有源相控阵雷达TR组件研制
s波段有源相控阵雷达TR组件研究

s波段有源相控阵雷达TR组件研究【摘要】本文主要涉及工作在S波段的频带,频带宽度为400MHz、平均占空比与脉冲宽度分别在10%、200μs以内,基于有源相控阵雷达TR组件,这一组件应用模块化的设计方式,并将功率放大、接受以及电源模块正和到铝合金板当中,借助合理的布局与优化电路结构,强化强迫液冷的散热设计方式,保障组件的性能指标满足设计要求,并且还带有更小体积、更轻重量以及更紧凑结构等基础特征。
对此,本文简要分析s波段有源相控阵雷达TR组件研究,希望能够为相关工作者提供帮助。
【关键词】s波段;有源相控阵雷达;TR组件;临床研究引言伴随着高功率固态功率器件和单片微波集成电路的持续发展,每一个相控阵雷达天线单元通路可以设置固态的TR组件,其属于有源相控阵雷达天线,和常规雷达相比,有源相控阵雷达具备更加明显的探测优势,抗干扰能力也更加明显同时可靠性相对较高,可维护优势比较突出。
雷达天线当中每一个TR组件相比于普通雷达的高频头,不仅有低噪声放大器和波束控制电路等多种功能电路,并且TR组件属于有源相控阵雷达的重点部件,属于固态有源相控阵雷达发射期间最为基础且重要的部件。
对此,探讨s波段有源相控阵雷达TR组件具备显著实践性价值。
一、s波段有源相控阵雷达TR组件研究要求目前来看,关于s波段有源相控阵雷达TR组件的研究要求主要在于三个方面,具体如下:1、高性能。
TR组件之间的输出幅度与插入相位的一致性会直接影响固态有源相控阵雷达的整体指标,在输出幅度与插入相位存在较大差异时,天线空间合成的辐射功率会明显下降,此时还会导致波束出现指向偏差与精度变化等问题,此时便需要TR组件的发射支路与接收支路之间的输出幅度和插入相位保持高度一致性。
并且电源转换效率在TR组件当中也是提供能量初级电源功率消耗的比值,这也是衡量TR组件的重点性能指标[1];2、高可靠性。
因为TR组件数量庞大,可靠性会对整个雷达的MTBF形成影响。
应用多TR组件空间合成属于可靠性分析并应用并联模型,这一种方式可以允许少数组件在性能下降时也不会影响雷达的正常运行。
大功率T/R组件的研究与设计

摘
要 :现代 相控 阵雷达 系统对探 测距 离的要 求越 来越 高,这 就需要相控 阵雷达 系统 中的 关键部件
TR组件提供 更 大的输 出功率 ,但单个G A s 率 芯片的输 出功率 的提 高较 为缓慢 。文章介 绍 了一种通 / a s, . 9
过功率 合成 的方法来 大幅提 高单个 组件输 出功率 的设 计方 法,可将单个 组件 的输 出功率提 高到 百瓦 级 ,同时通过合理 的 时序 嵌套设 计来保证 大功 率组件 的安 全工作 。将设 计结 果应 用于 实际产品 ,制 作 出大功率 、低噪声 的TR组件 ,应用于某重点型号 雷达 系统的研 制。 /
A bsr c :De e t g d sa c sb e Ra h d m o e a o e i tat tc i itn eha e n a c e r nd m r mpo tnc n m o e c i ep a e ra n ra e i d m a tv h s d a r y s t m . n r a e d t ci g d sa c ,we m u ti c e s upu o rpr v d n y T/ m o u e i h s yse To i c e s e e tn it n e s n r a e o t tp we o i i g b R d l n p a e a r y s tm ,b tsn l Aspo e hi lv t t u p tpo e eai e sowl.I h spa e ,a d sg ra yse u i g e Ga w rc p ee ae iso t u w rr ltv l y n t i p r e i n
毫米波有源相控阵tr组件集成技术

毫米波有源相控阵tr组件集成技术
毫米波有源相控阵TR组件集成技术是一种新兴的技术,它可以实现高效的毫米波无线通信和高精度的雷达探测。
该技术主要是通过将多个TR组件集成在一起,构成一个整体的毫米波有源相控阵系统,从而实现对天线信号进行实时控制和调节。
相比于传统的毫米波有源天线系统,该技术具有更高的灵活性和可靠性,可以有效地提高无线通信和雷达探测的性能和可靠性。
同时,该技术还能够大幅降低系统的成本和复杂度,为毫米波无线通信和雷达探测的广泛应用提供了有力的支持。
- 1 -。
TR组件

有源相控阵的天线设计的核心:T/R组件有源相控阵天线设计的核心是T/R组件。
T/R组件设计考虑的主要因素有:不同形式集成电路的个数,功率输出的高低,接收的噪声系数大小,幅度和相位控制的精度。
同时,辐射单元阵列形式的设计也至关重要。
1 芯片设计普遍的做法是将电路按功能进行了分类,然后放置于不同的芯片上,再通过混合的微电路进行连接,如图所示。
一个T/R模块的基本芯片设置包括了3个MMICs组件和1个数字大规模集成电路(VLSI),如图所示。
•高功率放大器(MMIC)•低噪声放大器加保护电路(MMIC)•可调增益的放大器和可调移相器(MMIC)•数字控制电路(VLSI)大多数X波段及以上频段T/R组件都采用基于GaAs工艺的MMICs技术。
该技术有个缺点就是热传导系数极低,因此基于GaAs的电路需要进行散热设计。
未来T/R组件的发展方向是基于GaN和SiGe的设计工艺。
基于GaN的功率放大器可实现更高的峰值功率输出,从而提升雷达的灵敏度或探测距离,输出功率是基于GaAS工艺电路的5倍以上。
SiGe工艺虽然传输的功率不如GaAs,然而该材料成本较低,适用于未来低成本、低功率密度雷达系统的设计。
2 功率输出通常情况下,在给定阵列的口径后,雷达系统所需要的平均功率输出也基本确定了。
天线可实现的最大平均功率与每个TR组件的输出功率、T/R组件的个数、T/R组件的效率和散热等条件相关。
在高功率放大器设计时,需要的峰值功率是重要的指标,定义为平均功率除以最小的占空比。
雷达系统的峰值功率是由整个天线阵列实现的,也就是说当峰值功率确定后,所需要的最少T/R组件个数也随之确定。
雷达系统TR组件设计需要综合考虑天线口径、T/R模块的输出功率以及T/R组件布局等因素,如为了实现同样的雷达探测性能且T/R组件个数相同,对于4m2口径天线,假定每个T/R组件的输出功率为P,那么对于2m2口径天线,每个T/R组件的输出功率为2P,如图所示。
相控阵雷达——毫米波TR组件研究

工作在毫米波频段低端的毫米波雷达的许多工作特性与微波雷达(例如X 频段或Ku频段雷达)是一样的,只是由于其波长更短,所以工作特性更极端 一些。例如,对于给定的天线孔径,毫米波雷达天线波束比较窄,仅仅是X频 段或Ku频段雷达的1/2—1/20。毫米波雷达的窄波束特性具有某些重大的工作 优点:(1)小天线孔径可有较高天线增益;(2)高的跟踪精度和(或)制导精
毫米波的发展由其本身的固有特点所确定。短波长,宽频带以及与大气的 相应作用,是促进毫米波发展的三个基本因素。
在毫米波频段,电磁能量在大气中传播时与大气中气体、悬浮微粒以及含 水物质的相互作用要比微波能量与它们的相互作用强的多,这些相互作用通过 三种机理,即吸收、散射和折射产生。
毫米波的大气传输特性,决定了各频率的用途。毫米波频段有四个低损耗 大气“窗口”,它们的中心频率在35,94,140和220GHz附近,其对应波长分 别为8.6,3.2,2.1和l_4ram,一般地面与卫星通信系统大都工作于这些“窗口” 频率,其可用带宽分别为16,23,26和70GHz,任何一个毫米波“窗口”的可 用带宽几乎都可以把包括微波频段在内的所有低频频段容纳在内。这些带宽特 性,在雷达中可用窄脉冲和宽带调频技术获得目标的细部特征。在通信系统中 能传送更多的信息,大大拓宽已十分拥挤的通信频谱,为更多用户提供互不干 扰的通道。宽带特性也能为各种系统提供高质量的电磁兼容特性。同样,对应 的中心频率为22,60,120和183GHz这些大气高衰减区频段成为保密通信的 首选工作频率。
第二章首先简单介绍了微带传输线的特性;随后介绍了微带一波导过渡和 低通滤波器的基本理论并实际设计了微带一脊波导一标准波导的过渡和低通滤 波器。
第三章讨论了毫米波控制电路。本章有四部分内容,第一部分介绍了PIN 二极管的特性;接下来的两部分分别介绍了毫米波开关和毫米波衰减器的基本 理论;每四部分较详细的介绍了毫米波移相器的分类,并具体分析了各种类型 移相器的优缺点,同时还设计了一个五位移相器,给出了测试结果并对结果进 行了分析。
有源相控阵的天线设计的核心:TR组件

有源相控阵的天线设计的核心:TR组件电子万花筒平台核心服务电子元器件:价格比您现有供应商最少降低10%射频微波天线新产品新技术发布平台:让更多优秀的国产射频微波产品得到最好的宣传!发布产品欢迎联系管理,专刊发布!强力曝光!有源相控阵天线设计的核心是T/R组件。
T/R组件设计考虑的主要因素有:不同形式集成电路的个数,功率输出的高低,接收的噪声系数大小,幅度和相位控制的精度。
同时,辐射单元阵列形式的设计也至关重要。
文章转自:XingXing 雷达通信电子战1 芯片设计理想情况下,所有模块的电路需要集成到一个芯片上,在过去的几十年,大家也都在为这个目标而努力。
然而,由于系统对不同功能单元需求的差别,现有的工程技术在系统性能与实现难度上进行了折衷的考虑,因此普遍的做法是将电路按功能进行了分类,然后放置于不同的芯片上,再通过混合的微电路进行连接,如图所示。
一个T/R模块的基本芯片设置包括了3个MMICs组件和1个数字大规模集成电路(VLSI),如图所示。
•高功率放大器(MMIC)•低噪声放大器加保护电路(MMIC)•可调增益的放大器和可调移相器(MMIC)•数字控制电路(VLSI)根据不同的应用需求,T/R模块可能还需要其他一些电路,如预功放电路需要将输入信号进行放大以满足高峰值功率需求。
大多数X波段及以上频段T/R组件都采用基于GaAs工艺的MMICs技术。
该技术有个缺点就是热传导系数极低,因此基于GaAs 的电路需要进行散热设计。
未来T/R组件的发展方向是基于GaN和SiGe的设计工艺。
基于GaN的功率放大器可实现更高的峰值功率输出,从而提升雷达的灵敏度或探测距离,输出功率是基于GaAS工艺电路的5倍以上。
SiGe工艺虽然传输的功率不如GaAs,然而该材料成本较低,适用于未来低成本、低功率密度雷达系统的设计。
2 功率输出通常情况下,在给定阵列的口径后,雷达系统所需要的平均功率输出也基本确定了。
天线可实现的最大平均功率与每个TR组件的输出功率、T/R组件的个数、T/R组件的效率和散热等条件相关。
TR组件自动测试系统设计

TR组件自动测试系统设计摘要:tr组件待测数据量和需计算数据量大、控制信号繁琐,构成测试系统的仪表较复杂,需要设计全自动tr组件测试系统以满足相控阵雷达研制需求。
根据被测tr组件工作特点,本文详细介绍了测试系统组成和测试原理,测量精度的计算。
关键词:tr组件自动测试系统集成中图分类号:tp274 文献标识码:a 文章编号:1007-9416(2012)01-0074-01tr组件是有源相控阵雷达的核心部件,也是发展有源相控阵技术的关键。
tr组件在批量生产时,数量大、测试指标多、待处理数据量庞大、组件控制信号繁琐,设计一套全自动tr组件测试系统,实现对大批量tr组件性能指标准确、快速、方便地测试,意义极其重大。
在相控阵雷达研制和生产过程中,tr组件测试技术是影响产品研制、生产进度、产品质量以及成本的一项关键技术。
tr组件自动测试系统涉及的技术很多,包括有微电子技术、微波测量技术、总线技术、数据库和自动化控制与管理等。
本文在借鉴目前国内外已有的先进测试系统基础上,根据被测对象特点和测试系统要求,研究和设计tr组件自动测试系统。
1、系统组成根据被测tr组件性能指标特点以及所要求的测量精度,除专用测试仪表外,所需硬件还包括tr组件控制器、开关矩阵、控制计算机、路由器以及连接附件,构建tr组件自动测试系统。
计算机通过串口给tr组件控制器发送指令,指令包含tr组件的工作通道、占空比、周期、衰减量、相移量等,tr组件控制器根据接收到的指令,控制tr组件工作在相应状态,并给计算机发送反馈报文,报告tr组件当前工作状况,实时显示tr组件工作电流,防止过流发生;同时计算机通过路由器与测量仪器进行通信,包括仪器参数设置、仪器校准和测量数据的读取;当选择对tr组件某个参数进行测试时,计算机给tr组件控制器发送指令,由tr组件控制器实现对开关矩阵的控制,导通所需测量通道。
发射通道脉冲s参数测试使用宽带法,由tr组件控制器产生所需同步脉冲信号;示波器测量脉冲参数需使用检波器;功率探头用于完成峰值功率测量,同时也用于网络分析仪的源功率校准。
TR组件

开关电路
一般称为天线收发模块应用在收发器,其功能是在发送状态将天 线和发射器进行连接,而在接受状态时,将天线与接收器进行连 接。
PIN 二极管作为一个基本单元在这些开关中的使用时,他们就 会比电子 - 机械开关提供更高的可靠性,更好的机械强度和更 快的开关速度。
PIN二极管开关电路技术指标
插入损耗和隔离度:PIN管实际存在一定数值的电抗和损耗电阻, 因此开关在导通时衰减不为零,成为正向插入损耗,开关在断开时 其衰减也非无穷大,成为隔离度。二者时衡量开关的主要指标,一 般希望插入损耗小,而隔离度大。
隔离器基本原理
隔离器是一种采用线性光耦隔离原理 , 将输入信号进行转换 输出。输入 , 输出和工作电源三者相互隔离 , 特别适合与需要 电隔离的设备仪表配用。 隔离器又名信号隔离器 , 是工业控制系统中重要组成部分。
隔离器主要技术参数
1. 隔离强度:也叫隔离能力、耐压强度或测试耐压,这是 衡量信号隔离器的主要参数之一。单位:伏特 @1 分钟。它 指的是输入与输出,输入与电源,输出与电源之间的耐压 能力。它的数值越大说明耐压能力越好,隔离能力越强, 滤波性能越高。一般的,这种耐压测试是通过一次性样品 的耐压检验来确定的。
• 理论分析以单节限幅电 路为基础 ,单节二极管并
联时的等效电路图如图
1所示。其中: Cj、Rf为 PIN限幅二极管的高阻、 低阻状态时的等效元件; Z0、L分别是传输线的特 性阻抗和二极管两端的 等效电感 ,Z0 =50Ω。
微波限幅器主要参数定义
1.限幅电平:限幅器开始限幅时的功率值。 2.插入损耗:输入电平低于门限电平时输入信号 损耗,一般在-10dBm下测试。 3.承受功率:能承受的最大输入功率(脉冲功率, 脉冲平均功率,连续波功率)。 4.恢复时间:以输入脉冲终止开始,到限幅器损 耗比插入损耗大3dB为止的时间。