化工原理课程设计苯与甲苯精馏塔
化工原理课程设计-苯-甲苯精馏塔设计

资料前言化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。
在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。
化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和部分冷凝达到轻重组分分离的方法。
塔设备一般分为阶跃接触式和连续接触式两大类。
前者的代表是板式塔,后者的代表则为填料塔。
筛板塔和泡罩塔相比较具有下列特点:生产能力大于10.5%,板效率提高产量15%左右;而压降可降低30%左右;另外筛板塔结构简单,消耗金属少,塔板的造价可减少40%左右;安装容易,也便于清理检修。
本次课程设计为年处理含苯质量分数36%的苯-甲苯混合液4万吨的筛板精馏塔设计,塔设备是化工、炼油生产中最重要的设备之一。
它可使气(或汽)液或液液两相之间进行紧密接触,达到相际传质及传热的目的。
在设计过程中应考虑到设计的精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。
节省能源,综合利用余热。
经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。
另一方面影响到所需传热面积的大小。
即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。
目录第一章绪论 (1)1.1 精馏条件的确定 (1)1.1.1 精馏的加热方式 (1)1.1.2 精馏的进料状态 (1)1.1.3 精馏的操作压力 (1)1.2 确定设计方案 (1)1.2.1 工艺和操作的要求 (2)1.2.2 满足经济上的要求 (2)1.2.3 保证安全生产 (2)第二章设计计算 (3)2.1 设计方案的确定 (3)2.2 精馏塔的物料衡算 (3)2.2.1 原料液进料量、塔顶、塔底摩尔分率 (3)2.2.2 原料液及塔顶、塔底产品的平均摩尔质量 (3)2.2.3 物料衡算 (3)2.3 塔板计算 (4)2.3.1 理论板数NT的求取 (4)2.3.2 全塔效率的计算 (6)2.3.3 求实际板数 (7)2.3.4 有效塔高的计算 (7)2.4 精馏塔的工艺条件及有关物性数据的计算 (8)2.4.1 操作压力的计算 (8)2.4.2 操作温度的计算 (8)2.4.3 平均摩尔质量的计算 (8)2.4.4 平均密度的计算 (10)2.4.5 液体平均表面张力的计算 (11)2.4.6 液体平均黏度的计算 (12)2.4.7 气液负荷计算 (13)2.5 塔径的计算 (13)2.6 塔板主要工艺尺寸的计算 (15)2.6.1 溢流装置计算 (15)2.6.2 塔板布置 (18)2.7 筛板的流体力学验算塔板压降 (19)2.7.1 精馏段筛板的流体力学验算塔板压降 (19)2.7.2 提馏段筛板的流体力学验算塔板压降 (21)2.8 塔板负荷性能图 (23)2.81 精馏段塔板负荷性能图 (23)2.82 提馏段塔板负荷性能图 (26)第三章设计结果一览表 (30)第四章板式塔结构 (31)4.1 塔顶空间 (31)4.2 塔底空间 (31)4.3 人孔 (31)4.4 塔高 (31)第五章致谢 (34)参考文献 (35)第一章绪论1.1 精馏条件的确定本精馏方案适用于工业生产中苯-甲苯溶液二元物系中进行苯的提纯。
苯—甲苯精馏塔设计化工原理课程设计书

苯—甲苯精馏塔设计_化工原理课程设计书化工原理课程设计书苯—甲苯精馏塔设计目录(一)化工原理设计任务书 (3)(二)概述 (4)一、精馏基本原理 (4)二、设计方案的确定 (4)(三)塔工艺计算 (5)一、精馏塔物料衡算 (5)二、塔板数确定 (5)三、精馏塔的工艺条件及有关物性数据的计算 (7)四、精馏塔的塔体工艺尺寸设计 (11)五、塔板主要工艺尺寸计算 (12)六、筛板的流体力学验算 (14)七、塔板负荷性能图 (17)八、设计结果一览表 (23)(四)辅助设备的设定 (24)(五)设计评述心得 (25)(六)参考书目及附表 (25)(一)化工原理设计任务书一、设计名称:苯-甲苯精馏塔设计二、设计条件:在常压连续精馏塔中精馏分离含苯35%(质量%,下同)的苯-甲苯混合液,要求塔顶流出液中苯的回收率为97%,塔底釜残液中含苯不高于2%。
处理量:17500 t/a,料液组成(苯质量分数):35%,塔顶产品组成(质量分数):97%,塔顶易挥发组分回收率:99%,每年实际生产时间:300天三、设计任务完成精馏塔的工艺设计,有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配图,编写设计说明书。
四、基础数据或其他操作条件所需数据自己查阅资料或根据资料确定五、设计说明书内容1 目录2 概述(设计方案的确定和流程说明、精馏基本原理等)3.塔的物料恒算、塔板数的确定、塔的工艺条件及有关物性数据的计算;4.塔和塔板的主要工艺尺寸的设计:(1)塔体工艺尺寸的计算;(2)塔板主要工艺尺寸的计算;(3)塔板的流体力学验算;(4)塔板负荷性能图。
5.设计结果概要或设计一览表6.辅助设备的选型——对再沸器进行设计,对预热器进行选型7.参考文献8.对本设计的评述或有关问题的分析讨论。
(二)概述一、精馏基本原理精馏操作就是利用液体混合物在一定压力下各组分挥发度不同的性质,在塔内经过多次部分汽化与多次部分冷凝,使各组分得以完全分离的过程。
化工原理课程设计--苯-甲苯连续筛板式精馏塔的设计

0.0045
0.458
0.472
0.489
0.503
由上表数据可作出漏液线1
3.6.2 液沫夹带线
以 为限,求出 关系如下:
由
精馏段:
,
整理得:
在操作范围内,任取几个 值,依上式计算出 值
表2-4
0.0006
0.0015
0.0030
0.0045
2.457
2.362
2.24
2.138
提馏段:
提馏段:
板上不设进口堰,
故在本设计中不会发生液泛现象
3.6.1
由
,
得
精馏段:
=
在操作线范围内,任取几个 值,依上式计算出
表2-2
0.0006
0.0015
0.0030
0.0045
0.564
0.579
0.598
0.613
提馏段:
=4.870
操作线范围内,任取几个 值,依上式计算出
表2-3
0.0006
0.0015
对于进料: =93.52℃
得:
又
精馏段平均相对挥发度:
提馏段平均相对挥发度:
由液体平均粘度公式: 可求得不同温度下苯和甲苯的粘度
对于苯(A),其中 , 即:
当 ℃时,
当 ℃时,
对于甲苯(B),其中 , 即:
当 ℃时,
当 ℃时
又精馏段的液相组成:
提馏段的液相组成:
精馏段平均液相粘度:
提馏段的平均液相粘度:
塔设备是化工、炼油生产中最重要的设备类型之一。本次设计的筛板塔是化工生产中主要的气液传质设备。此设计针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程,该设计方法被工程技术人员广泛的采用。
苯和甲苯精馏塔课程设计

苯和甲苯精馏塔课程设计一、引言在化工工艺中,精馏是一种常用的方法,用于将混合物中的不同组分分离。
在本课程设计中,我们将研究苯(C6H6)和甲苯(C7H8)的精馏过程。
苯和甲苯都是重要的化工原料,在许多工业领域有广泛的应用。
本文将从以下几个方面对苯和甲苯精馏塔进行课程设计:1.塔板设计2.塔顶和塔底的操作条件3.塔的热力设计4.塔的操作优化二、塔板设计苯和甲苯的分离需要高效的塔板设计。
塔板是精馏塔中的一个关键部件,用于增加气液接触面积,实现组分的分离。
在塔板设计中,需要考虑以下几个因素:1.塔板间距:塔板间距的选择应考虑到塔内液相流动的良好性,通常为0.5-1.0米。
2.塔板孔径:塔板孔径的选择需要满足固液分离要求,并尽可能减小液体在孔中的停留时间。
通常为2-5毫米。
3.塔板孔位:塔板孔位的布置应使液体能均匀地流过塔板,并实现气液混合。
常见的孔位布置有正交孔位和方孔位。
4.塔板活性高度:塔板活性高度的选择应满足组分分离的要求,并考虑到不同塔板间液位的变化。
三、塔顶和塔底的操作条件在塔顶和塔底的操作条件设计中,我们需要确定适当的温度和压力,以便实现苯和甲苯的分离。
1.塔顶:在塔顶,通过降低温度和增加压力,可以将甲苯从苯中分离出来。
一般情况下,塔顶的温度应低于塔底的温度,以保证甲苯的净蒸发。
同时,通过适当的塔顶压力调节,可以控制甲苯的回流比例。
2.塔底:在塔底,苯和甲苯的混合物会进行分馏。
通过增加温度和降低压力,可以将苯从甲苯中分离出来。
塔底的温度应高于塔顶的温度,以保证苯的净蒸发。
同时,通过适当的塔底压力调节,可以控制苯的回流比例。
四、塔的热力设计塔的热力设计是保证苯和甲苯精馏效果的关键。
在热力设计中,需要考虑以下几个方面:1.热稳定性:苯和甲苯在精馏塔中的热稳定性要求较高,避免产生不稳定的产物,影响产品质量。
2.能量平衡:通过热交换器对塔内液体和气体进行能量平衡,提高塔的热效率。
3.冷却方式:选择合适的冷却方式,如水冷却或气冷却,以控制塔顶和塔底的温度。
化工原理课设精馏塔设计-苯和甲苯

前言塔设备的工作原理是通过内部结构使气液两相或液液之间充分接触,实现质量传递和热量传递。
它是一种重要的单元操作设备,在石油化工、炼油、医药及环境保护等工业部门应用广泛。
蒸馏装置包括精馏塔,原料预热器,蒸馏釜(再沸器),冷凝器,釜液冷却器和产品冷却器等设备。
蒸馏过程按操作方式的不同,分为连续蒸馏和间歇蒸馏两种流程。
连续蒸馏具有生产能力大,产品质量稳定等优点,工业生产中以连续蒸馏为主。
间歇蒸馏具有操作灵活、适应性强等优点,适合于小规模、多品种或多种组分物系的初步分离。
本设计主要内容,主要是工艺设计部分,塔板的类型和选择、操作压力的选择、精馏塔的物料衡算、确定塔高、塔径、理论塔板数、全塔效率、塔顶及塔底产品的预分配、溢流装置的设计、塔板流体力学验算、气相通过筛板塔的压强降等。
本次设计的题目是苯——甲苯连续精馏塔的工艺设计,选用筛板式塔。
此塔具有生产能力较大、操作弹性大、液面落差也较小、压力降小、结构简单、造价低等特点,发展前途广泛,主要应用于石油、化工、轻工、医药及环境保护等领域。
目录第1章设计方案的论证 (1)1.1 装置流程的确定 (1)1.2操作压力的选择 (1)1.3进料状况和加热方式的选择 (1)1.4回流比的选择 (2)1.5塔板的类型和选择 (2)第2章精馏塔设计任务书 (2)2.1.设计题目 (2)2.2.工艺条件 (2)2.3.设计内容 (3)2.4.设计结果总汇 (3)2.5.参考文献 (3)第3章设计计算 (4)3.1.精馏流程的确定 (4)3.2塔的物料衡算 (4)3.2.1 进料液及塔顶塔底产品的摩尔分数 (4)3.2.2 平均摩尔质量 (4)3.2.3 物料衡算 (4)3.3塔板数的确定 (5)的求法 (5)3.3.1 理论板NT3.3.2 全塔效率 (7)3.4塔工艺条件及物性数据计算 (7)3.4.1精馏段操作压力 (7)3.4.2操作温度 (8)3.4.3平均摩尔质量计算 (9)3.4.4 平均密度计算 (9)3.4.5 液体平均表面张力........................... 错误!未定义书签。
苯和甲苯精馏塔课程设计

苯和甲苯精馏塔课程设计简介本文旨在介绍苯和甲苯精馏塔的设计方案。
苯和甲苯是工业上重要的有机化学物质,它们的精馏分离是工业上的常见操作。
本文将介绍苯和甲苯的物性参数、塔设计流程以及模拟计算过程。
物性参数苯的密度为 1.045g/cm³,沸点为80.1℃,甲苯的密度为0.867g/cm³,沸点为139.1℃。
对于本设计,需要知道苯和甲苯的汽液平衡常数和相对挥发度。
汽液平衡常数是指在一定温度下,液相和气相中物质浓度的比例关系,它是塔设计的关键参数。
相对挥发度则是指两种组分在液相中的蒸气压比值,是计算汽液平衡常数的必要参数。
塔设计流程苯和甲苯的精馏分离可以采用塔式设备,它是一种常见的分离设备。
塔设计的流程分为以下几个步骤:1. 确定进料组成和塔顶组成。
这是塔设计的基础,进料组成和塔顶组成决定了塔的操作条件和输出产品的质量。
2. 估算塔的理论板数。
理论板数是指在理想状态下,需要多少个塔板才能完成分离。
估算理论板数是塔设计的关键步骤,它涉及物性参数和操作条件。
3. 选择填料类型和填料高度。
填料是塔内部的一种结构,它能够增加液相和气相之间的接触面积,从而增加精馏效率。
填料的选择和高度决定了塔的性能。
4. 确定塔的尺寸。
塔的尺寸包括直径、高度和塔板间距等参数。
这些参数是根据填料类型、操作条件和理论板数等因素来确定的。
5. 进行塔的模拟计算。
模拟计算是为了验证前面步骤中的估算和选择是否正确。
模拟计算可以通过计算机程序或实验来进行。
模拟计算苯和甲苯的精馏塔设计需要进行模拟计算,以验证前面步骤中的估算和选择是否正确。
模拟计算可以通过计算机程序或实验来进行。
在计算机程序中,可以采用化工流程模拟软件来进行塔设计。
这些软件可以模拟塔的运行过程,包括传热、传质和反应等过程。
通过这些软件,可以得到塔的操作条件和输出结果。
在实验中,可以采用塔的模型进行实验。
塔的模型是一种缩小的实验装置,它可以模拟塔的运行过程。
化工原理课程设计苯与甲苯精馏塔

化工原理课程设计:苯与甲苯精馏塔简介本文主要探讨化工原理课程设计中的苯与甲苯精馏塔。
通过对苯和甲苯进行精馏分离,我们可以获得纯度较高的苯和甲苯产品。
在本文中,我们将从以下几个方面展开讨论:1.背景和目的2.设计流程3.塔设计4.精馏原理5.实验操作6.结果和讨论背景和目的苯和甲苯是常用的工业化学品,广泛应用于加工、涂料、塑料等行业。
苯和甲苯在某些工艺中需要纯度较高,因此需要进行精馏分离。
本课程设计旨在设计一个能有效分离苯和甲苯的精馏塔。
设计流程为了设计一个合适的苯与甲苯精馏塔,我们需要进行以下几个步骤:1.确定原料2.确定塔的类型和结构3.进行塔的热力学计算4.进行实验验证塔设计塔是精馏过程中最关键的组件之一,它可以通过蒸汽冷凝回收馏分。
在苯和甲苯的精馏中,一般采用板式塔。
塔类型在板式塔中,我们可以选择不同的塔类型,如:•始料塔•落料塔•浓差塔•强化塔塔结构塔的结构包括:1.塔筒:用于装载填料或板2.助塔装置:用于改善塔内气液分布精馏原理精馏是利用不同物质的沸点差异进行分离的过程。
在苯与甲苯的精馏过程中,由于苯和甲苯的沸点差异较大,可以有效地进行分离。
实验操作进行苯与甲苯精馏的实验时,我们需要注意以下几个操作步骤:1.准备好实验所需设备和试剂2.开启冷却水,确保设备冷却3.将苯和甲苯加入精馏塔中4.开启加热源,控制温度5.收集馏出的苯和甲苯样品结果和讨论通过实验操作,我们可以得到苯和甲苯的纯度和收率。
根据实验结果,我们可以评估精馏塔的效果,并对塔的设计进行改进。
在进行课程设计时,我们要求学生深入了解苯与甲苯的精馏原理,并通过实验进行验证。
此外,在设计塔的结构和操作过程时,也需要考虑到实际工业生产的要求。
通过本次课程设计,学生不仅能够更好地理解化工原理,还能够培养实验操作和实际问题解决能力。
这对于他们将来的工作和研究具有重要意义。
总结起来,本文对苯与甲苯精馏塔的设计和实验操作进行了详细的讨论。
从背景和目的到实验结果和讨论,我们提供了一个全面的指导,希望能对读者有所帮助。
苯和甲苯精馏塔课程设计

苯和甲苯精馏塔课程设计一、引言苯和甲苯是两种常见的有机化合物,在工业生产中广泛应用。
为了提高产率和纯度,需要进行精馏分离。
本文将介绍苯和甲苯精馏塔的设计过程。
二、设计目标1. 提高产率:通过精馏分离,提高苯和甲苯的产率;2. 提高纯度:使得分离后的苯和甲苯纯度达到要求。
三、设计流程1. 确定塔型:选择板式塔或填料塔;2. 确定操作压力:根据组成和沸点差确定操作压力;3. 确定板数或填料高度:根据理论计算确定板数或填料高度;4. 确定进料位置:在塔的上部或下部进料;5. 确定回流比:根据经验确定回流比;6. 确定冷凝器类型:选择直接冷凝器或间接冷凝器。
四、详细设计过程1. 塔型选择根据实际情况,我们选择了板式塔。
板式塔结构简单,易于维护,适用于小规模生产。
2. 操作压力确定根据苯和甲苯的沸点差,我们确定了操作压力为1 atm。
3. 板数或填料高度确定根据理论计算,我们确定了塔的板数为10个。
每个板的高度为0.5 m。
4. 进料位置确定我们选择在塔的下部进料,以便更好地控制进料速度和分离效果。
5. 回流比确定根据经验,我们选择回流比为2:1。
6. 冷凝器类型选择考虑到成本和维护难度,我们选择了直接冷凝器。
五、设计结果通过以上设计过程,我们得到了苯和甲苯精馏塔的具体参数:1. 塔型:板式塔;2. 操作压力:1 atm;3. 板数:10个;4. 进料位置:下部进料;5. 回流比:2:1;6. 冷凝器类型:直接冷凝器。
六、结论通过本次课程设计,我们成功地设计出了苯和甲苯精馏塔,并得到了具体的参数。
在实际生产中,需要根据实际情况进行调整和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理课程设计苯与甲苯精馏塔
本文将针对化工原理课程设计,探讨苯与甲苯精馏塔的工艺设计。
一、工艺流程
苯与甲苯精馏塔的工艺流程如下:苯与甲苯混合物在进入塔后,首先
通过反应塔抽收制冷剂进行冷却,从而达到冷却效果,然后通过塔顶进入
预分离器进行处理,将其中的气相成分与液相成分分离,剩余的液相通过
进料口进入塔体,反复上升和下降,与上部的气相进行平衡沸腾,不断提
高纯度,最后在顶部凝结出高纯度的甲苯。
二、设计考虑因素
1.塔型
塔型应根据生产规模和成本考虑。
一般而言,小型的塔型适合处理小
流量、高品质的混合物,而大型的塔型则适合处理大流量、低品质的混合物。
2.动力学参数
在设计苯与甲苯精馏塔时,要考虑动力学参数,如液相和气相的流速、物料的热量传递效应等等。
这些参数将直接影响塔的效率和产品品质。
3.填料和操作条件
由于苯与甲苯混合物具有一定的粘度和密度差异,因此应在填料和操
作条件上进行制约,以避免不同成分之间发生混合或分离出现问题。
三、设计基础
1.填料设计
填料是苯与甲苯精馏塔的重要组成部分,是决定塔效率和塔高的关键
因素。
填料材料应具有良好的性能,如高效的传质、良好的气体液体接触、稳定的抗攻击性等等。
常见的填料材料有氧化铝、陶瓷、合金等。
2.除塔器设计
除塔器是苯与甲苯精馏塔的一个重要设计组成部分。
它的主要作用是
在塔底处收集返回的液相,防止溢出和保持塔内的可控性。
除塔器的设计
应根据填料类型、流量、操作温度和压力等多个因素进行综合考虑,以确
保塔的正常运行。
3.塔底设计
塔底是苯与甲苯精馏塔的重要组成部分,主要用于收集精馏出的液态
产品。
由于反应塔存在高温、高压等因素,因此需要考虑塔底的材料和设计。
常见的材料有碳钢、不锈钢、合金等。
此外,塔底还应配备可靠的排
放和泄压装置,以确保塔的安全性。
四、结论
苯与甲苯精馏塔是一种常见的化工装置,其设计应考虑多种因素,如
塔型、填料、动力学参数等等。
从而确保塔的高效、稳定和可靠性。