函数信号发生器的设计与制作
函数信号发生器的设计与制作.

函数信号发生器的设计与制作实验任务与要求①要求所设计的函数信号发生器能产生方波、三角波、正弦波②要求该函数信号发生器能够实现频率可调实验目的:1: 进一步巩固简熟悉易信号发生器的电路结构及电路原理并了解波形的转变方法;2:学会用简单的元器件及芯片制作简单的函数信号发生器,锻炼动手能力;3:学会调试电路并根据结果分析影响实验结果的各种可能的因素实验方案采用555组成的多谐振荡器可以在接通电源后自行产生矩形波再通过积分电路将矩形波转变为三角波再经积分网络转变为正弦波555定时器芯片工作原理,功能及应用555定时器是一种数字电路与模拟电路相结合的中规模集成电路。
该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳态触发器和多谐振荡器等,因而广泛用于信号的产生、变换、控制与检测。
一、555定时器555定时器产品有TTL型和CMOS型两类。
TTL型产品型号的最后三位都是555,CMOS 型产品的最后四位都是7555,它们的逻辑功能和外部引线排列完全相同。
555定时器的电路如图9-28所示。
它由三个阻值为5k?的电阻组成的分压器、两个电压比较器C1和C2、基本RS触发器、放电晶体管T、与非门和反相器组成。
555定时器原理图分压器为两个电压比较器C1、C2提供参考电压。
如5端悬空(也可对地接上0.01uF 左右的滤波电容),则比较器C1的参考电压为2 Vcc 3 ,加在同相端;C2的参考电压为Vcc3 ,加在反相端。
u11是比较器C1的信号输入端,称为阈值输入端;u12是比较器C2的信号输入端,称为触发输入端。
 ̄RD 是直接复位输入端。
当 ̄RD 为低电平时,基本RS 触发器被置0,晶体管T 导通,输出端u0为低电平。
u11和u12分别为6端和2端的输入电压。
当u11>2 Vcc 3 ,u12>Vcc3 时,C1输出为低电平,C2输出为高电平,,基本RS 触发器被置0,晶体管T 导通,输出端u0为低电平。
函数信号发生器的设计

函数信号发生器的设计函数信号发生器是一种电子测试仪器,用于产生各种波形信号,如正弦波、方波、三角波、锯齿波等。
它广泛应用于电子、通信、计算机、自动控制等领域的科研、教学和生产中。
本文将介绍函数信号发生器的设计原理和实现方法。
一、设计原理函数信号发生器的设计原理基于信号发生器的基本原理,即利用振荡电路产生一定频率和幅度的电信号。
振荡电路是由放大器、反馈电路和滤波电路组成的。
其中,放大器负责放大电信号,反馈电路将一部分输出信号反馈到输入端,形成正反馈,使电路产生自激振荡,滤波电路则用于滤除杂波和谐波,保证输出信号的纯度和稳定性。
函数信号发生器的特点是可以产生多种波形信号,这是通过改变振荡电路的参数来实现的。
例如,正弦波信号的频率和幅度可以通过改变电容和电阻的值来调节,方波信号的占空比可以通过改变开关电路的工作方式来实现,三角波信号和锯齿波信号则可以通过改变电容和电阻的值以及反馈电路的参数来实现。
二、实现方法函数信号发生器的实现方法有多种,其中比较常见的是基于集成电路的设计和基于模拟电路的设计。
下面分别介绍这两种方法的实现步骤和注意事项。
1. 基于集成电路的设计基于集成电路的函数信号发生器设计比较简单,只需要选用合适的集成电路,如NE555、CD4046等,然后按照电路图连接即可。
具体步骤如下:(1)选择合适的集成电路。
NE555是一种常用的定时器集成电路,可以产生正弦波、方波和三角波等信号;CD4046是一种锁相环集成电路,可以产生锯齿波信号。
(2)按照电路图连接。
根据所选集成电路的电路图,连接电容、电阻、电感等元器件,形成振荡电路。
同时,根据需要添加反馈电路和滤波电路,以保证输出信号的稳定性和纯度。
(3)调节参数。
根据需要调节电容、电阻等参数,以改变输出信号的频率和幅度。
同时,根据需要调节反馈电路和滤波电路的参数,以改变输出信号的波形和稳定性。
(4)测试验证。
连接示波器或万用表,对输出信号进行测试和验证,以确保输出信号符合要求。
《模拟电子技术》简易函数信号发生器的设计与制作

《模拟电子技术》简易函数信号发生器的设计与制作1 整机设计1.1 设计任务及要求结合所学的模拟电子技在此处键入公式。
术知识,运用AD软件设计并制作一简易函数信号发生器,要求能产生方波和三角波信号,且频率可调,并自行设计电路所需电源1.2 整机实现的基本原理及框图1.电源电路组成由变压器—整流电路—滤波电路—滤波电路—稳压电路组成。
变压器将220V 电源降压至双15V,经整流电路变换成单方向脉冲直流电压,此电源使用四个整流二极管组成全波整流桥电源变压器的作用是将电网220V 的交流电压变成整流电路所需要的电压u1。
因此,u1=nu i(n 为变压器的变比)。
整流电路的作用是将交流电压山变换成单方向脉动的直流U2。
整流电路主要有半波整流、全波整流方式。
以单相桥式整流电路为例,U2=0.9u1。
每只二极管所承受的最大反向电压u RN= √2u1,平均电流I D(A V),=12I R=0.45U1R对于RC 滤波电路,C的选择应适应下式,即RC放电时间常数应该满足:RC= (3~5)T/2,T 为50Hz 交流电压的周期,即20ms。
此电源使用大电容滤波,稳压电路,正电压部分由三端稳压器7812输出固定的正12V电压,负电压部分由三端稳压器7912输出固定-12V电压。
并联两颗LED灯分别指示正负电压。
2.该函数发生器由运放构成电压比较器出方波信号,方波信号经过积分器变为三角波输出。
2 硬件电路设计硬件电路设计使用Altium Designer 8.3设计PCB,画好NE5532P,7812及7912的原理图和封装后,按照电路图画好原理图后生成PCB图。
合理摆放好各器件后设置规则:各焊盘大小按实际情况设置为了更容易的进行打孔操作,设置偏大一些,正负12V电源线路宽度首选尺寸1.2mm,最小宽度1mm,最大宽度1.2mm,GND线路宽度首选尺寸1mm,最小宽度1mm,最大宽度1.5mm,其他线路首选尺寸0.6mm,最小宽度1mm,最大宽度1.2mm。
函数信号发生器电路设计与制作.

作业(论文)题目:函数信号发生器的设计与制作所修课程名称:电子产品设计与制作所修课程学年学期:二〇一一至二〇一二学年第二学期完成作业(论文)日期: 2012 年 5 月学号: 10050208 姓名:李磊评阅成绩:评阅意见:评阅教师签名:年月日函数信号发生器设计与制作一.总体方案设计1.1 设计基本要求1. 产生方波、三角波、正弦波和全波整流波;2. 电源输入:±9V ;3. 方波:Vpp≤14V;4. 三角波输出: Vpp≤8V;5. 正弦波: Vpp≥10V6. 方波、三角波和正弦波的输出频率为200Hz~ 5KHz;7. 在负载为2KΩ的条件下。
1.2方案的比较方案一:考虑到正弦波发生器是由RC自激振荡产生的,需要满足比较多的条件,并且要求频率大范围可调,那么要改变电阻和电容,且要使用两档的电容,同时,要满足两电阻和两电容绝对对称,所以比较难以实现不予以实行。
方案二:由555电路构成,电路结构简单,且脉宽可以调制,但是只能产生方波,且一个电路只能构成一个输出。
考虑到后面还要产生三角波、正弦波,故不采用此方案。
方案三∶采用传统的直接频率合成器。
这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。
但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。
方案四:采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于1-10Hz的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。
该电路已经用于实际电路的实验操作。
1.3实行方案此方案较电路简单,且必须满足的要求较少,只需要用TL074即可实现,成本也较低,所以可行。
1.5 实验所需器材二.单元模块设计2.1三角波发生电路模块2.1.1工作原理图中端口Uo1输出方波,经过运放U1B与电阻电容构成的积分电路,产生三角波。
函数信号发生器的设计

折线法是一种使用最为普遍、实现也较简 单的正弦函数转换方法。折线法的转换原理是, 根据输入三角波的电压幅度,不断改变函数转 换电路的传输比率,也就是用多段折线组成的 电压传输特性,实现三角函数到正弦函数的逐 段校正,输出近似的正弦电压波形。由于电子 器件(如半导体二极管等)特性的非线性,使 各段折线的交界处产生了钝化效果。因此,用 折线法实现的正弦函数转换电路,实际效果往 往要优于理论分析结果。
模拟电路的实现方案,是指全部采用模拟电 路的方式,以实现信号产生电路的所有功能。由 于教学安排及课程进度的限制,本实验的信号产 生电路,推荐采用全模拟电路的实现方案。
➢ 模拟电路实现信号产生电路的多种方式
方案一
RC文氏电桥振荡器产生正弦波,方波-三角波产生电路可正弦波振荡器采用波形 变换电路, 通过迟滞比较器变换为方波,经积分器获得三角波输出。此电路的输出 频率就是就是RC文氏电桥振荡器的振荡频率.
0.1u
负反馈电路:R1和R2决定起振条
2
件,调节波形与稳幅控制。
10k
6
3
R3并联D1.D2:正向非线性电阻
RV1 C2
7
起振时:电阻大负反馈小;
9%
R2
0.1u
3k
UA741
振荡幅值大时:电阻小负反馈大,
10k
整形限幅。
改变R 调频率
电路调整的关键是:负反馈电路中的电位器RW的 调节, RW过大:输出方波! RW过小:电路不起 振!
二、总体方案讨论
频率调节
幅度调节
振荡部分
输出电路
输出
频率指示
幅度指示
函数信号发生器的原理框图
➢ 信号产生部分的多种实现方案
▪ 模拟电路实现方案 ▪ 数字电路实现方案 ▪ 模数结合的实现方案
函数发生器的设计与制作

第一章绪论函数信号发生器本来是一种超低频仪器,不打为所注意,但近几年来,情况发生了极大的变化。
现在函数发生器,不仅可以产生各种各样的数学波形,而且还具有某些专用仪器的能力,如频率合成、扫描、调制(调幅、调频与调相)。
以上这些功能在台式函数发生器与调控函数发生器与程控函数发生器之间权衡选用,前者常被称作“便携式”,后者通常用于自动测试的设备中。
由于函数发生器性能价格比较很好,应用范围日益扩大。
据报道,函数发生器在国外已成为设计人员在工作台上不可缺少的信号源。
所有先进的函数发生器都具有这样或那样的灵活性,由外部电压选择发生器的频率是它的共同点;另一特点是,滞留偏置可调,可按具体实验要求调节输出信号的直流电平。
波形空度比可调。
因而波形形状可变。
许多函数发生器具有可调的起/止相位鉴别器,相位锁定,以及具有触发输入或门控输出的选择,有的发生器还可以借操作人员把伪隨机噪声加到波形上,以使用于噪声环境,也可以把所有产生的信号相位锁定于外接源的相位上。
第二章总体电路方案设计与选择2.1设计要求1.输出的各种波形工作频率范围0.02Hz~1kHz连续可调。
2.正弦波幅值±10V,失真度小于1.5%。
3.方波幅值±10V。
4.三角波峰峰值20V;各种输出波形幅值均连续可调。
2.2设计的基本方案方案一:由RC桥式电路振荡产生正弦波,再经整形积分产生方波和三角波。
由运算放大器进行设计,如图2-2所示:图2-2函数发生器原理图1采用振荡电路获得正弦波,再由比较器获得方波,最后通过积分电路获得三角波。
方案二:用ICL8038集成函数信号发生器所需信号。
接入外部电路后ICL8038的9、3、2引脚就可分别产生方波、三角波、正弦波,频率调节部分通过其它的引脚接外电路来完成 .然后从ICL8038出来经过选择开关选择所需波形进入LM31D8进行放大和幅度调节,最后从LM31D8出来的波即为频率和幅度可调的方波,三角波和正弦波。
函数信号发生器设计方案

函数信号发生器设计方案函数信号发生器的设计与制作目录一.设计任务概述二.方案论证与比较三.系统工作原理与分析四.函数信号发生器各组成部分的工作原理五.元器件清单六.总结七.参考文献函数信号发生器的设计与制一.设计任务概述(1)该发生器能自动产生正弦波、三角波、方波。
(2)函数发生器以集成运放和晶体管为核心进行设计(3)指标:输出波形:正弦波、三角波、方波频率范围:1Hz~10Hz,10Hz~100Hz输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V;二、方案论证与比较2.1·系统功能分析本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。
在设计的过程中,我们综合考虑了以下三种实现方案:2.2·方案论证方案一∶采用传统的直接频率合成器。
这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。
但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。
方案二∶采用锁相环式频率合成器。
利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。
这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。
但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。
而且,由模拟方法合成的正弦波的参数,如幅度、频率相信都很难控制。
方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。
改变8038的调制电压,可以实现数控调节,其振荡范围为0.001Hz~300K 方案四:采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于1-10Hz的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。
函数信号发生器的设计与制作

函数信号发生器的设计、与装配实习一.设计制作要求:掌握方波一三角波一正弦波函数发生器的设计方法与测试技术。
学会由分立器件与集成电路组成的多级电子电路小系统的布线方法。
掌握安装、焊接与调试电路的技能。
掌握在装配过程中可能发生的故障进行维修的基本方法。
二.方波一三角波一正弦波函数发生器设计要求函数发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。
其电路中使用的器件可以是分立器件,也可以是集成电路(如单片集成电路函数发生器ICL8038)。
本次电子工艺实习,主要介绍由集成运算放大器与晶体管差分放大器组成的方波一三角波一正弦波函数信号发生器的设计与制作方法。
产生正弦波、方波、三角波的方案有多种:1:如先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。
2:先产生三角波一方波,再将三角波变成正弦波或将方波变成正弦波。
33:本次电路设计,则采用的图1函数发生器组成框图是先产生方波一三角波,再将三角波变换成正弦波的电路设计方法。
此钟方法的电路组成框图。
如图1所示:可见,它主要由:电压比较器、积分器和差分放大器等三部分构成。
为了使大家能较快地进入设计与制做状态,节省时间,在此,重新复习电压比较器、积分器和差分放大器的基本构成和工作原理:所谓比较器,是一种用来比较输入信号v1和参考电压V,并判REF断出其中哪个大,在输出端显示出比较结果的电路。
在《电子技术基础》一书的9.4—非正弦波信号产生电路的9.4.1中,专门讲述了: A:单门限电压比较器、B:过零比较器 C:迟滞比较器的电路结构和工作原理。
一、单门限电压比较器所谓单门限电压比较器,是指比较器的输入端只有一个门限电压。
如果比较器的输入信号从运放的同相端输入,则称为:同相输入单门限电压比较器。
如果比较器的输入信号从运放的反相端输入,则称为:反相输入单门限电压比较器它们的基本电路结构相同,如图2a所示,不同的是输入信号的接法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数信号发生器的设计、和装配实习一.设计制作要求:掌握方波一三角波一正弦波函数发生器的设计方法和测试技术。
学会由分立器件和集成电路组成的多级电子电路小系统的布线方法。
掌握安装、焊接和调试电路的技能。
掌握在装配过程中可能发生的故障进行维修的基本方法。
二.方波一三角波一正弦波函数发生器设计要求函数发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。
其电路中使用的器件可以是分立器件,也可以是集成电路(如单片集成电路函数发生器ICL8038)。
本次电子工艺实习,主要介绍由集成运算放大器和晶体管差分放大器组成的方波一三角波一正弦波函数信号发生器的设计和制作方法。
产生正弦波、方波、三角波的方案有多种:1:如先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。
2:先产生三角波一方波,再将三角波变成正弦波或将方波变成正弦波。
33:本次电路设计,则采用的图1函数发生器组成框图是先产生方波一三角波,再将三角波变换成正弦波的电路设计方法。
此钟方法的电路组成框图。
如图1所示:可见,它主要由:电压比较器、积分器和差分放大器等三部分构成。
为了使大家能较快地进入设计和制做状态,节省时间,在此,重新复习电压比较器、积分器和差分放大器的基本构成和工作原理:,并判所谓比较器,是一种用来比较输入信号v1和参考电压VREF断出其中哪个大,在输出端显示出比较结果的电路。
在《电子技术基础》一书的9.4—非正弦波信号产生电路的9.4.1中,专门讲述了: A:单门限电压比较器、B:过零比较器 C:迟滞比较器的电路结构和工作原理。
一、单门限电压比较器所谓单门限电压比较器,是指比较器的输入端只有一个门限电压。
如果比较器的输入信号从运放的同相端输入,则称为:同相输入单门限电压比较器。
如果比较器的输入信号从运放的反相端输入,则称为:反相输入单门限电压比较器它们的基本电路结构相同,如图2a所示,不同的是输入信号的接法。
在图2a所示的比较器基本电路中,我们可知:参考电压REF加于运放的反相端,它可以是正值,也可以是负值(也可以从同相端加入),图中给出的为正值。
而输入信号υ1则加于运放的同相端(也可以从反相端加入)。
由此可见,它是同相输入单门限电压比较器。
这时,运放处于开环工作状态,具有很高的开环电压增益。
电路的传输特性如图2b所示。
电路的工作过程是:当输入信号电压υ1小于参考电压VREF时,即差模输入电压υID=υ1一VREF < 0时,运放将处于负饱和状态,输出电压υo= VoL;当输入信号电压υ1升高到略大于参考电压VREF时,即差模输入电压υID =υ1一VREF > O,运放立即转于正饱和状态,输出电压uo =VoH,如图的实线所示,它表示υ1在参考电压VREF附近有微小的减小时,输出电压将从正的饱和值VoH过渡到负的饱和值VoL。
若有微小的增加,输出电压又将从负的饱和值VoL过渡到正的饱和值VoH。
把比较器输出电压uo从一个电平跳变到另一个电平时相应的输人电压υ1值称为门限电压或阈值电压Vth,对于图2所示电路,Vth = VREF。
反相输入单门限电压比较器的工作原理和之相同。
其相应传输特性如图2b 中的虚线所示。
二、过零比较器所谓过零比较器是指将参考电压设为零,即VREF = O,它的基本电路结构如图3a所示:其传输特性如图3 b所示由过零比较器的基本电路可知,输入信号电压υ1每次过零时,输出电压就要产生突然的变化。
这种比较器就称为过零比较器。
其具体的工作过程:见“EWB过零比较器”当输入信号为正弦波时,每过零一次,比较器的输出端将产生一次电压跳变,其正、负向幅度均受供电电源的限制。
因此,输出电压波形将为具有正负极性的方波。
若使方波电压经由RC微分电路(这时电路的时间常数RC 《 T/2,T为输入正弦信号周期》输出,那么输出电压就将为一系列的正、负相间的尖顶脉冲,如果输出的正负向尖顶脉冲,又经二极管D接到负载电阻RL上,则因二极管的单向导电作用,负载上就只剩下正向的尖顶脉冲,其时间间隔等于输入正弦波周期T,如图9.4.2f所示。
这里,二极管把负向尖顶脉冲削去了,称为削波或限幅,二极管D和RL构成限幅电路。
三、迟滞比较器单门限电压比较器虽然有电路简单、灵敏度高等特点,但其抗干扰能力差。
例如,单门限电压比较器,当输入信号电压υ1中含有噪声或干扰电压时,由于在υ1=Vth=VREF附近出现干扰,输出电压υo将时而为VoH,时而为VoL,导致比较器输出不稳定。
如果用这个输出电压υo去控制电机,将出现频繁的起停现象,这种情况是不允许的。
提高抗干扰能力的一种方案是采用迟滞比较器。
(1)电路组成顾名思义,迟滞比较器是一个具有迟滞回环传输特性的比较器。
它是在反相输入单门限电压比较器的基础上引入了正反馈网络,如图4所示:就组成了具有双门限值的反相输入迟滞比较器{又叫施密特触发器(Schmitt Trigger)}。
如将υ1和VREF位置互换,就可组成同相输入迟滞比较器。
由于正反馈作用,这种比较器的门限电压是随输出电压uo的变化而改变的。
它的灵敏度低一些,但抗干扰能力却大大提高了。
(2)门限电压的估算由于比较器中的运放处于正反馈状态,因此一般情况下,输出电压υo和输人电压υ1不成线性关系,只有在输出电压υo发生跳变瞬间,集成运放两个输入之间的电压才可以近似认为等于零,即υID≈0或υp≈υN=υ1是输出电压υo转换的临界条件。
当输入电压υ1 >υp(门限电压)时,输出电压υo为低电平Vol。
当输入电压υ1 <υp时,输出电压υo为高电平VoH。
一.积分器二.差分放大器1).方波一三角波产生电路方波一三角波信号产生的基本电路如图2所示。
图2 产生方波一三角波信号的基本电路电路工作原理如下:若a点断开,运算放大器A1和R1、R2及R3、RP1组成同相输入迟滞比较器,R1称为平衡电阻,R3、RP1为正反馈元件,C1称为加速电容,可加速比较器的翻转:运放的反相端接基准电压,即V_ = 0,同相端接输入电压Via;比较器的输出Vo1的高电平等于正电源电压+Vcc ,低电平等于负电源电压_VEE 。
当比较器的V+ = V- = 0时,比较器翻转,输出信号Vo1则从高电平+Vcc 跳到低电平-VEE ,或从低电平-VEE 跳到高电平+Vcc 。
设v o1=+Vcc ,则:V +=1322RP R R R ++(+Vcc)+13213RP R R RP R +++ Via = 0 式1 式中,RP 1指电位器的调整值(以下同),将上式整理,得比较器翻转的下门限电位V ia- = 132RP R R +-(+Vcc) = 132RP R R +-Vcc 式2 若v o1= -V EE ,则比较器翻转的上门限电位 V ia+ = 132RP R R +-(-V EE ) = 132RP R R +Vcc 式3 比较器的门限宽度V H 为 V H = V ia+ -V ia- = 2。
132RP R R +Vcc 式4 由式1-式4可得比较器的电压传输特性,如图3所示图3 比较器电压传输特性 图4方波-三角波(见EWB 电压比较器)a 点断开后,运放A 2和R 4、RP 2、C 2及R 5组成反相积分器,其输入信号为方波V 01 ,则积分器的输出ν02=224)(1C RP R +-⎰dt 01ν 式5 当ν01=+Vcc 时ν02=224)()(C RP R V EE ++-t = 224)(C RP R V cc +-t 式6 当v 01=-Vcc 时ν02=224)()(C RP R V EE +--t = 224)(C RP R V cc +t 式7 可见,当积分器的输入为方波时,输出是一个上升速率和下降速率相等的三角波,其波形关系如图4所示(见EWB 积分器)如果把电压比较器和积分器首尾相连,形成一个闭环电路,则该电路就能够自动产生方波-三角波。
(见EWB HSXHFSQ )三角波的幅度V 02m =132RP R R +Vcc 式8 方波-三角波的频率f =224213)(4C RP R R RP R ++ 式9 由此可得出以下结论:① 电位器RP 2在调整方波-三角波的输出频率时,不会影响输出波形的幅度,若要求输出频率范围较宽,可用C 2改变频率的范围,RP 2实现频率微调。
② 方波的输出幅度约等于电源电压+Vcc ,三角波的输出幅度不超过电源电压+Vcc 电位器RP 1可实现幅度微调,但会影响方波-三角波的频率。
2.三角波 正弦波变换电路为学习多级电路的调试技术,我们将选用差分放大器作为三角波- 正弦波的变换电路,波形变换的原理是:利用差分对管的饱和和截止特性进行变换,分析表明,差分放大器的传输特性曲线i c1 (或i c2)的表达式为i C1= 1E i α= VT vid e I /01-+α 式10式中α=Ic /I E ≈1;Io 为差分放大器的恒定电流;V T 为温度的电压当量,当室温为25℃ 时,V T ≈26mV 。
如果v id 为三角波,设表达式id v =⎪⎪⎩⎪⎪⎨⎧---)43(4)4(4T t tVm T t T Vm 式11 式中,Vm 为三角波的幅度;T 为三角波的周期。
将式11代入式10,则⎪⎪⎪⎩⎪⎪⎪⎨⎧++=---)43(4)4(40101)(1T t VT Vm T t VT Vm T T e I e I t iC αα 式12 用计算机对式12进行计算,打印输出的i c1(t) 或i c2(t) 曲线近似于正弦波,则差分放大器的输出电压i c1(t)、i c2(t)亦近似于正弦波,波形变换过程如图5示为使输出波形更接近正弦波,要求:① 传输特性曲线尽可能对称,线性区尽可能窄;② 三角波的幅值Vm 就接近晶体管的截止电压值。
图5 三角波 正弦波变换图6为三角波 正弦波的变换电路,其中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。
C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。
图6 三角波——正弦波变换电路三、函数发生器的性能指标●输出波形正弦波、方波、三角波等●频率范围频率范围一般分为若干波段:如1HZ-10HZ,10HZ-100HZ,100HZ-1KHZ,1KHZ-10KHZ,10KHZ-100KHZ,100KHZ-1MHZ等6个波段。
●输出电压一般指输出波形的峰值,即V P-P =2Vm。
●波形特性表征正弦波特性的参数是非线性失真γ-,一般要求γ-< 3%;表征三角波特性的参数是非线性系数γ△,一般要求γ△< 2%;表征方波特性的参数是上升时间t r,一般要求t r< 100ns(1KHZ,最大输出时)。