同济大学混凝土桥预应力钢束设计解析
同济大学土木工程第十一章混凝土结构的设计方法和理念

同济⼤学⼟⽊⼯程第⼗⼀章混凝⼟结构的设计⽅法和理念第⼗⼀章混凝⼟结构的设计⽅法和理念⼀、计算理论⼆、结构的鲁棒性三、建筑结构设计理论的发展四、结构极限状态的基本概念五、结构可靠度的基本概念六、近似概率法在设计规范中的应⽤七、传统设计理念的启⽰z钢筋混凝⼟结构的有限元分析⽅法钢筋混凝⼟有限元法中,针对钢筋与混凝⼟两种材料组合特点、裂缝形成和扩展的特点,需要研究的主要问题有:①混凝⼟的破坏准则;②混凝⼟的本构关系;③钢筋与混凝⼟之间的粘结关系;④钢筋的本构关系;⑤裂缝处理;⑥对于长期荷载,还要考虑材料的时效,主要是混凝⼟的徐变、收缩和温度特性。
钢筋混凝⼟结构的有限元分析与⼀般固体⼒学有限元分析相⽐,其特点是:①材料的本构关系;②有限元的离散化。
考虑这些特点的钢筋混凝⼟结构的有限元模型有:①分离式模型;②组合式模型;③整体式模型;④有限区模型。
z钢筋混凝⼟结构的极限分析对于板、壳、连续梁、框架结构的极限承载⼒,采⽤极限分析法直接求解,是⼀个发展⽅向,并已有较多成果,但需保证结构的正常使⽤(限制裂缝和变形)和薄壁结构与细长压杆的稳定性,以及防⽌脆性的剪切破坏和钢筋锚固失效。
z混凝⼟断裂⼒学在计算理论中,另⼀个值得注意的发展⽅向是混凝⼟断裂⼒学在⽔⼯⼤坝中的应⽤。
z混凝⼟的收缩与徐变混凝⼟收缩与徐变的研究⼀直是混凝⼟计算理论中的⼀个重要⽅⾯,对⽔⼯混凝⼟及预应⼒混凝⼟的计算理论影响甚⼤。
我国⽔利⽔电科学研究院多年来进⾏了系统的研究,出版了专著《混凝⼟的收缩》和《混凝⼟的徐变》,对影响混凝⼟收缩和徐变的因素,结合我国⼯程实际情况,提出了估算收缩的⽅法,介绍了六种徐变计算理论。
z⼯程结构可靠度⼯程结构包括混凝⼟结构,在设计、施⼯、使⽤过程中,事物具有种种影响结构安全性、适⽤性和耐久性的不确定性,这些不确定性⼤致可分为:①事物的随机性:荷载、材料等随机性②事物的模糊性:如“正常使⽤”与“不正常使⽤”,耐久性“好”、“良好”、“不好”之间⽆明确界限③信息的不安全性:部分信息已知的系统成为灰⾊系统,在⼯程结构设计中由于对情况认知不完全,或对决策者不能提供完备的信息,就会遇到灰⾊系统问题。
同济大学高等桥梁结构理论——混凝土箱梁桥实用精细化分析方法

(每块板的三层指标应力)
面外(反映局部荷载)
面内(反映整体荷载)
混混凝凝土土桥桥梁梁实实用用精精细细化化分分析析方方法法
桥梁结构的实用精细化分析模型
桥梁结构的实用精细化分析模型特点 实用性:可以直接联系配筋(相比块体单元) 精细化:拆解了空间效应(相比单梁模型)
一个箱梁截面的空间网格划分
混混凝凝土土桥桥梁梁实实用用精精细细化化分分析析方方法法
桥梁结构的指标应力
空间网格模型的指标应力
构件 箱梁顶板
箱梁底板 箱梁腹板
受力方向 纵向面外上缘 横向面外上缘 横向面外下缘 中间层面内 纵向面外下缘 横向面外上缘 横向面外下缘 中间层面内 中间层面内
应力特征 一维应力 一维应力 一维应力 二维应力 一维应力 一维应力 一维应力 二维应力 二维应力
混混凝凝土土桥桥梁梁实实用用精精细细化化分分析析方方法法
桥梁结构的实用精细化分析模型
腹板1
顶板
腹板2
腹板3
底板
一个箱梁截面的空间网格划分
混混凝凝土土桥桥梁梁实实用用精精细细化化分分析析方方法法
桥梁结构的实用精细化分析模型
箱梁截面的空间网格划分
混混凝凝土土桥桥梁梁实实用用精精细细化化分分析析方方法法
高等桥梁结构理论
混凝土桥梁 实用精细化分析方法
徐栋
同济大学桥梁工程系 二Ο一二年三月
主要内容
桥梁结构一些“经典概念”的探讨 桥梁结构的指标应力 桥梁结构的实用精细化分析模型
混混凝凝土土桥桥梁梁实实用用精精细细化化分分析析方方法法
桥梁结构一些“经典概念”的探讨
桥梁结构的三种主要空间效应 薄壁效应:直箱梁桥、弯箱梁桥 问题:超静定剪力流、约束扭转、翘曲的计算 各腹板的荷载分布:多腹板宽箱梁桥 问题: “影响面在纵横向有相似的图形”不成立 剪力滞效应:宽翼缘箱(T)梁桥、钢砼叠合梁桥 问题: “有效分布宽度”概念仅适用于简支窄梁(剪应 力为竖直方向)
同济大学混凝土实验——适筋梁设计方案-9页文档资料

同济大学混凝土实验——适筋梁设计方案小组成员:姓名:学号:姓名:学号:指导老师:任课教师:日期:适筋梁受弯性能试验方案适筋梁受弯破坏试验设计方案一、适筋梁受弯破坏过程:??当梁中纵向受力钢筋的配筋率适中时,梁正截面受弯破坏过程表现为典型的三个阶段。
第一阶段——弹性阶段(I阶段):当荷载较小时,混凝土梁如同两种弹性材料组成的组合梁,梁截面的应力呈线性分布,卸载后几乎无残余变形。
当梁受拉区混凝土的最大拉应力达到混凝土的抗拉强度,且最大的混凝土拉应变超过混凝土的极限受拉应变时,在纯弯段某一薄弱截面出现首条垂直裂缝。
梁开裂标志着第一阶段的结束。
此时,梁纯弯段截面承担的弯矩Mcr称为开裂弯矩。
第二阶段——带裂缝工作阶段(II阶段):梁开裂后,裂缝处混凝土退出工作,钢筋应力激增,且通过粘结力向未开裂的混凝土传递拉应力,使得梁中继续出现拉裂缝。
压区混凝土中压应力也由线性分布转化为非线性分布。
当受拉钢筋屈服时标志着第二阶段的结束。
此时梁纯弯段截面承担的弯矩My称为屈服弯矩。
第三阶段——破坏阶段(III阶段):钢筋屈服后,在很小的荷载增量下,梁会产生很大的变形。
裂缝的高度和宽度进一步发展,中和轴不断上移,压区混凝土应力分布曲线渐趋丰满。
当受压区混凝土的最大压应变达到混凝土的极限压应变时,压区混凝土压碎,梁正截面受弯破坏。
此时,梁承担的弯矩Mu称为极限弯矩。
适筋梁的破坏始于纵筋屈服,终于混凝土压碎。
整个过程要经历相当大的变形,破坏前有明显的预兆。
这种破坏称为适筋破坏,属于延性破坏。
二、实验目的:(1)通过实践掌握试件的设计、实验结果整理的方法。
(2)加深对混凝土基本构建受力性能的理解。
(3)更直观的了解适筋梁受弯破坏形态及裂缝发展情况。
(4)验证适筋梁破坏过程中的平截面假定。
(5)对比实验值与计算理论值,从而更好地掌握设计的原理。
三、实验装置:图1为本方案进行梁受弯性能试验采用的加载装置,加载设备为千斤顶。
采用两点集中力加载,以便于在跨中形成纯弯段。
演示文稿同济大学混凝土桥主梁截面几何特性计算

阶段1 主梁预制并张拉预应力1-6号钢束(小截面)
预制主梁砼达设计强度90%后,进
行1-6号钢束张拉,此时管道尚未压 浆, 故其对应的受力截面是扣除全 部预应力管道的小截面的净截面 承受的荷载:预制构件自重
第三页,共28页。
第二部份 主梁截面几何特性计算
阶段2 灌浆封锚,主梁吊装就位,现浇桥面板湿接头
一. 阶段一截面几何特性计算
第十三页,共28页。
• 小截面净截面图:
第二部份 主梁截面几何特性计算
第十四页,共28页。
管道面积
净截面形心轴 毛截面形心轴
• 计算公式:
• 净截面面积
第二部份 主梁截面几何特性计算
式中 ——小截面的毛截面面积
——预留管道面积
• 对梁下缘静矩
为束数 为管道直径(外径)
✓ 预应力砼梁在计算预加力引起的砼应力时,
预加力作为轴向力产生的应力可按 实际翼缘全宽计算
预加力偏心引起的弯矩产生的应力可按 翼缘有效宽度计算
第六页,共28页。
第二部份 主梁截面几何特性计算 ❖ 概念
在弯曲荷载作用下,按照平截面假定 ,弯曲正应力沿梁宽方向是均匀分布的。
第七页,共28页。
第二部份 主梁截面几何特性计算
——7号钢束重心至下缘距离
组合性截面形心轴
式中
——形心轴至下缘距离
——形心轴至上缘距离
——截面高度
第二十一页,共28页。
组合性截面惯性矩
第二部份 主梁截面几何特性计算
式中 ——小截面(考虑有效宽度)的毛截
面对其形心轴惯性矩
——1-6号钢束换算截面对其形心 轴惯性矩
——7号钢束预留管道截面对其形 心轴惯性矩
同济钢混组合桥梁设计指南

3.1 桥面板截面形式 ............................................55 3.2 梁端桥面板 ................................................57 3.3 桥面板板厚 ................................................58 3.4 配筋特点 ..................................................60 3.5 钢筋混凝土桥面板的设计计算方法 ............................62
目录
目录
第 1 章 总体设计 .......................................... 1
1.1 概要 .......................................................1 1.1.1 本指南适用范围 .......................................1 1.1.2 组合梁桥施工方法与受力特点 ...........................1 1.1.3 力学体系 .............................................2 1.1.4 连续组合梁桥负弯矩区措施 .............................3
1.2 横断面结构形式与布置 .......................................9 1.2.1 横断面结构形式 .......................................9 1.2.2 横断面布置 ..........................................11
同济大学《混凝土结构基本原理》第十章_预应力混凝土结构的受力性能

Apcon Apcon
Apcon
前期损失或第 一批损失
后期损失或第 二批损失
预应力损失值不宜笼统地估算,应予 分项计算,然后相加确定总的损失值
但各项预应力损失值又不是截然无关 的。试图求得各项预应力损失的“净 值”是很困难的。
五、预应力损失值
2. 管道摩擦损失l2
后张法中,张拉钢筋时,
钢筋在孔道中滑动,就
少l2
建议的张拉程序为
1.1con con 张拉端 0.85con
0
1.1con停2分钟
0.85con停2分钟
锚固端
锚固端
con
五、预应力损失值
3. 锚具变形和钢筋回缩损失l1
由于锚具、垫块本身的变形, 其间裂缝的压紧及钢筋在锚具 中的滑移引起的损失
l1
a l
Ep
张拉端锚具的变形 和钢筋的内缩值, 见教材表10-2
第十章 预应力混凝土结构的性能与计算
一、基本概念
1. 预应力混凝土的特点
*提高刚度和抗裂度
*减轻结构自重
*提高梁的抗扭和抗剪承载力,
加载
加载
但不提高抗弯承载力
*提高梁的抗疲劳承载力保护钢 筋免受大气腐蚀
一、基本概念
2. 先张法和后张法
张拉钢筋并在 台座上固定
浇注混凝土构件
混凝土强度达设计 强度的70%以上时 剪断钢筋
2. 锚具和夹具
粘结型锚具:利用构件端部预留锥形自锚孔的后浇混凝土锚固预应
力钢筋
3铅丝线圈
8箍筋
6~ 8螺旋筋
灌浆口(灌浆锚固)
预应力筋
ቤተ መጻሕፍቲ ባይዱ
二、施加预应力的方法
2. 锚具和夹具
承压型锚具:利用螺帽、垫板等的承压作用将预应力钢筋锚固在端
预应力钢束布置形式在混凝土曲线梁桥中受力性能分析

预应力钢束布置形式在混凝土曲线梁桥中受力性能分析摘要:预应力曲线梁桥是设计中的经常遇见的结构形式,本文主要从不同的钢束布置形式上对结构进行计算分析,从而对不同钢束布置产生的预应力效应对弯桥的受力、变形及支座反力等进行比较,并通过比较分析找出较适宜的预应力桥梁的配束方法。
关键词:弯梁桥预应力效应脱空现象弯-扭”耦合作用预应力钢筋混凝土曲线梁桥是桥梁工程,尤其是立交桥工程中经常出现和采用的一种结构形式,因其结构适应性强而得到广泛的应用。
本文拟通过一预应力曲线箱梁桥在结构配束上的比较,进一步分析不同钢束布置方式对结构扭矩及水平力等的影响。
从而来阐述预应力效应对曲线箱梁桥产生的效应。
1 基本参数(1)箱梁跨径:(30+30+30)m,边墩设双支座,横向间距为3m,中墩设单支)座,梁高1.6m,梁宽8m。
2.2 通长+顶底板束筋布置形式法部分预应力束筋纵向布置于箱梁腹板内并贯穿箱梁全长。
其余束筋根据截面正负弯矩变化在箱梁跨中布置顶板束筋,在中墩支点处布置箱梁底板束筋。
同样用MIDAS6.7建立实体梁单元进行分析,支座采用弹性连接。
2.3 两种不同配束法计算结果的比较通过以上两种束筋布置形式的计算,可以看出两种束筋布置形式对曲线箱梁桥产生的预应力效应及箱梁支座反力的差别是非常明显,由此可见,采用一种适当的束筋布置形式或者根据箱梁结构体系、受力情况、构造形式来布置束筋是很重要的。
这样才能更好的发挥钢束的作用以提高结构的抗裂性、抗剪能力,从而增加结构的刚度和耐久性。
(表4,5,6)是两种配束方法预应力效应计算结果的比较。
2.4 结论(1)在理想的状况下,尽量使梁端处的最大正扭矩与最小负扭矩绝对值大致相等,目的是使梁端左右支座竖向力大致相等。
对于中墩为独柱、单支座情况,预应力效应对梁端扭矩尤为明显。
钢束全部布置在梁腹板上时,0#墩处扭矩-1561kn·m,3#墩处扭矩为1655kn·m。
而通过减小或减少腹板束设置顶底板束时,0#墩处扭矩为-1031kn·m,3#墩处扭矩为1105kn·m。
同济大学钢筋混凝土课程设计计算书

10.1 确定支座设计荷载..............................................................................43 10.2 确定支座平面尺寸..............................................................................44 10.3 确定支座厚度......................................................................................44 10.4 验算支座偏转.....................................................................................44 10.5 验算支座抗滑稳定性..........................................................................44
9 行车道板计算及配筋.......................................................................................40
9.1 永久荷载效应计算................................................................................40 9.2 截面设计与配筋及验算........................................................................42
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一部份 预应力钢束设计
4.承载能力极限状态计算(公预规5.1.5条)
第一部份 预应力钢束设计
5. 设计安全等级
✓ 安全等级(桥规1.0.9条) :按持久状况承载能力极限状态 设计时,公路桥涵结构的设计安全等级,应根据结构破 坏可能产生的严重程度划分为三个设计等级(特大桥、 重要大桥;大桥、中桥、重要小桥;小桥、涵洞)。
0(受压为正)
式中
——构件截面上核心距 ——使用阶段永存预加力的合力 ——短期荷载下弯矩组合值
第一部份 预应力钢束设计
故预应力钢束重心位置 ep 应满足:
由于弯矩 M G1, M s 近似按抛物线沿跨径 变化, 故上下限值 E1, E2 近似为抛物线形, 限 定了预应力钢束布置的区域,即束界
对支点截面:
第一部份 预应力钢束设计
三. 束界校核
第一部份 预应力钢束设计
• 束界基本概念: 在符合截面上、下缘混凝土均不会出现
超限的拉应力的前提下,预应力筋(束)的 重心在各截面上布置的范围, 称为束界(或 索界)
支座中心线
跨中
第一部份 预应力钢束设计
保证梁的上缘混凝土不出现拉应力 最危险阶段:预加应力阶段
预
应
力
钢
束 设
混凝土桥(III)课程设计
计
第一部份 预应力钢束设计
内容介绍
• 准备知识 • 预应力钢束面积估算 • 预应力钢束布置 • 束界校核
第一部份 预应力钢束设计
零. 准备知识
第一部份 预应力钢束设计
1. 设计规范
✓ 本设计采用的规范(2004年10月1日起实施) : 《公路桥涵设计通用规范》(JTG D60-2004)(本课
对于预埋管在竖直方向可将管道重叠
最小保护层厚度 (9.1.1条) 直线管道 不小于30mm且不小于管道直径0.5倍
曲线管道由于会产生径向压力,混凝土有崩裂危险, 因此要求更为严格。
• 示例:
第一部份 预应力钢束设计
钢束群重心至梁底பைடு நூலகம்离
ap
390 3167 7
1 284
150.7mm
第一部份 预应力钢束设计
2. 锚固端截面钢束布置
• 原则:
✓ 满足锚具布置和预应力张拉所需操作空间的 构造要求
✓ 均匀分散布置各束锚固点,避免局部应力集 中,使截面应力分布均匀
第一部份 预应力钢束设计
• 构造要求: ✓ 锚具布置的构造要求
锚垫板布置最小间距
锚束槽口尺寸
第一部份 预应力钢束设计
第一部份 预应力钢束设计
• 弯起角: ✓ 较小角度有利于减小摩阻损失 ✓ 较小角度有利于马蹄高度向支点不至于过大 ✓ 较大角度有利于提供足够的竖向预剪力 T梁中常用的弯起角度不超过
• 弯起曲线形状:
✓ 弯起曲线可采用圆弧线、抛物线或悬链线,
实际工程中多采用圆弧线
✓ 弯起半径构造要求:钢绞线的钢丝
时,
不宜小于4m(9.4.10条)
第一部份 预应力钢束设计
• 实例:
✓ 为了钢束不至于竖向交叉,本例钢束弯起角下小 上大选定为: 下部钢束 70 ,上部钢束 150 , 锚于梁顶钢束 180
✓ 钢束线形为直线加圆弧,即从距跨中一定距离处 开始按圆曲线向上弯起
✓ 由于不允许曲线段进入锚具部分,因此在锚下钢 束必须保持一定的直线长度(可取1米)
1. 按正截面承载力要求估算
✓ 属承载能力极限状态
基本假定: (公预规5.1.4条) 在极限状态:受压砼应力图简化为矩形,达到抗压强度设计值 受拉砼强度不予考虑,钢筋达到抗拉强度设计值
第一部份 预应力钢束设计
• 基本方程(公预规5.2.2条):
式中
——结构重要性系数 ——砼受压区面积 ——砼受压区面积形心至上缘距离
第一部份 预应力钢束设计
• 实例: 下缘混凝土不出现拉应力:
Ms
I大
yx大
A大
跨中 9110.91 0.6628 1.4671 0.9688
四分点 6834.35 0.6628 1.4671 0.9688
支点
0 0.8453 1.3623 1.5786
Ks大=I/(Ayx)
0.4663 0.4663 0.3931
第一部份 预应力钢束设计
• 预应力钢束设计方法:
精确方法
由 M p 0 解出截面受压区高度x , 再由 X 0 解得 Ap
近似方法
由 得 Mc 0
Ap
0M d
f pd (h 0 yc )
式中力臂 z h0 yc 可由经验值估算:
对于带下马蹄T梁
z (0.75 0.77)h
第一部份 预应力钢束设计
✓ 桥涵分类(桥规1.0.11条)
二级
第一部份 预应力钢束设计
一. 预应力钢束面积估算
第一部份 预应力钢束设计
✓ 按最不利构件设计 装配式桥梁:一般是边梁或次边梁
✓ 按最不利截面,最大组合弯矩值 简支梁: 跨中截面
✓ 按控制计算的要求 简支梁: 正截面承载力,抗裂性及应力要求
第一部份 预应力钢束设计
又 N pe pe Ap
式中永存预应力 pe con l 张拉控制应力 con 0.75 f pk 1395MPa 预应力损失 l 按张拉控制应力20%计
故
Ap
N pe
(1 0.2) con
Ms W
0.51
f
pk
(
1 A
ep W
)
第一部份 预应力钢束设计
❖ 式中
I W Wx yx
n Ap Ap1
第一部份 预应力钢束设计
2. 按正截面抗裂性要求估算
✓ 属正常使用极限状态:弹性受力阶段,平截面假定 ✓对于全预应砼构件,正截面砼法向应力规定:
(公预规6.3.1条)
受拉为正
式中
——短期荷载效应组合下砼边缘应力
——扣除全部预应力损失后的预加力 在砼边缘产生预压应力
第一部份 预应力钢束设计
式中 ——钢束预留工作长度700mm
第一部份 预应力钢束设计
5. 截面钢束重心计算
• 计算图式:
水平段时
R
支座中心线
ami y
锚固点
y1
y2
控制截面
1000
终弯点
控制截面
起弯点
x3
x2
axi
Lj / 2
弯曲段时
斜线段时
跨中
a0i x1
第一部份 预应力钢束设计
• 实例:
各控制截面上钢束位置及倾角计算表
cs
N pI A小
N pI ep小 Ws小
M G1 Ws小
0 (受压为正)
式中
——构件截面下核心距 ——传力锚固时预加力的合力 ——一期恒载下的弯矩
第一部份 预应力钢束设计
保证梁的下缘混凝土不出现拉应力 最危险阶段:使用阶段
cx
0.85( N pe A大
N peep大 ) M s
Wx大
Wx大
6s15.2 面积为840mm2,管道面积>1680mm2 内径>46mm。选用内径为70mm(外径77mm )
第一部份 预应力钢束设计
外径 内径+10mm
第一部份 预应力钢束设计
• 管道距离要求: ✓ 预应力钢筋管道净距及保护层要求
净距 (9.4.9条) 直线管道 不小于40mm且不宜小于管道直径0.6倍
第一部份 预应力钢束设计
• 注意:
✓ 永存预加力 N pe 按扣除预应力20%损失来估算 N pe pe Ap ( con l ) Ap 0.8 con Ap , con 0.75 f pk
✓ 传力锚固时预加力NpI 由于是近似计算,可取
N pI N pe
✓ 钢束在各控制截面束界校核计算可以用表格 进行 ep yx ap
E2
1.1671 0.7590 -0.3931
ap
0.1507 0.1689 0.9206
✓ 张拉施工空间要求: OVM预应力锚固体系产品参数
锚具型号
张拉千斤顶型号
第一部份 预应力钢束设计 YCW150千斤顶的施工空间
最小工作空间
B=1250mm C=190mm
外形尺寸
D=285mm L=370mm
钢绞线预留长 A=570mm
• 示例:
第一部份 预应力钢束设计
支座中心线
ax6
ax7
程中简称《桥规》) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62-2004)(本课程中简称《公预规》) ✓ 已废止的规范(2004年10月1日起废止): 《公路桥涵设计通用规范》(JTJ021-89) 《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTJ023-85)
第一部份 预应力钢束设计
控制
束号
位
截面
置
N7
弯
7480.0 17104.6 曲
段
31378.7
18
1535.8
0.07463 6987
284
371.5
四
N6
分
点 截
9750
N5
弯
7928.9 18746.6 曲 41796.5 15 1424.2 0.04357 167 206.7
段
弯
9703.2 18827.1 曲
段
35251.9
-
+
-
+
-
• 计算公式:
第一部份 预应力钢束设计
式中
——短期荷载下弯矩组合值
——使用阶段预应力钢筋永存应力的合力 ——预应力钢筋合力作用点至截面形心距离 ——砼毛截面面积