文本挖掘

合集下载

文本挖掘

文本挖掘



8.1.4文本挖掘与信息检索

信息检索领域一般用查全率和查准率,对检索的效果进行 量化评价。信息检索主要解决文本的标引问题,使用倒排 文本数据结构来表示文本信息。为了提高信息检索的效率, 信息检索系统在不断添加新的功能,如文本分类、文本聚 类、自动摘要和主题词自动抽取等方法,使用户能够更加 方便地从不同途径准确地查找到所需信息。自动摘要能够 减轻用户测览相关文本所需的时间,使用户能够快速地掌 握相关文本中的内容。文本的自动分类和自动聚类能够根 据文本的内容信息将文本集合划分为不同的类或者簇,方 便用户查找所需信息。
8.2.2 Web的特点
Web是一个非常成功的基于超文本的分布式信息系统。Web 的特点如下:
1.庞大性。Web 为全球范围发布和传播信息提供了机会, 它允许任何人在任何地方任何时间传播和获取信息。由于 Web的开放性,使得WCb上的信息与日俱增,呈爆炸性增 长。
2.动态性。Web不仅以极快的速度增长,而且其信息还 在不断地发生更新。新闻、公司广告、股票市场、Web服 务中心等都在不断地更新着各自的页面。链接信息和访问 记录也在频繁更新之中。

8.1.1文本挖掘概述

文本挖掘涵盖多种技术 , 包括信息抽取 , 信息检索 , 自然语 言处理和数据挖掘技术。它的主要用途是从原本未经使用 的文本中提取出未知的知识,但是文本挖掘也是一项非常 困难的工作 , 因为它必须处理那些本来就模糊而且非结构 化的文本数据,所以它是一个多学科混杂的领域,涵盖了信 息技术、文本分析、模式识别、统计学、数据可视化、数 据库技术、机器学习以及数据挖掘等技术。文本挖掘在商 业智能、信息检索、生物信息处理等方面都有广泛的应用。 例如,客户关系管理,自动邮件回复,垃圾邮件过滤,自 动简历评审,搜索引擎等等。

文本挖掘流程

文本挖掘流程

文本挖掘流程1. 数据收集在进行文本挖掘之前,首先需要收集大量的文本数据。

这些数据可以来自于互联网、社交媒体、新闻报道、论文文献等各种渠道。

收集到的数据可以是以文本形式存在的文章、评论、推文等。

2. 数据预处理在进行文本挖掘之前,需要对收集到的文本数据进行预处理。

预处理的目的是将原始数据转化为计算机可以处理的形式。

预处理的步骤包括去除噪声数据、去除停用词、进行词干化或词形还原等操作。

3. 特征提取特征提取是文本挖掘的关键步骤之一。

在这一步骤中,需要将文本数据转化为计算机可以理解的特征向量。

常用的特征提取方法包括词袋模型和TF-IDF方法。

词袋模型将文本表示为一个向量,向量的每个维度对应一个词,向量的值表示该词在文本中出现的次数。

TF-IDF方法则将文本表示为一个向量,向量的每个维度对应一个词,向量的值表示该词在文本中的重要程度。

4. 数据建模在进行数据建模之前,需要对数据进行训练集和测试集的划分。

训练集用于训练模型,测试集用于评估模型的性能。

常用的文本挖掘模型包括朴素贝叶斯分类器、支持向量机、神经网络等。

5. 模型评估在进行模型评估时,常用的指标包括准确率、召回率、F1值等。

准确率表示模型预测的结果与实际结果一致的比例;召回率表示模型能够正确预测的结果占所有实际结果的比例;F1值是准确率和召回率的调和平均值。

6. 结果解释在对模型的结果进行解释时,需要考虑模型的可解释性。

可以通过查看模型的特征权重、特征重要性等指标来解释模型的结果。

此外,还可以使用可视化工具来展示模型的结果,比如词云图、关系图等。

7. 结果应用文本挖掘的结果可以应用于各种领域。

在商业领域,可以利用文本挖掘的结果进行市场调研、舆情分析、用户画像等;在医疗领域,可以利用文本挖掘的结果进行疾病预测、药物副作用监测等;在社交媒体领域,可以利用文本挖掘的结果进行用户情感分析、话题发现等。

8. 持续改进文本挖掘是一个动态的过程,需要不断地进行改进和优化。

文本挖掘的应用场景

文本挖掘的应用场景

文本挖掘的应用场景一、什么是文本挖掘文本挖掘是指从大规模的非结构化文本数据中提取有用信息的过程,它结合了自然语言处理、机器学习、统计学等多个领域的知识,可以帮助人们更好地理解和利用文本数据。

二、文本挖掘的应用场景1. 情感分析情感分析是指通过对文本进行分析,判断其中所表达的情感倾向。

这种技术可以应用于社交媒体、新闻评论等领域,帮助企业了解公众对其品牌或产品的看法。

2. 舆情监测舆情监测是指通过对网络上的各种信息进行收集和分析,以了解公众对某个话题或事件的看法。

这种技术可以应用于政府、企业等机构,帮助他们更好地了解社会热点,并及时采取相应措施。

3. 文本分类文本分类是指将大量的无序文本数据按照一定规则进行分类。

这种技术可以应用于搜索引擎、电商平台等领域,帮助用户更快地找到自己需要的信息或商品。

4. 关键词提取关键词提取是指从文本中提取出最能代表文本主题的词语。

这种技术可以应用于信息检索、知识管理等领域,帮助用户更快地找到自己需要的信息。

5. 自动摘要自动摘要是指通过对文本进行分析,提取出其中最重要的信息,并生成一段简短的摘要。

这种技术可以应用于新闻报道、科技论文等领域,帮助读者更快地了解文章内容。

6. 垃圾邮件过滤垃圾邮件过滤是指利用文本挖掘技术对电子邮件进行分类,将垃圾邮件自动过滤掉。

这种技术可以应用于企业、个人等领域,帮助用户更好地管理自己的电子邮件。

三、文本挖掘的具体实现文本挖掘的实现通常包括以下几个步骤:1. 数据收集:收集大量的非结构化文本数据,如社交媒体上的评论、新闻报道等。

2. 数据预处理:对收集到的数据进行清洗和处理,如去除无意义字符、停用词等。

3. 特征提取:从预处理后的数据中提取出有意义的特征,如关键词、情感倾向等。

4. 模型训练:利用机器学习、统计学等方法,对提取出的特征进行训练,生成文本挖掘模型。

5. 模型应用:将训练好的模型应用于新的文本数据中,实现情感分析、舆情监测等功能。

第1讲 文本挖掘概述

第1讲  文本挖掘概述
ห้องสมุดไป่ตู้
原理 1、文本相似度计算的需求始于搜索引擎。 搜索引擎需要计算“用户查询”和爬下来的众多”网页“之间的相似 度,从而把最相似的排在最前返回给用户。 2、主要使用的算法是tf-idf tf:term frequency词频 idf:inverse document frequency倒文档频率 主要思想是:如果某个词或短语在一篇文章中出现的频率高,并且在其 他文章中很少出现,则认为此词或者短语具有很好的类别区分能力,适 合用来分类。 第一步:把每个网页文本分词,成为词包(bag of words)。 第三步:统计网页(文档)总数M。 第三步:统计第一个网页词数N,计算第一个网页第一个词在该网页中 出现的次数n,再找出该词在所有文档中出现的次数m。则该词的tf-idf 为:n/N * 1/(m/M) (还有其它的归一化公式,这里是最基本最直观的 公式)
2 文本挖掘的基本思想
首先利用文本切分技术,抽取文本特征,将文本数 据转化为能描述文本内容的结构化数据,然后利用 聚类、分类技术和关联分析等数据挖掘技术,形成 结构化文本,并根据该结构发现新的概念和获取相 应的关系。
换个说法:把从文本中抽取出的特征词进行量化来表 示文本信息。将它们从一个无结构的原始文本转化为 结构化的计算机可以识别处理的信息,即对文本进行 科学的抽象,建立它的数学模型,用以描述和代替文 本。使计算机能够通过对这种模型的计算和操作来实 现对文本的识别。
1)获取训练文本集:训练文本集由一组经过预处理的文本特征向 量组成,每个训练文本(或称训练样本)有一个类别标号;
2)选择分类方法并训练分类模型:文本分类方法有统计方法、机 器学习方 法、神经网络方法等等。在对待分类样本进行分类前, 要根据所选择的分类方法,利用训练集进行训练并得出分类模 型; 3)用训练好的分类模型对其它待分类文本进行分类; 4)根据分类结果评估分类模型。

文本挖掘技术的使用教程与技巧

文本挖掘技术的使用教程与技巧

文本挖掘技术的使用教程与技巧文本挖掘技术是一种通过自动化方法从海量文本数据中提取有用信息的技术。

它在各个领域中都有着广泛的应用,例如信息检索、情感分析、文本分类等。

本文将介绍文本挖掘技术的使用教程与技巧,帮助读者快速了解并应用这一技术。

一、文本挖掘技术的概述文本挖掘技术是通过将自然语言处理、机器学习和统计学等方法结合,从海量文本数据中自动发现模式、识别主题、提取关键字、分析情感等信息的技术。

它可以帮助人们从大量文本中获取有价值的信息,辅助决策和预测。

二、文本挖掘技术的基本步骤1. 文本预处理:对原始文本进行处理,包括分词、去停用词、词性标注、去除噪音等。

这一步是文本挖掘的关键,直接影响后续步骤的效果。

2. 特征提取:将文本转化为特征向量表示,常用的方法包括词袋模型、TF-IDF、词向量等。

选择适当的特征表示方法可以提高文本挖掘的准确率。

3. 模型构建:根据具体任务的需求选择合适的算法模型,例如朴素贝叶斯分类器、支持向量机、深度学习模型等。

不同的任务可能需要不同的模型,需要根据实际情况进行选择。

4. 模型训练与评估:使用标注好的数据进行模型训练,并使用评估指标(如准确率、召回率、F1值等)评估模型性能。

5. 结果解释与可视化:对挖掘结果进行解释和分析,并采用可视化技术将结果呈现给用户,提升可理解性和可视性。

三、文本挖掘技术的常见任务与应用1. 信息检索:通过文本挖掘技术,可以建立强大的搜索引擎,实现高效快速地从海量文本中检索出相关信息。

搜索引擎可以应用于网页搜索、文档检索等场景。

2. 文本分类:将文本按照一定的类别划分,常用于情感分析、主题分类等。

通过文本分类,可以自动将文本归类,提高信息处理的效率和精确度。

3. 情感分析:分析文本中蕴含的情感倾向,帮助企业了解用户的情感态度。

在社交媒体分析、舆情监测等领域,情感分析具有重要的应用价值。

4. 关键词提取:从文本中提取关键词或关键短语,帮助用户快速理解文本主题。

基于python的文本挖掘应用

基于python的文本挖掘应用

基于python的文本挖掘应用一、文本挖掘基本原理文本挖掘又称为文本数据挖掘或文本分析,是指从文本数据中发掘潜在的、先前未知的、有价值的信息的过程。

其基本原理包括文本预处理、特征提取、建模分析和应用解释等步骤。

1. 文本预处理:文本预处理是指通过一系列操作对原始文本数据进行清洗和转换,以便于后续处理和分析。

如去除文本中的HTML标签、特殊符号、停用词等,进行词干提取和词形还原等操作。

2. 特征提取:特征提取是指将文本数据转换为可以被机器学习算法所处理的特征向量。

常用的技术包括词袋模型(Bag of Words)、TF-IDF(Term Frequency-Inverse Document Frequency)等。

3. 建模分析:在特征提取的基础上,使用机器学习算法对文本数据进行分类、聚类、情感分析等任务。

4. 应用解释:最终将建模分析的结果应用到实际场景中,并进行解释和评估。

二、Python文本挖掘工具在Python中有许多文本挖掘的相关工具和库,如NLTK、Scikit-learn、Gensim、Jieba等,这些工具提供了丰富的功能和API,方便开发者进行文本挖掘相关的工作。

1. NLTK(Natural Language Toolkit):NLTK是Python自然语言处理领域的重要工具,提供了文本处理、分类、标注、短语句子包、分词、词干提取、词形还原等众多功能,是学习和应用自然语言处理的利器。

2. Scikit-learn:Scikit-learn是Python中常用的机器学习库,提供了丰富的机器学习算法和模型,包括文本分类、聚类、回归等。

通过Scikit-learn库,可以方便地进行文本挖掘的建模分析。

3. Gensim:Gensim是一个用于自然语言处理的Python库,提供了文本相似度计算、主题模型、文档建模等功能。

它是一个快速且易用的工具,广泛应用于文本挖掘的各个领域。

4. Jieba:Jieba是Python中常用的中文分词工具,具有分词精度高、速度快、易用性好等优点,是中文文本挖掘的常用工具之一。

文本挖掘技术及应用场景解析

文本挖掘技术及应用场景解析文本挖掘(Text Mining)是指从大量的文本数据中发掘隐藏的信息、知识和模式的一种技术手段。

随着信息时代的到来,海量的文本数据如同一个宝库,蕴含着巨大的价值。

因此,如何利用文本挖掘技术挖掘并应用这些信息对于企业和研究机构来说具有重要意义。

本文将对文本挖掘技术及其应用场景进行深入解析。

首先,我们来了解一下文本挖掘技术的基本步骤。

文本挖掘技术一般包括文本预处理、特征提取、模型构建和模型评估等步骤。

文本预处理是指将原始的文本数据通过一系列的处理方法转化成结构化或半结构化的数据以供进一步的挖掘分析。

这个过程通常包括词法分析、停用词过滤、拼写检查、词干化等。

特征提取是指从预处理后的文本中提取关键信息,常见的方法包括词袋模型、TF-IDF、词嵌入等。

模型构建是指根据特定的需求,通过训练数据构建合适的模型,常见的方法包括朴素贝叶斯、支持向量机、深度学习等。

模型评估是指对构建好的模型进行评估,以判断其效果是否满足要求。

文本挖掘技术在很多领域都有着广泛的应用。

以下将介绍几个常见的应用场景。

首先,文本分类是文本挖掘技术的主要应用之一。

通过对文本进行分类,可以帮助我们理解和管理海量的文本数据,从而快速找到感兴趣的文本。

比如在产品评论中,可以利用文本分类技术将用户的评论分为正面、负面或中性,帮助企业了解产品的市场反响。

此外,在新闻报道中,可以使用文本分类技术自动将新闻归类为政治、经济、体育等不同的类别,方便用户根据自己的兴趣进行选择。

其次,文本聚类也是文本挖掘技术的重要应用之一。

文本聚类可以把相似的文本聚集在一起,形成独立的类别,从而帮助用户快速浏览和理解大量的文本数据。

比如在社交媒体中,可以使用文本聚类技术将用户的帖子根据内容进行聚类,方便用户查找感兴趣的话题。

另外,文本聚类还可以应用于情感分析领域,通过将具有相似情感倾向的文本聚类在一起,帮助企业了解用户的情感态度。

此外,文本挖掘技术还可以应用于文本摘要、信息抽取、情感分析、知识图谱构建等领域。

数据分析中的文本挖掘技术

数据分析中的文本挖掘技术随着数据爆炸式增长,如何从大量数据中发现价值成为了数据分析领域中的一大难题。

而文本挖掘技术的出现,正是为了解决这个问题。

一、什么是文本挖掘技术文本挖掘技术是一种将自然语言处理、机器学习、统计学等技术应用于文本分类、情感分析、实体抽取、关系抽取、主题分析等领域的技术。

通过使用这种技术,可以从大量的非结构化文本数据中提取信息,发现隐藏在文本中的规律和趋势,为后续的数据分析和决策提供支持。

文本挖掘技术主要包括以下几个步骤:1. 预处理:去除停用词、标点符号等无用信息,将文本转化为机器可读的形式。

2. 特征提取:将文本中的单词、短语等抽取出来并转化为数值类型,以便后续的机器学习算法进行处理。

3. 分类或聚类:将文本按照其所属类别进行归类或分组。

4. 实体抽取:从文本中抽取实体并对其进行识别。

5. 关系抽取:从文本中抽取实体之间的关系。

二、文本挖掘技术的应用1. 情感分析情感分析是指通过对文本的分析,确定其中所包含的情感极性,如正面、负面或中性。

这种技术可以用于商品评论、社交媒体等领域,帮助企业了解用户对其产品或服务的态度,进而改进产品或服务。

2. 实体抽取实体抽取是指从文本中抽取出具有特定意义的实体,如人名、地址、时间、公司名称等,并进行分类和识别。

实体抽取技术可以帮助企业从大量的非结构化文本数据中提取出相关信息,为业务决策提供支持。

3. 关系抽取关系抽取是指从文本中抽取出实体之间的关系。

这种技术可以用于社交媒体、新闻报道等领域,帮助企业了解人们之间的联系,预测社会趋势等。

4. 主题分析分析。

这种技术可以用于新闻报道、社交媒体等领域,帮助企业发现潜在的营销机会、了解人们的兴趣爱好等。

三、文本挖掘技术的挑战虽然文本挖掘技术在数据分析领域中拥有广泛的应用前景,但是它也面临着一些挑战:1. 数据质量问题。

由于文本数据的来源多种多样,质量参差不齐,如何保证文本数据的质量是文本挖掘技术中一个关键的问题。

大数据时代下的文本挖掘研究

大数据时代下的文本挖掘研究随着互联网技术的发展,我们正逐渐步入一个大数据时代。

面对如此海量的数据,如何更好地从中获取有效信息成为了研究的热点。

其中,文本挖掘技术就成为了一种应对大数据时代的有效手段。

一、什么是文本挖掘文本挖掘(Text Mining)是一种通过处理和分析文本数据来获取有效信息的技术。

它主要基于自然语言处理技术,通过识别、提取、归纳和分析有关知识的方法来发现或提取文本中隐藏的规律、趋势和模式。

在大数据时代,文本挖掘技术已经广泛应用于各个领域,比如金融领域中的信用风险评估、舆情监测与预警等。

二、文本挖掘的关键技术1. 分词分词是将整段文本划分成词语序列的过程。

对于一段文本,将其划分成一个一个离散的词语,是文本挖掘技术的重要前提,同时也是所有自然语言处理任务的基础。

2. 词性标注词性标注是将每个分词标注上其词性(如动词、名词、形容词等)的过程。

通过对词语的词性进行标注,使得文本挖掘算法能更好地理解文本中每个词语的含义和作用。

3. 关键词提取关键词提取是从文本中自动识别出重要词汇的过程。

通过对大量文本进行关键词提取,可以发现文本中的主题、热点、趋势等信息,为后续的分析提供基础。

4. 文本分类文本分类是将大量文本数据根据其内容进行自动分类的过程。

通过对文本数据进行分类,可以快速发现其中存在的规律和差异,为之后的决策和应用提供参考。

5. 实体识别实体识别是指在文本中抽取出具有特定意义的名词、地名、人名等实体信息的过程。

通过实体识别技术,可以快速找到文本中涉及的具体实体信息,并进行进一步处理和分析。

三、文本挖掘在工业界的应用近年来,随着互联网、移动互联网、物联网等技术的不断发展,人们产生的数据呈现爆发式增长,因此,文本挖掘技术在工业界得到了广泛的运用。

1. 社交媒体社交媒体平台,在信息传播、舆情分析等方面的作用越来越大。

比如微博、微信、知乎等平台,用户资源丰富,而这些用户产生了大量的信息和评论。

汪顺玉文本挖掘概论

汪顺玉文本挖掘概论1. 引言随着信息时代的到来,文本数据量呈爆炸式增长,文本挖掘技术应运而生。

文本挖掘是一种从大量文本数据中提取有价值信息和知识的技术,广泛应用于信息检索、智能推荐、情感分析等领域。

本文将介绍文本挖掘的基础、预处理、分析方法以及应用案例,并探讨未来趋势。

2. 文本挖掘基础文本挖掘通常采用基于统计和机器学习的方法。

统计方法主要包括词频分析和关联规则等,而机器学习方法则包括朴素贝叶斯、决策树和神经网络等。

这些方法可以帮助我们发现文本中的模式和关系,提取出有用的信息。

3. 文本预处理文本预处理是文本挖掘的重要步骤,包括分词、去停用词、词干提取等。

分词是将文本分割成单个词语或词条;去停用词是指去除对文本挖掘无用的词语,如“的”、“是”等;词干提取则是对词语进行变形,提取出原词语的基本形式。

4. 词频分析词频分析是通过统计词语在文本中出现的频率,发现词语之间的关系和趋势。

常见的词频分析方法包括词云和关键词提取。

词云是一种以图形化方式展示文本数据中词语频率的方法,可以帮助我们快速发现高频词语;关键词提取则是通过计算词语的权重和相关性,提取出文本中的重要词语。

5. 主题模型主题模型是一种用于发现文本主题和语义结构的模型。

常见的主题模型包括潜在狄利克雷分布(LDA)和概率潜在语义索引(PLSI)。

LDA通过构建主题-文档-词项的三元组模型,挖掘文档的主题;PLSI 则通过建立语义空间和文档-词项的联合概率分布,发现文档的语义结构。

6. 情感分析情感分析是通过自然语言处理技术,对文本的情感倾向进行分析和提取。

情感分析可以分为基于词典方法和基于机器学习方法两类。

基于词典方法通过匹配词典中的情感词来确定文本的情感倾向;基于机器学习方法则通过对大量文本数据进行训练和学习,自动识别文本的情感倾向。

情感分析广泛应用于产品评论、社交媒体监测等领域。

7. 文本可视化文本可视化是将文本数据以图形化方式呈现,帮助人们更好地理解和发现文本中的信息和知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文本挖掘简述摘要:文本挖掘是数据挖掘的一个重要分支, 其应用前景十分广泛。

本文对文本挖掘的基本概念和主要内容进行介绍, 并且说明了挖掘的过程以及它的应用领域和它与其他相关领域的关系。

关键词: 文本挖掘; 数据挖掘; 文本分类目前随着信息技术的快速发展, 特别是网络的普及, 以文本形式表示的信息越来越多, 如何在纷繁芜杂的信息海洋中找到自己需要的有用信息, 具有广泛的应用背景和实用价值。

文本挖掘作为从浩瀚的文本数据中发现潜在的有价值知识的一种有效技术, 已经成为近年来的研究热点, 研究人员对文本挖掘技术进行了大量的研究, 但这些研究大部分是在英文环境下进行的, 对中文的研究却很少。

以下介绍了文本挖掘的主要内容, 挖掘过程以及与其它领域关系。

1. 文本挖掘概述( 1) 定义文本挖掘的定义: 文本挖掘是指从大量文本的集合C 中发现隐含的模式P。

如果将C 看作输入, 将P 看作输出, 那么文本挖掘的过程就是从输入到输出的一个映射N: Cy P。

( 2) 包括的内容1. 文本分类:文本分类指按照预先定义的主题类别, 为文档集合中的每个文档确定一个类别。

这样用户不但能够方便地浏览文档, 而且可以通过限制搜索范围来使查询文档更容易、快捷。

目前, 用于英文文本分类的分类方法较多, 用于中文文本分类的方法较少, 主要有朴素贝叶斯分类, 向量空间模型以及线性最小二乘LLSF。

2.文本聚类文本分类是将文档归入到己经存在的类中, 文本聚类的目标和文本分类是一样的, 只是实现的方法不同。

文本聚类是无教师的机器学习, 聚类没有预先定义好的主题类别, 它的目标是将文档集合分成若干个簇, 要求同一簇内文档内容的相似度尽可能大, 而不同簇间的相似度尽可能小。

Hearst 等人的研究已经证明了/ 聚类假设0 , 即与用户查询相关的文档通常会聚类得比较靠近, 而远离与用户查询不相关的文档。

目前, 有多种文本聚类算法, 大致可以分为两种类型: 以G) HAC 等算法为代表的层次凝聚法和以K. means 等算法为代表的平面划分法。

3. 文本结构分析:为文本结构进行分析是为了更好地理解文本的主题思想, 了解文本所表达的内容以及采用的方式。

最终结果是建立文本的逻辑结构, 即文本结构树, 根结点是文本主题, 依次为层次和段落。

4.Web 文本数据挖掘:在Web 迅猛发展的同时, 不能忽视“信息爆炸”的问题, 即信息极大丰富而知识相对匮乏。

据估计,web 已经发展成为拥有3 亿个页面的分布式信息空间。

在这些大量、异质的Web 信息资源中, 蕴含着具有巨大潜在价值的知识。

这样就需要一种工具使人们能够从Web 上快速、有效的发现资源和知识。

2. 文本挖掘过程( 1) 特征表示及预处理文本特征指的是有关文本的元数据, 分为描述性特征,例如文本的名称、日期、大小、类型等, 以及语义性特征, 例如文本的作者、机构、标题、内容等。

对于内容这个难以表示的特征, 要找到一种能够被计算机所处理的表示方法。

矢量空间模型( VSM) 是近年来应用较多的并且效果较好的方法之一。

在该模型中, 文档空间被看作由一组正交词条矢量所组成的矢量空间, 每个文档表示为其中的一个规范化特征矢量V( d) = ( t1 ,w1 ( d) ; ,ti , wi( d) ; ,; tn, wn ( d) ) , 其中ti 为词条项, wi ( d) 为ti 在d 中的权值。

可以将文档d 中出现的所有单词作为ti , 也可以要求ti 是文档d 中出现的短语, 从而提高内容特征表示的准确性。

wi( d)一般被定义为ti 在d 中的出现频率tfi( d) 的函数, 即wi ( d) = ( tfi( d) ) 。

常用的( 有布尔函数、平方根函数、TFIDF 函数、对数函数等。

预处理的过程首先排除出现频率高但是含义虚泛的词语, 例如英文中的a, the, each, for, 汉语中的/ 地、得、的、这、虽然等; 然后排除那些在文档集合中出现频率很低的单字; 在英文中还可以去前缀找词根, 如worker,working, worked 都可以表示同一个词work。

( 2) 特征集约简一个有效的特征集直观上说必须具备以下两个特点: ¹完全性: 确实体现目标文档的内容;区分性: 能将目标文档特征集约减的目的是为了提高程序效率和运行速度, 并且防止过拟合( Overfit) 。

数万维的特征对文本分类的意义是不同的, 一些通用的、各个类别都普遍存在的特征对分类的贡献不大, 在某个特定的类中出现的比重大而在其他类中出现比重小的特征对文本的贡献大。

对每一类, 去除对分类贡献小的特征, 筛选出针对反映该类的特征集合。

用向量空间法表示文档时, 文本特征向量的维数往往达到数十万维, 即使经过删除停用词表中的停用词以及应ZIP法则删除低频词, 仍会有数万维特征留下。

最后一般只选择一定数目的最佳特征来开展各种文本挖掘工作, 所以进一步对特征进行约减就显得异常重要。

通常, 特征子集的提取是通过构造一个特征评估函数,对特征集中的每个特征进行评估, 每个特征获得一个评估分数, 然后对所有的特征按照分数大小进行排序, 选取预定数目的最佳特征作为特征子集。

文本特征选择中的评估函数是从信息论中延伸出来的, 用于给各个特征词条打分, 很好地反映了词条与各类之间的相关程度。

常用的评估函数有文档频数、信息增益、期望交叉熵、互信息、x2 统计、单词权、文本证据权和几率比等。

( 3) 文本挖掘方法文本分类算法主要包括以下几个分类模型: 相似度模型、组合模型、线形模型、非线形模型、概率模型。

在相似度模型中, 方法有计算文档与代表某一文档类别的中心向量之间的相似度( dk , ci) , 类别中心向量是根据测试文本统计计算的估计值。

另一种方法不需建立描述文档类别的中心向量, 而是依赖于测试文档与训练文档之间的相似度,K 邻近算法是这个模型的典型算法, 它的主要思想是计算找到训练集与测试文本距离最近的k 个文本。

线形模型有线形最小二乘拟合方法和支持向量机。

非线形模型包括层次模型和网络模型。

层次模型的典型算法是决策树, 该算法以自顶向下递归的方式构造一树型结构, 从具有最优信息增益的属性开始, 对测试树型的每个已知值创建一个分支,直到需要分类的样本测试完所有的树型。

网络模型的主要算法是神经网络方法。

概率模型中典型算法是朴素贝叶斯算法。

它的主要思想是基于贝叶斯假设, 即文档中的词汇在确定文本类别的作用上相互独立。

它首先计算特征词属于每个类别的先验概率, 在新文本到达时, 根据特征词的先验概率计算该文本属于每一个类别的后验概率, 最后取后验概率最大的类别作为分类结果。

3. 文本挖掘应用的领域文本挖掘作为数据挖掘中一个日益流行而重要的研究课题应用前景广泛, 主要有网络浏览、文本检索、文本分类、文档总结等。

( 1) 网络浏览领域:文本挖掘技术可以通过分析用户的网络行为等, 帮助用户更好地寻找有用信息, 一个典型的例子是CMU 的WebWatcher。

这是一个在线用户向导, 可以根据用户的实际点击行为分析用户的兴趣, 预测用户将要选择的链接, 从而为用户进行导航。

( 2) 文本检索领域: 文本检索主要研究对整个文档文本信息的表示、存储组织和访问, 即根据用户的检索要求, 从数据库中检索出相关的信息资料。

这种检索方法有三种: 布尔模型, 如清华大学的5中国学术期刊( 光盘版)6 ; 概率模型, 如美国马萨诸塞大学开发的INQRERY 文本检索系统; 向量空间, 如美国康乃尔大学基于向量空间模型开发了SMART 文本检索系统。

( 3) 文本自动分类:文本分类是指按照预先定义的主题类别, 为文档集合中的每个文档确定一个类别。

这样用户不仅可以方便地阅读文档, 而且可以通过限制搜索范围来使文档查找更容易。

( 4) 文档总结:文档总结也是Web 文本挖掘的一个重要内容。

它是指从文档中抽取关键信息, 用简洁的形式, 对文档内容进行摘要和解释, 这样用户不需阅读全文就可了解文档或文档集合的总体内容。

搜索引擎向用户返回查询结果时, 通常给出文档摘要, 这就是文档总结的一个实例。

( 5) 信息表现: 信息挖掘技术关系的是信息的方方面面,力求从多角度表现信息的本质和特征。

文本挖掘技术能动态地、实时在线地表现信息的相关属性, 使用户及时发现信息, 更新信息和发现信息的演变方向。

( 6) 信息智能代理:主要为在分布式信息网络环境下的信息的查询服务。

信息智能代理使用户可以不知道所要检索信息的具体形式, 存储于何处、何种介质中, 只要用户提出查找要求, 文本挖掘技术会自动地把各种信息源中各种形式的相关信息检索出来, 使用户可以迅速获得较为满意的检索结果。

4. 文本挖掘与其他领域关系( 1) 文本挖掘与信息检索信息检索的目的是帮助用户寻找满足他们需求的信息,用户用一组关键词来表达检索意图,系统返回给用户一组包含这些关键词的文档。

在信息检索中没有/ 产生0 新的信息,而文本挖掘的目的是从文本数据中发现和产生新的知识。

它将文本集合看作是知识库, 而不是简单地看作是多个文本的集合。

它检查文本集合中的每一个文本, 抽取文本信息,然后提出关于新知识的假设, 并验证它。

文本挖掘提供给用户的是以某种形式( 可视化图表、子句等) 表示的关系、模式、规则、趋势等知识, 而不是文档本身。

这些知识通常没有包含在任何一个单独的文档中, 而是隐藏在多个文本中的、新的、以前不为人所知的、也是用户事先无法预料的。

文本挖掘与信息检索也是有联系的, 在文本挖掘中往往通过检索工具来收集文本数据, 而文本挖掘技术可以提高检索工具的效率, 如文本聚类技术可以改善索引数据库、术语关联的产生可以帮助实现查询扩展等。

( 2) 文本挖掘与信息抽取信息抽取的研究目标是从文本中抽取出一些特定的令人感兴趣的信息, 一般来说, 抽取出来的信息被填充到一个预先定义好的带有若干个属性槽的模板中。

信息抽取过程中抽取出的信息往往是文本中的片段, 没有产生新的信息。

另外信息抽取之前必须由用户预先定义好模板, 用户的信息需求是明确的。

通常, 信息抽取针对的是一组类似文本, 这样才能保证信息抽取的效率。

而文本挖掘是从大规模的文本集合( 可能由各种形式的异质文本组成) 中发现新的、用户事先未知的知识。

信息抽取是文本挖掘的重要步骤, 在进行挖掘( 发现知识) 之前, 必须从文本数据中抽取出结构化的文本信息。

相关文档
最新文档