗电量却为0.55度,现将A 型冰箱打折出售(打一折后的售价为原价的101),问商场至少打几折,消费者购买才合算(按使用期为10年,每年365天,每度电0.40元计算)?4.修筑高速公路经过某村,需搬迁一批农户,为了节约土地资源和保护环境,政府统一规划搬迁建房区域.规划要求区域内绿色环境占地面积不得少于区域总面积的20%.若搬迁农户建房每户占地150m 2,则绿色环境面积还占总面积的40%;政府又鼓励其他有积蓄的农户到规划区域建房,这样又有20户农户加入建房,若仍以每户占地150m 2计算,则这时绿色环境面积又只占总面积的15%,为了符合规划要求,又需要退出部分农户.问:(1)最初需搬迁建房的农户有多少户?政府规划的建房区域总面积是多少m 2?(2)为了保证绿色环境占地面积不少于区域总面积的20%,至少需退出农户几户?5.某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算.6.在车站开始检票时,有a(a>0)名旅客在候车室等候检查进站,检查开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,内只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口?参考答案中考佳题自测:1.设从甲地到乙地的路程大约是xkm,依题意得16<10+1.2(x-5)≤17.2 解得10<x ≤11.2.设租大船x 只,小船y 只,则5x+3y=48 得y=16-35x 又 x ≥0 ,y ≥0 得0≤x ≤548 费用A=3x+2y=3x+2(16-35x)=32-31x ∴当x=9时, A 最小为29故最佳方案是租大船9只,租小船1只.3.设招聘甲种工种的工人x 人,则招聘乙种工种的工人为(150-x)人,依题意得150-x ≥2x 解得x ≤50于是0≤x ≤50;设所聘请的工人共需付月工资y 元,则有y=600x+1000(150-x)=-400x+150000 易知x=50时,y 最小=130000此时乙种工种的工人为150-x=100(人).中考新题演练:1.设最多降x 元售出此商品,由题意得100010001500--x ≥5% 得x ≤450 故x 取450元 2.设该植物种在海拔高度为x 米为宜,由题意得18≤22-100x ·0.5≤20 得400≤x ≤800 3.设商场将A 型冰箱打x 折出售,则消费者购买A 型冰箱需耗资2190×10x +365×10×1×0.4(元) ; 购买B 型冰箱需耗资 2190(1+10%)+360×10×0.55×0.4(元)依题意得2190×10x +365×10×1×0.4≤2190×(1+10%)+365×10×0.55×0.4 解得x ≤8因此,商场应将A 型冰箱至少打八折出售,消费者购买才合算.4.(1)设最初需搬迁建房的农户有x 户,政府规划的建房区域总面积为ym 2,则有 15040%150(20)15%x y y x y y +=⎧⎨++=⎩, 解得4812000x y =⎧⎨=⎩(2)设至少需退出z 户,则有12000-150(68-z)≥12000×20% 解得z ≥4.5.(1)因为80<120,所以不可能选A 类年票若选B 类年票,则1024080=-(次); 若选C 类年票,则1334080=-(次); 若不购买年票,则81080=(次). 所以计划用80元花在该园林的门票上时,选择购买C 类年票的方法进入园林的次数最多,为13次.(2)设至少超过x 次时,购买A 类年票比较合算,则有不等式组602120403120x x +>⎧⎨+>⎩, 解得 302263x x >⎧⎪⎨>⎪⎩其公共解集为x>30.所以一年中进入该园林至少超过30次时,购买A 类年票比较合算.6.设至少要同时开放n 个检票口,且每分钟旅客进站x 人、检票口检票y 人,依题意得 303010210a x y a x y+=⎧⎨+=⨯⎩解得n ≥3.5∵n 只能取整数,∴n=4.a+5x ≤5ny。

人教版七年级数学下册实际问题与二元一次方程组(一)(基础) 典型例题(考点)讲解+练习(含答案).doc

人教版七年级数学下册实际问题与二元一次方程组(一)(基础)  典型例题(考点)讲解+练习(含答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】实际问题与二元一次方程组(一)(基础)知识讲解责编:杜少波【学习目标】1.以含有多个未知数的实际问题为背景,经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数问题的数学模型;2. 熟练掌握用方程组解决和差倍分,配套,工程等实际问题.【要点梳理】要点一、常见的一些等量关系(一) 1.和差倍分问题:增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价.要点二、实际问题与二元一次方程组 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形; 答:写出答案. 要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去; (2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.【典型例题】类型一、和差倍分问题1.(2016•长春二模)电子商务的快速发展逐步改变了人们的生活方式,网购已悄然进入千家万户.李阿姨在淘宝网上花220元买了1个茶壶和10个茶杯,已知茶壶的单价比茶杯的单价的4倍还多10元.请问茶壶和茶杯的单价分别是多少元?【思路点拨】设茶壶的单价为x 元,茶杯的单价为y 元,根据题意可得,1个茶壶和10个茶杯共花去220元,茶壶的单价比茶杯的单价的4倍还多10元,据此列方程组求解. 【答案与解析】解:设茶壶的单价为x 元,茶杯的单价为y 元,由题意得,,解得:.答:茶壶的单价为70元,茶杯的单价为15元.【总结升华】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.举一反三: 【变式】(2015•茂名模拟)根据如图提供的信息,可知一个热水瓶的价格是( )A .7元B .35元C .45元D .50元 【答案】C .解:设水壶单价为x 元,杯子单价为y 元, 则有 ,解得.答:一个热水瓶的价格是45元. 类型二、配套问题2. 某服装厂生产一批某种款式的秋装,已知每2米的某种布料可做上衣的衣身3个或衣袖5只. 现计划用132米这种布料生产这批秋装(不考虑布料的损耗),应分别用多少布料才能使做的衣身和衣袖恰好配套?【思路点拨】本题的第一个相等关系比较容易得出:衣身、衣袖所用布料的和为132米;第二个相等关系的得出要弄清一整件衣服是怎么样配套的,即衣袖的数量等于衣身的数量的2倍(注意:别把2倍的关系写反了).【答案与解析】解:设用x 米布料做衣身,用y 米布料做衣袖才能使衣身和衣袖恰好配套.根据题意,列方程组得⎪⎩⎪⎨⎧=⨯=+y x y x 25223132解方程组得⎩⎨⎧==7260y x答:用60米布料做衣身,用72米布料做衣袖才能使做的衣身和衣袖恰好配套.【总结升华】生产中的配套问题很多,如螺钉和螺母的配套、盒身与盒底的配套、桌面与桌腿的配套、衣身与衣袖的配套等. 各种配套都有数量比例,依次设未知数,用未知数可把它们之间的数量关系表示出来,从而得到方程组,使问题得以解决,确定等量关系是解题的关键.【:实际问题与二元一次方程组(一)409143 例2】 举一反三:【变式】某家具厂生产一种方桌,设计时13m 的木材可做50个桌面或300条桌腿.现有103m 的木材,怎样分配桌面和桌腿使用的木材,才能使桌面和桌腿刚好配套,并指出可生产多少张方桌?(提示:一张方桌有一个桌面,4条桌腿). 【答案】解:设有3xm 的木材生产桌面,3ym 的木材生产桌腿,由题意得,10300504x y y x +=⎧⎪⎨=⎪⎩ , 64x y =⎧∴⎨=⎩.∴方桌有50x =300(张).答:有63m 的木材生产桌面,43m 的木材生产桌腿,可生产出300张方桌. 类型三、工程问题3.一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问:两人每天各做多少个零件? 【思路点拨】本例由分析知,有两个相等关系:(1)甲4天的工作量+甲乙合做8天的工作量=工作总量;(2)乙4天的工作量+甲、乙合做9天的工作量=工作总量,根据这两个相等关系可列方程求解. 【答案与解析】解:设甲每天做x 个机器零件,乙每天做y 个机器零件.根据题意,得(48)88409(49)840x y x y ++=⎧⎨++=⎩,解之,得5030x y =⎧⎨=⎩.答:甲、乙两人每天做机器零件分别为50个、30个.【总结升华】解答这类问题的基本关系式是:工作量=工作效率×工作时间.工程问题一般分为两类:一类是一般的工程问题,一类是工作总量为1的工程问题. 类型四、利润问题4. (2015•曲靖)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示: 类别/单价 成本价 销售价(元/箱) 甲 24 36 乙 33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元? 【思路点拨】(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,根据投入13800元资金购进甲、乙两种矿泉水共500箱,列出方程组解答即可; (2)总利润=甲的利润+乙的利润. 【答案与解析】 解:(1)设商场购进甲种矿泉水x 箱,购进乙种矿泉水y 箱,由题意得,解得:.答:商场购进甲种矿泉水300箱,购进乙种矿泉水200箱. (2)300×(36﹣24)+200×(48﹣33) =3600+3000 =6600(元).答:该商场共获得利润6600元.【总结升华】本题考查了二元一次方程组的实际应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解. 【:实际问题与二元一次方程组(一)409143 例6】举一反三:【变式】王师傅下岗后开了一家小商店,上周他购进甲乙两种商品共50件,甲种商品的进价是每件35元,利润率是20%,乙种商品的进价是每件20元,利润率是15%,共获利278元,你知道王师傅分别购进甲乙两种商品各多少件吗? 【答案】解:设王师傅分别购进甲、乙两种商品x 件和y 件,则503520%2015%278x y x y +=⎧⎨⨯+⨯=⎩ 解得:3218x y =⎧⎨=⎩答:王师傅分别购进甲乙两种商品32件与18件.初中奥数题试题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0 B.a,b之一是0C.a,b互为相反数 D.a,b互为倒数2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式3.下面说法中不正确的是 ( )A. 有最小的自然数 B.没有最小的正有理数C.没有最大的负整数 D.没有最大的非负数4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号 B.a,b异号 C.a>0 D.b>05.大于-π并且不是自然数的整数有 ( )A.2个 B.3个 C.4个 D.无数个6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

七年级数学下册 培优新帮手 专题11 设元的技巧试题 (新版)新人教版

七年级数学下册 培优新帮手 专题11 设元的技巧试题 (新版)新人教版

11 设元的技巧阅读与思考应用数学知识和方法解决实际问题是学习数学的重要目的之一.应用题联系实际,反映现实生活中的数量关系,通过解应用题可以培养运用数学知识去分析和解决问题的能力.列方程解应用题,一般有审题、设元、布列方程、解方程、作答等几个步骤.恰当地设元是列方程解应用题的关键步骤之一,常见的设元技巧有:1.直接设元题目要求什么量,就设什么量为未知数,或有几个要求的量,而设其中的某一个量为未知数. 2.间接设元即所没的不是所求的,适当地选择与题目要求的未知数有关的某个量为未知数,则易找出符合题意的数量关系,从而列出方程.3.辅助设元有些应用题中隐含一些未知的常量,这些量对于求解无直接联系,但如果不指明这些量的存在,则难求其解,因而需把这些未知的常量设为参数,作为桥梁帮助思考,这就是辅助设元. 4.整体设元有些应用题未知量太多而已知关系又少,如果在未知数的某一部分存在一个整体关系,可设这一部分为一个未知数,这样就减少了设元的个数,这就是整体设元.例题与求解【例1】某编辑用0~9这10个数字给一本书的各页标上页码,若共写了636个数字,则该书有____页.解题思路:依题意可知该书页码的数字组成有三种:一个数字、两个数字、三个数字.一共有636个数字,可设直接未知数,列方程求解.找出能够表示应用题全部含义的一个相等关系是列方程解应用题又一关键.寻找相等关系常用方法有:①从关键词中寻找相等关系;②利用基本公式寻找相等关系;③利用不变量寻找相等关系;④对一种“量”,从不同的角度进行表述(即计算两次),形成一种相等关系.行程问题、工程问题、劳力分配问题、浓度问题、数字问题等是列方程解应用题的基本类型,此外,还有趣味问题(如年龄、时钟等)、经济问题(如银行存款、销售利润等),尽管形式多变,但是解题实质未变,需要我们用数学观点,理清数量关系,恰当设未知数,准确列方程.【例2】某服装厂生产某种定型冬装,9月份销售冬装的利润(每件冬装的利润=出厂价一成本)是出厂价的25%,10月份将每件冬装的出厂价调低10%(每件冬装的成本不变),销售件数比9月份增加80%,那么该厂10月份销售这种冬装的利润总额比9月份的利润总额增长()。

六年级上册数学应用题15篇

六年级上册数学应用题15篇

六年级上册数学应用题15篇六年级上册数学应用题1“求一个数的几分之几是多少”的应用题的教学是在学生学习了分数乘法的意义和计算方法后进行的,是分数乘法意义在解决实际问题中的应用。

通过对应用题中数量关系的分析,引导学生逐步理解:要求什么,就是求某数量的几分之几是多少,从而得出用乘法列式计算的道理。

本次课的教学,在以下几方面作了有益的探索:1、从教学观念上,充分体现学生为主体的思想,突出了学生是学习的主人,是教学的主体,实践了教师是引导者、参与者、合作者、服务者的角色转变。

例如:学习例题时,学生根据课前设计的学习材料完成先自学,分组讨论,然后汇报,答疑,小结等环节,从中获取初步知识。

教师在学生学习过程中积极参与其中,和学生共同探讨解决问题的途径,最后,教师根据情况有针对性的进行点拨,指导学生写出反思小结。

整个过程学生的主体地位得到了充分的体现,教师的作用得到加强。

2、在教学中,把知识与实际生活有机联系,对学生进行情感教育。

数学________于生活,数学在生活中无处不在。

因此这节课联系生活实际,培养学生学习兴趣和结合习题对学生进行情感教育进行了一些实践。

例如教学例1时:提出了‘你根据我国现有的国土资源人多地少的矛盾,给国家提一些好的建议?’的问题,目的是教育学生关心国家大事,关注我们赖以生存的土地的现状,教育学生珍惜每一寸土地。

又如:习题中有书包重量与人体重关系的研究,从探索中使学生认识到背负过重的东西会损害我们的身体,教育他们正确地处理人体负重问题,从而健康生活。

这些问题的提出紧贴生活实际,启发学生思考,起到了细雨润无声的作用。

3、教学中紧紧抓住了这节课的关键,即:关键句的处理。

重点帮助学生理清了思路,即:关键句---单位1---线段图---求什么----就是求某数的几分之几是多少----用乘法。

本次课的教学,也有以下几个问题值得深思:1、在学法指导上缺少应变,问题的提出有些抽象化,师生间的配合欠默契。

四年级上北师版应用题

四年级上北师版应用题1、爸爸在加油站加了30升汽油后,去距离加油站242四年级上北师版应用题驶11千米,他到达目的地后再返回,途中需要加油么?如果需要,至少要加多少升才够?2、四年级学生以每分60米的速度,步行去公园,走了15分钟后,离全程的一半还差150米,他们还要走多少分钟才能达到目的地?3、用平均步长走完60米的路程,小兵走了100步,爸爸走了80步,照这样计算,他们从同一地点出发,向同一方向各走400步,他们相距多少米?4、公共汽车以每小时20千米的速度行驶了3小时,距中点还有15千米,路程全长是多少千米?这时如果要求3小时到达目的地,汽车每小时行多少千米?5、甲乙两地相距630千米,一辆汽车从甲地到乙地用了9小时,返回时候的速度比去时每小时多20千米,往返共用多少小时?6、学校录取一年级新生104人,分成甲乙两个班,如果从甲班调给乙班2个同学,两班学生就一样了。

甲乙两班原有学生各多少人?7、一辆汽车从甲地开往乙地,每小时行36千米,5时正好行至两地间的中点,如果接着把速度提高了24千米,那么由甲地开往乙地共需多少小时?8、丁丁家离学校有1500米,她早上7点从家出发,已经走了12分,离学校还有600米,丁丁每分钟走多少米?9、甲乙两地相距530千米,一辆客车从甲地开往乙地,以85千米/时的速度行了4小时,剩下的路程司机将速度提高了10千米,客车还要几小时到达乙地?10、甲的收入是乙的12倍,已知甲的月收入比乙多16500元,那么乙的月收入是多少?11、一家制鞋厂下半年生产童鞋5206双,如果再生产44双,正好是上半年生产的童鞋的双数的5倍,上半年比下半年少生产多少双?13、三四年级同学为灾区捐款,一共捐了860元,正好比三年级捐款数的3倍少130元,四年级捐款多少元?14、杭州到上海大约160千米,一辆汽车从杭州出发2小时后离上海还有20千米,这辆汽车平均每小时行多少千米?15、某电机厂计划14天生产368台电视机,实际比计划提前6天完成,实际每天生产电视机多少台?16、解放军某部进行野营训练,原计划每天行走40千米,15天走完全程,实际提前3天走完,平均每天走多少千米?17、一个豆腐房,用35千克黄豆可以做出140千克的豆腐,现在豆腐房有280千克黄豆,要做1160千克豆腐,这些黄豆够么?如果不够,还差多少千克黄豆?18、市人民公园有20条游船,每天收入1440元,照这样计算在增加5条这样的游船每天一共可以收入多少元?19、向太平洋海啸受灾地区运送捐赠物品的28辆汽车排成一纵队,每辆车长12米,每辆相邻车之间相距25米,请问:这列车队共长多少米?20、小玲和小芳是两姐妹,小玲从家步行到学校,每分钟走80米,走了8分后,小芳从家骑自行车去追小玲,结果在距离家960米的地方追上小玲。

初中数学应用题知识点总结及练习

如,“小时”“分钟”的换算“分钟”的换算;s ;s ;s、、v 、t 单位的一致等。

单位的一致等。

内容内容类型类型题中涉及的数量及公式题中涉及的数量及公式 等量关系等量关系 注意事项注意事项和、差问题和、差问题由题可知由题可知弄清“倍数”及“多、少”等数量关系少”等数量关系 行程问题问题相遇问题相遇问题 路程路程==速度×时间速度×时间 时间时间==路程÷速度路程÷速度 速度速度==路程÷时间路程÷时间 快者快者++慢者慢者==原来的距离原来的距离 注意始发时间和地点追及问题追及问题快者快者--慢者慢者==原来的距离原来的距离 调配问题调配问题 调配后的数量关系调配后的数量关系流动的方向和数量流动的方向和数量 比例分配问题比例分配问题全部数量全部数量==各种成分的数量之和把一份设为X 工程问题工程问题工作量工作量==工作效率×工作时间工作效率×工作时间 工作时间工作时间==工作量÷工作效率工作量÷工作效率 工作效率工作效率==工作量÷工作时间工作量÷工作时间 每个工作量的和每个工作量的和==工作总量工作总量工作总量没有的情况下,可设为1利润问题利润问题 利润率利润率==利润÷进价×利润÷进价×100% 100% 利润利润==(售价(售价--进价)×量进价)×量 利用公式或利润率与利润的关系关系 打几折就是百分之几十出售几十出售 行船问题行船问题顺水速度顺水速度==静水速度静水速度++水速水速 逆水速度逆水速度==静水速度静水速度--水速水速A C A B C 甲→甲→ 乙→乙→ (相遇处)乙→乙→A B 甲)→ (相遇处)1、某酒店客房部有三人间,双人间客房,收费数据如下表:、某酒店客房部有三人间,双人间客房,收费数据如下表:普通(元普通(元//间/天)天) 豪华(元(元//间/天) 三人间三人间 150 300 双人间双人间140400为吸引游客,团体入住五折优惠措施,团体入住五折优惠措施,一个一个50人的旅游团优惠期间到该酒店入住,人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间住了一些三人普通间和双人普通间客房.若每间客房正好住满,客房.若每间客房正好住满,••且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?元,则旅游团住了三人普通间和双人普通间客房各多少间? 2、(20042004、湟中,、湟中,、湟中,33分)正在修建的西塔(西宁~塔尔寺)高速公路上,有一段工程,若甲、乙两个工程队单独完成,甲工程队比乙工程队少用10天;若甲、乙两队合作,天;若甲、乙两队合作,1212天可以完成.若设甲单独完成这项工程需要x 天.则根据题意,可列方程为意,可列方程为_____________________________________________。

有关方程和不等式的实际问题(含答案)-

联系实际问题一、方程问题考试目标导引:1.重点热点: 将与市场经济、成本计算、利润、商品价格等实际生活中的应用题建立为方程(组)模型.2.目标要求:会通过分析数量关系,找出题中的等量关系,列出方程(组).命题趋热分析:例1 (1)我市某企业为节约用水,自建污水净化站,3月份净化污水3000吨,5月份增加到3630吨,则这两个月净化污水的量平均每月增长的百分率为_______.(2)北京至石家庄的铁路长392千米,为适应经济发展,自2001年10月21日起,某客运列车的行车速度每小时比原来增加40千米,使得石家庄到北京的行车时 间缩短了1小时,如果设该列车提速前的速度为每小时X 千米,那么为求X 所列出的方程为________.(3)某商场根据市场信息,对商场中现有的两台不同型号的空调进行调价销售,其中一台空调价后售出可获利10%(相对于进价),另一台空调价后售出则要亏本10%(相对于进价),而这两台空调调价后的售价恰好相同,那么商场把这两台空调调价后售出( )A.既不获利也不亏本B.可获利1%C.要亏本2%D.要亏本1%【特色】以上几道题与课本中的基本题型一致,且与实际生活紧密结合.【解答】(1)设平均每月增长的百分率为x ,则依题意列方程3000(1+X)2=3630 解答x 1=0.1 x 2=-2.1(舍去)故平均每月增长的百分率为10%; (2)140392392=+-X X ;(3)设一种型号空调进价为a ,另一种为b ,则1.1a=0.96 得b=a 911代入下式101.0)(9.01.0-=-=++-+b a b a b a % 故选D.【拓展】解产销问题时,关键在于理解成本价、销售价、利润、利率之间的关系: 利润=售价-进价,利率=销售利润÷成本×100%等.例2 (2002北京市西城区)(1)据2001年中国环境状况公报,我国由水蚀和风蚀造成的水土流失面 积达356万平方公里,其中风蚀造成的水土流失面积比水蚀造成的水土流失面积多26万平方公里.问水蚀与风蚀造成的水土流失面积各多少万平方公里?(2)某省重视治理水土流失问题,2001年治理了水土流失面积400平方公里,该省逐年加大治理力度,计划今明两年每年治理水土流失面积都比前一年增长一个相同的百分数,到2003年底,使这三年治理的水土流失面积达到1324平方公里.求该省今明两年治理水土流失面积每年增长的百分数.【特色】这是一道贴近社会热点的方程应用题,它不仅可以对学生的阅读理解能力进行考查,而且也是让学生了解我国环境状况的一份很好的资料.【解答】(1)设水蚀造成的水土流失面积为X 万平方公里,依题意得X+(X+26)=356 解得 X=165 ∴X+26=191答:水蚀和风蚀造成的水土流失面积分别为165万平方公里和191万平方公里.(2)设该省今明两年治理水土流失面积每年增长的百分数为x,依题意得 400+400(1+x)+400(1+x)2=1324整理,得100x 2+300x-31=0 解得x 1=0.1 x 2=-3.1(舍去)答:平均每年增长的百分数为10%.【拓展】增长率问题可归结为a(1±x)2=b 的形式,其中a 为初始数,b 为末数,x 为增长率(或下降率).例3 黄冈百货商品服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每 件盈利40元,为了迎接“六·一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?【特色】在近几年各地中考试卷中常能见到这种类型的问题.【解答】设每件童装应降价x元,依题意得(40-x)(20+2x)=1200整理,得x2-30x+200=0,解得x1=10 x2=20因要尽量减少库存,故x应取20.答:每件童装应降价20元.【拓展】当用一元二次方程的解法求出两个解后,一定要注意检验是否符合题意. 中考动向前瞻:贴近社会热点的方程应用题,以选择题、填空题的题型出现时,一般都较为基本,而以解答题出现时,具有一定的综合性,主要考查学生收集和处理信息、分析和解决实际问题的能力.中考佳题自测1.(2002南宁市)革命老区百色某芒果种植基地,去年结余为500万元,估计今年可结余960万元,并且今年的收入比去年高15%,支出比去年低10%,求去年的收入与支出各是多少万元?2.(2002武汉市)武汉市某校组织甲、乙两班学生参加“美化校园”的义务劳动,若甲班做2小时,乙班做3小时则恰好完成全部工作的一半;若甲班先做2小时后另有任务,剩下工作由乙班单独完成,则乙班所用的时间恰好比甲班单独完成全部工作的时间多1小时,问单独完成这项工作,甲、乙两班各需多少时间?3.(2001浙江绍兴)光明中学现有校舍面积20000平方米,为改善办学条件,计划拆除部分旧校舍,建造新校舍,使新造校舍的面积是拆除旧校舍面积的3倍还多1000平方米.这样,计划完成后的校舍总面积可比现有校舍面积增加20%,已知拆除旧校舍每平方米需用80元,建造新校舍每平方米需费用700元,问完成该计划需多少费用?中考新题演练1.两条都是长1.5千米的绿化带上有废弃物,甲、乙两组共青团员在星期日上午各清扫一条,乙组的清扫速度是甲组的1.2倍,乙组比甲组少用半小时就完成任务,求甲、乙两组的清扫速度各是多少.2.某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,需要将原定的工作效率提高12%.问原计划完成这项工程用多少个月?3.某公园有东、西两个门,开园半小时内东门售出成人票65张,儿童票12张,收票款568元,西门售出成人票81张,儿童票8张,收票款680元,问此公园成人票、儿童票每张售价各几元?4.甲、乙两名职工接受相同数量的生产任务,开始时,乙比甲每天少做4件,乙比甲多用2天时间,这样甲、乙两人各剩624件;随后,乙改进了生产技术,每天比原来多做6件,而甲每天的工作量不变,结果两人完成全部生产任务所用.......求原来甲、........的时间相同乙两人每天各做多少件?每人的全部生产任务是多少?5.小明的妈妈上周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场搞酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,问她上周三买了几瓶酸奶?6.为落实“珍惜和合理利用每一寸土地”的基本国策,某地区计划经过若干年开发“改造后可利用土地”360平方千米,实际施工中,每年比原计划多开发2平方千米,按此进度预计可提前6年完成开发任务,问实际每年可开发多少平方千米?7.美化城市,改善人们的居住环境已成为城市建设的一项重要内容,某市城区近几年来,通过拆迁旧房,植草,栽树,修建公园等措施,使城区绿地面积不断增加(如图所示).(1)根据图中所提供的信息,回答下列问题:2001年底的绿地面积为____公顷,比2000年底增加了_____公顷;在1999年,2000年,2001年这三年中,绿地面积增加最多的是____年.(2)为满足城市发展的需要,计划到2003年底使城区绿地总面积达到72.6公顷,试求今明两年绿地面积的年平均增长率.参考答案中考佳题自测:1.设去年收入是x 万元,支出是y 万元,依题意得5001510(1)(1)960100100x y x y -=⎧⎪⎨+--=⎪⎩,解得20401540x y =⎧⎨=⎩ 答:去年收入2040万元,支出1540万元.2.设单独完成这项工作,甲班需x 小时,乙班需y 小时, 依题意得2312211x y x xy ⎧+=⎪⎪⎨+⎪+=⎪⎩, 解得 11812x y =⎧⎨=⎩ 2212x y =⎧⎨=-⎩ 答:单独完成这项工作,甲班需8小时,乙班需12小时.3.设拆除旧校舍的面积为x 平方米,依题意得20000-x+3x+1000=20000(1+20%)解得x=15001500×80+(3×1500+1000)×700=3970000这时完成该计划需费用3970000元.中考新题演练:1.设甲组的清扫速度为x 千米/时,根据题意得, 212.15.15.1=-x x解得x=0.5,经检验为原方程的解,当x=0.5时,1.2x=0.6.2.设原计划完成这项工程用x 个月,根据题意得(1+12%)×311-=x x 解得x=28.3.设此公园成人票每张售价x 元,儿童票每张售价y 元.根据题意得6512568818680x y x y +=⎧⎨+=⎩, 得 84x y =⎧⎨=⎩4.设原来甲每天做x 件,则乙每天做(x-4)件,由题意得 22624624=+-x x 解得x 1=24,x 2=-26(舍去)设每人的全部生产任务为y 件,则 22462420624=---y y ,解得y=864.5.设小明的妈妈上周三买了x 瓶酸奶,根据题意得 22105.010++=-x x 解得x 1=4,x 2=-10(舍去).6.设实际每年可开发x 平方千米,依题意得 .63602360=--x x 解得x 1=12, x 2=-10(舍去).7.(1)60,4,2000(2)设今明两年绿地面积的年平均增长率为x.根据题意, 得60(1+x)2=72.6 解得x 1=0.1,x 2=-2.1(舍去).二、不等式问题考试目标导引:1.重点、热点:将与市场经济、成本计算、利润、商品价格,人物分配等应用题建立为不等式(组)模型.2.目标要求:会通过分析数量关系列出不等式(组)命题趋势分析:例1 (1)恩格尔系数表示家庭日常饮食开支家庭经济总收入的比例,它反映了居民家庭的实际生活水平,各种类型家庭的恩格尔系数如下表所示:则用含n的不等式表示小康家庭的恩格尔系数__________.(2)(2001荆门市)有10名菜农,每人可种甲种蔬菜3亩或乙种蔬菜2亩,已知甲种蔬菜每亩可收入0.5万元,乙种蔬菜每亩可收入0.8万元,若要使总收入不低于15.6万元,则最多只能安排____________.(3)(2002重庆市)韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A、B两个出租车队,A队比B队少3辆车,若全部安排乘A队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B队的车,每辆车坐4人,车不够,每辆车坐5人,有的车未坐满,则A队有出租车()A.11辆B.10辆C.9辆D.8辆【特色】这几道题都是运用不等式的基本知识解决实际问题的.【解答】(1)40%≤n≤49%(2)设最多只能安排x人种甲种蔬菜,则0.5×3x+0.8×2(10-x)≥15.6 解得x ≤4 ,故x 取4. (3)设A 队有X 辆车,依题意得55664(3)565(3)x x x x <<⎧⎨+<<+⎩易得x 取10 故选B.【拓展】求不等式(组)的整数解的方法是: (1)求出不等式(组)的解集; (2)找出适合解集范围的整数解.例2 某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们. 如果每人送3本,则还余8本;如果前面每人送5本,最后一人得到的课外读物不足3本.设该校买了m 本课外读物,有x 名学生获奖,请解答下列问题:(1)用含x 的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数. 【特色】本题立意于对学生基础知识的考查. 【解答】(1)m=3x+8 (2)根据题意得 385(1)0385(1)3x x x x +--≥⎧⎨+--<⎩不等式组解集为5<x ≤621∵x 为正整数,∴x=6把x=6代入m=3x+8中,得m=26.【拓展】先根据题意列出不等式组,再求出整数解.例3 香港受潮汐的影响,近日每天24小时港内的水深变化大体如下图:一艘货轮于上午7时在该港码头开始卸货,计划当天卸完货后离港,已知这艘货轮货后吃水深度为2.5m(吃水深度即船底离开水面的距离).该港口规定:为保证航全,只有当航底与港内水底间的距离不少于3.5m时,才能进出该港.根据题目中所给的条件,回答下列问题:(1)要使该船能在当天卸完货并安全出港,则出港的水深不能少于______m,卸货只能用____小时;(2)已知该船装有1200吨货,先由甲装卸队单独卸,每小时卸180吨,工作了一段后,交由乙队接着单独卸,每小时卸120吨,如果要保证该船能在当天卸完货并出港,则甲队至少应工作几小时,才能交给乙方接着卸?【特色】这是一道很有创意的好题,不仅考查了学生数形结合的解题思想,而且也考查了学生运用不等式的有关知识解决实际问题的能力.【解答】(1)6,8;(2)设甲队工作y小时,令180y+120(8-y)≥1200,解得y≥4,答:甲队至少应工作4小时.【拓展】第(2)小题是在前面提供的数据信息的基础上,利用不等式知识求甲队至少工作的时间,确保该船能在当天卸完货并安全出港.中考动向前瞻:贴近社会热点的不等式(组)应用题,一般很少以选择题、填空题出现,而以解答题出现时,主要考查数形结合以及通过分析数量关系建立不等式(组)模型的解题思想.中考佳题自测1.(2001陕西)乘某城市的一种出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租汽车从甲地到乙地支付车费17.2元,从甲地到乙地的路程大约是多少?2.(2001荆州)在双休日,某公司决定组织48名员工到附近一水上公园坐船游园,公司先派一个人去了解船只的租金情况,这个人看到的租金价格表如下:那么,怎样设计租船方案才能使所付租金最少?(严禁超载)3.(2001安徽)某工程队要招聘甲、乙两种工种的工人150人,甲、乙两种工种的工人月工资分别为600元和1000元.现要求乙种工种的人数不少于甲种工种人数的2倍,问甲、乙两种工种各招聘多少人时,可使得每月所付的工资最少?中考新题演练1.某商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么,商店最多降_________元出售此商品.(利润=销售价-进货价,利润率=利润÷进货价×100%).2.某种植物适宜生长在温度为18℃~22℃的山区,已知山区海拔每升高100m,气温下降0.5℃,现测出山脚下的平均气温为22℃,问该植物种在山上的哪一部分为宜(设山脚下的平均海拔高度为 0m).3.商场出售的A 型冰箱每台售价2190元,每日耗电量为1度,而B 型节能冰箱每台售价虽比A 型冰箱高出10%,但每日耗电量却为0.55度,现将A 型冰箱打折出售(打一折后的售价为原价的101),问商场至少打几折,消费者购买才合算(按使用期为10年,每年365天,每度电0.40元计算)?4.修筑高速公路经过某村,需搬迁一批农户,为了节约土地资源和保护环境,政府统一规划搬迁建房区域.规划要求区域内绿色环境占地面积不得少于区域总面积的20%.若搬迁农户建房每户占地150m 2,则绿色环境面积还占总面积的40%;政府又鼓励其他有积蓄的农户到规划区域建房,这样又有20户农户加入建房,若仍以每户占地150m 2计算,则这时绿色环境面积又只占总面积的15%,为了符合规划要求,又需要退出部分农户. 问:(1)最初需搬迁建房的农户有多少户?政府规划的建房区域总面积是多少m 2? (2)为了保证绿色环境占地面积不少于区域总面积的20%,至少需退出农户几户?5.某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A类年票比较合算.6.在车站开始检票时,有a(a>0)名旅客在候车室等候检查进站,检查开始后,仍有旅客继续前来排队检票进站,设旅客按固定的速度增加,检票口检票的速度也是固定的.若开放一个检票口,则需30分钟才可将排队等候检票的旅客全部检票完毕;若开放两个检票口,内只需10分钟便可将排队等候检票的旅客全部检票完毕;如果要在5分钟内将排队等候检票的旅客全部检票完毕,以使后来到站的旅客能随到随检,至少要同时开放几个检票口?参考答案中考佳题自测:1.设从甲地到乙地的路程大约是xkm,依题意得16<10+1.2(x-5)≤17.2 解得10<x ≤11.2.设租大船x 只,小船y 只,则5x+3y=48 得y=16-35x 又 x ≥0 ,y ≥0 得0≤x ≤548费用A=3x+2y=3x+2(16-35x)=32-31x ∴当x=9时, A 最小为29故最佳方案是租大船9只,租小船1只.3.设招聘甲种工种的工人x 人,则招聘乙种工种的工人为(150-x)人, 依题意得150-x ≥2x 解得x ≤50于是0≤x ≤50; 设所聘请的工人共需付月工资y 元,则有y=600x+1000(150-x)=-400x+150000 易知x=50时,y 最小=130000 此时乙种工种的工人为150-x=100(人). 中考新题演练:1.设最多降x 元售出此商品,由题意得100010001500--x ≥5% 得x ≤450 故x 取450元2.设该植物种在海拔高度为x 米为宜,由题意得18≤22-100x ·0.5≤20 得400≤x ≤8003.设商场将A 型冰箱打x 折出售,则消费者购买A 型冰箱需耗资 2190×10x +365×10×1×0.4(元) ; 购买B 型冰箱需耗资2190(1+10%)+360×10×0.55×0.4(元) 依题意得2190×10x +365×10×1×0.4≤2190×(1+10%)+365×10×0.55×0.4解得x ≤8因此,商场应将A 型冰箱至少打八折出售,消费者购买才合算.4.(1)设最初需搬迁建房的农户有x 户,政府规划的建房区域总面积为ym 2,则有 15040%150(20)15%x y y x y y+=⎧⎨++=⎩, 解得4812000x y =⎧⎨=⎩(2)设至少需退出z 户,则有12000-150(68-z)≥12000×20% 解得z ≥4. 5.(1)因为80<120,所以不可能选A 类年票 若选B 类年票,则1024080=-(次); 若选C 类年票,则1334080=-(次);若不购买年票,则81080=(次).所以计划用80元花在该园林的门票上时,选择购买C 类年票的方法进入园林的次数最多,为13次.(2)设至少超过x 次时,购买A 类年票比较合算,则有不等式组602120403120x x +>⎧⎨+>⎩, 解得 302263x x >⎧⎪⎨>⎪⎩其公共解集为x>30.所以一年中进入该园林至少超过30次时,购买A 类年票比较合算.6.设至少要同时开放n 个检票口,且每分钟旅客进站x 人、检票口检票y 人,依题意得 303010210a x ya x y+=⎧⎨+=⨯⎩解得n ≥3.5 ∵n 只能取整数, ∴n=4. a+5x ≤5ny。

排列组合的21种例题

高考数学复习解排列组合应用题的21种战略之马矢奏春创作排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不容易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题战略.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素介入排列.例右边,那么分歧的排法种数有A、60种B、48种C、36种D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素拔出上述几个元素的空位和两端.例 2.七人并排站成一行,如果甲乙两个必须不相邻,那么分歧的排法种数是A、1440种B、3600种C、4820种D、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须坚持一定的顺序,可用缩小倍数的方法.例A、24种B、60种C、90种D、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A、6种B、9种C、11种D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例 5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,分歧的选法种数是A、1260种B、2025种C、2520种D、5040种(2)12名同学分别到三个分歧的路口进行流量的调查,若每个路口4人,则分歧的分配方案有ABC D、6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则分歧的保送方案有多少种?(2)5本分歧的书,全部分给4个学生,每个学生至少一本,分歧的分法种数为A、480种B、240种C、120种D、96种7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种分歧分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀结业生中选4人分别到西部四城市介入中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种分歧派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A、210种B、300种C、464种D、600种(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种分歧的参赛方案?11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

联系实际的应用题 1. 下列广告用语从化学角度看,没有科学性错误的是 A.“霸王”牌厕所清洁剂,能清除所有污秽 B.“雪山牌”矿泉水,真正的纯水 C.“大自然”牌茶叶,真正的“绿色”饮品,天然种植,不含任何元素 D.吸烟有害健康 2. 近来有研究报告称:除去“普通水”里含有的氮气和氧气后,水的去污能力将大为加强。对此的下列理解不正确的是 A、“普通水”含有氧分子 B、除去氧气后的水不再含有氧元素 C、“普通水”含有氮分子 D、氮气和氧气在水中有一定的溶解性 3. 洗脸的毛巾用久后,常常会变硬。这是因为用于洗脸的水中常含有较多的 A 、氧气 B、钙镁化合物 C、氧元素 D、氢元素 4. 善于梳理化学知识,能使你头脑更聪明。以下完全正确的一组是

A 物质的性质与用途 B 安全常识 N2性质稳定——可作灯泡填充气 乙醇具有可燃性——可作燃料 石墨很软——可作电极 假酒中毒——由甲醛引起 煤矿爆炸——由瓦斯引起 假盐中毒——由NaNO2引起

C 元素与人体健康 D 日常生活经验 缺维生素C——易引起坏血病 缺钙——易骨质疏松或得佝偻病 缺碘——易甲状腺肿大 食品干燥剂——常用CuO 区别硬水与软水——常用肥皂水检验 是煤燃烧更旺——把煤作成蜂窝状 5. 根据所学化学知识,判断下列说法中正确的是 A.加碘食盐中的“碘”通常是指碘单质 B.铝是不活泼金属,所以铝制器具不易锈蚀 C.可用氢氧化钠改良酸性土壤 D.可用纯碱替代洗洁净洗涤餐具表面的油污 6. 下列说法中,不正确...的是

A.人体中重要的供能营养素有:蛋白质、油脂、微量元素 B.日常生活中用得较多的合成材料有:合成塑料、合成纤维、合成橡胶 C.农业生产中主要的化学肥料有:氮肥、磷肥、钾肥 D.工业上去除油污的方法有:汽油擦洗、洗涤剂清洗、烧碱溶液洗涤 7. 你经常做家庭小实验吗?根据你的经验,下列家庭小实验不能成功....的是 A.用食盐水浸泡菜刀除去表面的锈斑 B.用铜丝等材料探究铜生锈的条件 C.用碳酸饮料做二氧化碳性质实验 D.用电池“锌皮”与食醋反应制氢气 8. 下列常见的医用溶液中,溶剂不是..水的是

A.葡萄糖注射液 B.生理盐水 C.消毒酒精 D.碘酒 9.下列物质的用途是利用其化学性质的是 A.稀有气体用于霓虹灯 B.金属铝制易拉罐 C.碳酸氢钠用于焙制糕点 D.铜线用于制电缆 10. 做馒头时要在发酵好的面团中加食用碱,以便产生气体使馒头疏松多孔,面团在发酵过程中产生的物质的酸碱性是: A.酸性 B.碱性 C.中性 D.无法判断 11. “以崇尚科学为荣,以愚昧无知为耻”。下列叙述缺乏科学依据的是 A.不能用工业酒精勾兑饮用酒 B.用纯碱可除去面团发酵产生的酸 C.加碘食盐的“碘”是指碘元素 D.小孩经常咬铅笔芯,会导致铅中毒 12. 合理使用化肥,有利于农作物的生长和减少环境污染。下列有关化肥的说法不正确的是 A.为保证高产尽量多施用化肥 B.不能将氯化铵与碱性物质混合施用 C.KNO3是一种常用的复合肥料 D.提倡将农家肥与化肥综合使用 13. 分析表中的数据,以下看法不可取的是

溶液种类 生理盐水 人体血液 30亿年前原始海水 含盐质量分数 0.9% 0.9% 0.9%

A. 生理盐水是依据人体血液的特点配制的 B. 表中三种溶液的含盐质量分数均为0.9%纯属巧合 C. 人类祖先可能是从原始海洋逐渐进化到陆地上的 D. 人体血液与原始海水之间可能有某些尚未认识的关系 14. 市场上有一种俗称“摇摇冰”的罐装饮料,在饮料罐的夹层中分别装入一种固体物质和水,饮用前摇动使它们混合,罐内饮料温度就会降低。这种固体物质可能是 A、生石灰 B、烧碱 C、食盐 D、硝酸铵 15. 以下饮料和食品中,属于溶液的是 A、豆浆 B、果酱 C、矿泉水 D、牛奶 16. 市场上有一种加酶洗衣粉,衣物上的汗渍、血迹及人体排放的蛋白质油渍遇到这种加酶洗衣粉都能被分解而除去。下列衣料①羊毛织品;②棉织品;③化纤布料;④蚕丝织品。其中不宜用加酶洗衣粉洗涤的是 A.①② B.③④ C.①④ D.②③ 17. 小刚检测一包食盐是否是加碘食盐(加碘食盐中的碘元素是以碘酸钾KIO3的形式存在)。他查阅资料得知加碘食盐中的KIO3在酸性条件下能与KI溶液发生反应生成碘(I2),I2遇淀粉变蓝色。现提供下列试剂和生活中常见的物质:①米汤②纯碱③KI溶液④白糖⑤白酒⑥白醋。该同学进行检验必须选用的试剂和物质是 A、①③④ B、①③⑥ C、②④⑥ D、①④⑤ 18.“春蚕到死丝方尽”。这里“丝”的主要成分是 A.塑料丝 B.维生素 C.蛋白质 D.油脂 19.关于生活中的洗涤问题说法不正确的是 A.汽油可溶解衣服上的油渍 B.自来水可洗掉自行车上的铁锈 C.盐酸可洗去石灰水瓶上的白色物质 D.厨房洗涤剂可使餐具上的油污乳化 20.人类生活需要热量,下列热量主要由化学变化产生的是 A.物体间相互摩擦产生的热量 B.木炭燃烧放出的热量 C.白炽灯炮通电放出的热量 D.太阳能热水器中的水所吸收的热量 21.食品安全问题令人非常关注。下列食物不会危害人体健康的是 A.霉变的花生和大米 B.用甲醛浸泡的海产品 C.用鲜牛奶制成的酸奶 D.用工业用盐(NaNO2)腌制的泡菜 22.有关生活中化学知识的说法错误..的是 A.钙是人体中含量最多的金属元素 B.蛋白质、油脂、糖类是人体所需要的营养素 C.塑料、合成纤维和合成橡胶是重要的有机合成材料 D.化肥、农药可以提高农作物的产量,应提倡大量使用

23.在学过的化学知识中,有些物质“名不符实”。下列说法错误的是 A.“纯碱”不是碱 B.“醋酸”不是酸 C.“水银”不是银 D.“干冰”不是冰 24.下列对一些事实的解释中,不合理的是 事实 解释 A 盛夏,昆明湖畔,荷香四溢 分子在不停运动 B 加压条件下,石油气液化后体积变小 加压条件下,分子的体积都变小 C 水在通电条件下,可分解为氧气和氢气 化学反应中分子是可分的 D 盐酸、稀硫酸都能使紫色石蕊变红 盐酸、稀硫酸中都含有大量的H+ 25.环境问题已成为制约社会发展和进步的严重问题。下列有几种说法: ①臭氧层的主要作用是吸收紫外线;②温室效应将导致全球气候变暖;③酸雨主要是由含硫的氧化物和氮的氧化物污染所致;④汽车排放的尾气会造成空气污染。 其中正确的是 A.①② B.②③ C.①②③ D.①②③④ 26.下列有关能源的认识错误的是 A.开发新能源可解决能源短缺问题 B.乙醇汽油的使用可以节省石油资源 C.化石燃料在地球上的蕴藏量是有限的 D.使用天然气不会对环境造成任何污染 27.某化工厂发生硫酸泄漏事故。为减少对环境的污染,可在硫酸上喷洒的一种化学物质是 A.食盐 B.干冰 C.熟石灰 D.硫酸铜 28.科学家预言,未来理想的燃料可取自绿色植物,可把植物中的纤维素用适当的催化剂与水作用生成葡萄糖(C6H12O6),再在催化剂作用下,使葡萄糖分解为X和二氧化碳,

X即是一种理想的燃料。反应的化学方程式为:C6H12O6 2X + 2CO2 ,则X是 A.CH4 B.CH3OH C.C2H5OH D.CH3COOH 29.下列关于铁的说法正确的是 A.钢是很纯的铁 B.生铁是含少量碳的铁合金 C.炼铁的过程是把单质铁变成氧化铁 D.被腐蚀的铁制品属于不可回收垃圾

30.馒头遇碘会变成蓝色,其实馒头遇到固态碘、碘溶液、碘蒸气都能变成蓝色(碘是由碘分子构成的)。这一现象说明 A.分子是构成物质的一种粒子 B.原子是化学变化中的最小粒子 C.分子是保持物质化学性质的最小粒子 D.化学变化中分子可以分解成原子 31. 请写出含有硫元素的常见单质、氧化物、酸、和盐的化学式...各1个。 、 、 、 。 32.从C、H、O、Na、Ca五种元素中,选择适当的元素组成符合下列要求的物质,并用物质的化学式...填空: (1)人体中含量最多的物质是 ; (2)可用于制肥皂、造纸的碱是 ; (3)家用食醋中,显酸性的有机物是 ; (4) 常用来改良酸性土壤的碱 ; (5) 可用作补钙剂的盐 ; (6)发酵粉的主要成分____________。 33.在“氮气、一氧化碳、黄铜、苛性钠、过磷酸钙、氯化钠”中选择合适的物质填空: (1)可用于炼铁的是 ; (2)在医疗上配制“生理盐水”的是 ; (3)常用作磷肥的是 ; (4)充入食品包装袋中防腐的是 ; (5)用于制造机器零件、仪表的是 ; (6)能去除油污,可做厨房清洁剂的是 。 34.世界是物质的,物质是由各种化学元素组成的,请你写出下列物质的化学式...:

(1)“西气东输”工程中输送的气体是 ; (2)水银不是银,是一种金属的俗称,这种金属是 ; (3)既可用来消毒杀菌,又可用来改良酸性土壤的碱是 ; (4)常用来配制波尔多农药的胆矾称蓝矾,这种矾是 。 (5)目前,城市公交系统的清洁燃料车使用的天然气的主要成分__________; (6)是一种有毒的气体,但可用于铁的冶炼____________; (7)生活中用来腌制食品、常用的调味剂___________; 35.食盐、酒精、水、生石灰、食醋是生活中常见的物质,请按下列要求填空。 (1)鉴别酒精和水,最简便可行的方法是 。 (2)以上物质中,可用于清除水垢的是 ;可用作食品干燥剂的是 ;可用作调味剂和防腐剂的是 。 36.在工农业生产和日常生活中,化学物质具有广泛的用途。 请用下列物质的化学式...选择填空:氦气、氮气、氧化钙、盐酸、硫酸亚铁。

⑴可用来替代氢气作为探空气球的稀有气体是 ; ⑵少量存在于人体胃液中,可帮助消化的物质___________; ⑶可用于治疗缺铁性贫血的药物是 ; ⑷为防止食品受潮,在其包装袋中放入一小袋干燥剂,这种干燥剂是 。

相关文档
最新文档