贝叶斯决策的例题练习
贝叶斯决策例题(精选.)

例:某工程项目按合同应在三个月内完工,其施工费用与工程完工期有关。
假定天气是影响能否按期完工的决定因素,如果天气好,工程能按时完工,获利5万元;如果天气不好,不能按时完工,施工单位将被罚款1万元;若不施工就要付出窝工费2千元。
根据过去的经验,在计划实施工期天气好的可能性为30%。
为了更好地掌握天气情况,可以申请气象中心进行天气预报,并提供同一时期天气预报资料,但需要支付资料费800元。
从提供的资料中可知,气象中心对好天气预报准确性为80%,对坏天气预报准确性为90%。
问如何进行决策。
解:采用贝叶斯决策方法。
(1)先验分析根据已有资料做出决策损益表。
根据期望值准则选择施工方案有利,相应最大期望收益值EMV*(先)=0.8(2)预验分析完全信息的最大期望收益值:EPPI=0.3×5+0.7×(-0.2)=1.36(万元)完全信息价值: EVPI=EPPI- EMV*(先)=1.36-0.8=0.56(万元)即,完全信息价值大于信息成本,请气象中心进行预报是合算的。
(3)后验分析①补充信息:气象中心将提供预报此时期内两种天气状态x 1(好天气)、x 2(坏天气)将会出现哪一种状态。
从气象中心提供的同期天气资料可得知条件概率: 天气好且预报天气也好的概率 P (x 1/θ1)=0.8 天气好而预报天气不好的概率 P (x 2/θ1)=0.2 天气坏而预报天气好的概率 P (x 1/θ2)=0.1 天气坏且预报天气也坏的概率 P (x 2/θ2)=0.9②计算后验概率分布:根据全概率公式和贝叶斯公式,计算后验概率。
预报天气好的概率1111212()()(/)()(/)P x P P x P P x θθθθ=+=0.31预报天气坏的概率2121222()()(/)()(/)P x P P x P P x θθθθ=+=0.69 预报天气好且天气实际也好的概率:111111()(/)(/)()P P x P x P x θθθ⋅==0.3×0.8/0.31=0.77预报天气好而天气坏的概率:212211()(/)(/)()P P x P x P x θθθ⋅==0.7×0.1/0.31=0.23预报天气坏而实际天气好的概率:121122()(/)(/)()P P x P x P x θθθ⋅==0.3×0.2/0.69=0.09预报天气坏且实际天气也坏的概率: 222222()(/)(/)()P P x P x P x θθθ⋅==0.7×0.9/0.69=0.91上述计算可以用表格表示:③ 后验决策:若气象中心预报天气好(x1),则每个方案的最大期望收益值 E(d1/x1)=0.77×5+0.23×(-1)=3.62 E(d2/x1)=0.77×(-0.2)+0.23×(-0.2)=-0.2选择d1即施工的方案,相应在预报x1时的最大期望收益值E (X1)=3.62若气象中心预报天气不好(x2),各方案的最大期望收益值 E(d1/x2)=0.09×5+0.91×(-1)=-0.46 E(d2/x2)=0.09×(-0.2)+0.91×(-0.2)=-0.2选择d2即不施工的方案,相应在预报x2时的最大期望收益值E (X2)=-0.2④ 计算补充信息的价值:得到天气预报的情况下,后验决策的最大期望收益值:1122*()()()()()EMV P x E x P x E x =⋅+⋅后=0.31×3.62+0.69×(-0.2)=0.9842则补充的信息价值为:EMV*(后)-EMV*(先)=0.9842-0.8=0.1842补充信息价值大于信息费(800元),即这种费用是合算的。
贝叶斯决策的经典例题练习

英国1999年合同第三人权利法英文The Contracts (Rights of Third Parties) Act 1999 in the United Kingdom is a significant piece of legislation that has had a major impact on contract law in the country. This Act, which came into force on 11 November 1999, allows third parties to enforce contractual rights that have been made for their benefit, even if they are not a party to the original contract.Prior to the enactment of this Act, the common law doctrine of privity of contract prevented third parties from enforcing contractual rights. This meant that if a contract was made between two parties for the benefit of a third party, that third party had no legal standing to enforce the contract. The Contracts (Rights of Third Parties) Act 1999 sought to remedy this situation by allowing third parties to enforce their rights under certain circumstances.Under the Act, a third party can enforce a contractual term if the contract expressly provides that they can do so, or if the term confers a benefit on the third party. The Act also allows for the variation and rescission of the contract by the parties, even if the third party's rights have already been vested. However, the Act does not allow a third party to enforce a term if it would be inconsistent with the contract or if the contract expressly states that the third party cannot enforce the term.One of the key advantages of the Contracts (Rights of Third Parties) Act 1999 is that it provides greater flexibility and certainty in contractual relationships. Parties can now include provisions in their contracts that allow third parties to enforce their rights, knowing that those rights will be legally enforceable. This can be particularly useful in complex commercial transactions where multiple parties may have an interest in the contract.The Act has also been praised for its ability to protect the interests of third parties who may have been unfairly disadvantaged by the privity rule. By allowing third parties to enforce their rights, the Act ensures that they are not left without legal recourse if thecontracting parties fail to fulfill their obligations. This can help to prevent unjust outcomes and promote fairness in contractual relationships.In conclusion, the Contracts (Rights of Third Parties) Act 1999 has had a significant impact on contract law in the United Kingdom. By allowing third parties to enforce their rights under certain circumstances, the Act has increased flexibility, certainty, and fairness in contractual relationships. It is an important piece of legislation that has helped to modernize and improve contract law in the UK.。
贝叶斯公式典型例题

贝叶斯公式典型例题
贝叶斯公式是一种计算条件概率的公式,常用于根据已知条件更新某个事件发生的概率。
下面是一个贝叶斯公式的典型例题:
例:假设有两种类型的围棋棋手,分别是专业棋手和业余棋手。
专业棋手在比赛中获胜的概率为0.9,而业余棋手获胜的概率为0.3。
已知在所有棋手中,专业棋手占70%,业余棋手占30%。
现在有一场比赛,我们只知道其中一位棋手获胜了,那么这位棋手是专业棋手的概率是多少?
解:首先,我们定义以下事件:
•A:棋手是专业的
•B:棋手获胜
根据题意,我们知道:
•P(A) = 0.7(专业棋手占比)
•P(¬A) = 0.3(业余棋手占比)
•P(B|A) = 0.9(专业棋手获胜的概率)
•P(B|¬A) = 0.3(业余棋手获胜的概率)
我们要找的是P(A|B),即在已知棋手获胜的条件下,棋手是专业的概率。
根据贝叶斯公式,我们有:
P(A|B) = \frac{P(A) \times P(B|A)}{P(A) \times P(B|A) + P(¬A) \times P(B|¬A)}将已知的概率值代入公式中,我们得到:
P(A|B) = \frac{0.7 \times 0.9}{0.7 \times 0.9 + 0.3 \times 0.3} = \frac{0.63}{0.63
+ 0.09} = \frac{0.63}{0.72} = 0.875
所以,在已知棋手获胜的条件下,这位棋手是专业棋手的概率为0.875。
这个例题展示了贝叶斯公式在更新条件概率方面的应用。
通过已知的概率值和贝叶斯公式,我们可以计算出在给定条件下的未知概率。
贝叶斯推理例子

贝叶斯推理例子
1. 嘿,你想想看啊,比如说你去买彩票,你觉得中奖的概率有多大呢?这就可以用贝叶斯推理呀!你先根据以往的开奖情况大概估计一个基础概率,然后每次开奖后根据新的结果来调整你的概率判断,这多有意思啊!
2. 来,咱说个生活中的例子。
你判断今天会不会下雨,你会先根据天气预报和以往的经验来有个初步想法吧,但如果突然天空变得阴沉沉的,你不得赶紧调整你觉得下雨的概率呀,这就是贝叶斯推理在起作用呀,你说是不是?
3. 你知道怎么猜别人手里的牌吗?这也能用贝叶斯推理呢!看他的表情动作,先有个初步判断,然后随着每一轮出牌,不断更新你对他手里牌的估计,哎呀,多带劲啊!
4. 你想想,你找工作的时候,对拿到某个 offer 的概率判断不也是这样嘛!开始根据公司的要求和自己的情况有个想法,然后面试过程中根据各种表现来调整,这可真是贝叶斯推理的活用呀!
5. 就像你猜你喜欢的人对你有没有意思,一开始你有个感觉,然后通过他跟你的每次互动,你不就会调整那个可能性嘛,这就是贝叶斯推理呀,神奇吧!
6. 好比你玩猜数字游戏,你先乱猜一个,然后根据提示不断缩小范围,调整你的猜测,这不就是活脱脱的贝叶斯推理嘛,多好玩呀!
7. 哎呀,你看医生诊断病情也是这样的呀!根据症状先有个初步判断,然后做各种检查,根据检查结果不断改变对病情的推测,贝叶斯推理真的无处不在呢!
8. 再比如你预测一场比赛的结果,先有个大概想法,比赛过程中根据双方的表现来不断调整胜败的概率,这不是贝叶斯推理在帮忙嘛,多有用啊!总之,贝叶斯推理在我们生活中可太常见啦,好多事情都能靠它来让我们的判断更准确呢!。
贝叶斯博弈例子

贝叶斯博弈例子
以下是 8 条关于贝叶斯博弈例子:
1. 你想想在牌桌上呀,就像咱打牌的时候,你先根据对手前面出的牌来判断他手里大概有啥牌,这不就是贝叶斯博弈嘛!比如说你看到对手老是出小牌,那是不是大概率他手里大牌不多呀!
2. 去商场买东西砍价也有点这个感觉呢!你看商家报价,然后根据他的态度和表情猜测他的底线,这也是一种贝叶斯博弈嘞!要是他看起来很犹豫,那是不是代表咱还能往下砍砍价呀!
3. 在求职面试的时候呀,你得根据面试官的提问和反应来调整自己的回答策略,这难道不是贝叶斯博弈吗?好比面试官一直追问某个问题,那就得想着更深入地回答呀!
4. 学生时代考试猜答案也能算呢!当你不确定一个题目的答案时,根据以往对这类题目的了解去猜测,这不是贝叶斯博弈是啥呀!哎呀,要是以前做过类似的,那猜对的几率不就大多啦!
5. 谈恋爱的时候其实也有哦!你通过对方平时的言行举止来判断他的喜好和想法,这算不算是在进行贝叶斯博弈呢?比如说他总提到某个东西,那是不是表示他可能很喜欢呀!
6. 参加比赛的时候呀,观察对手的表现来调整自己的战术,这就是活生生的贝叶斯博弈呀!要是看到对手有个弱点,那不就得抓住机会嘛!
7. 玩游戏抢地盘的时候呢,根据其他玩家的行动来决定自己该怎么行动,不也是贝叶斯博弈嘛!他们都往左边去了,那右边是不是咱的机会就来了呀!
8. 去市场买菜的时候呀,看着菜的品质和价格,还有老板的态度,来决定要不要买,这就是一种贝叶斯博弈嘛!要是老板很热情,菜看着也不错,那咱肯定更愿意买啦!
我觉得贝叶斯博弈在我们生活中可太常见了,很多时候我们都在不知不觉中运用着它呢!。
模式识别 第二章 贝叶斯决策论习题答案

t t −1
0 0 0.5 1 1 0 5 21 − 2 21 0 − 2 0 − 2 21 5 21 1 2
i =1 ωi ≠ωmax
∑ P (ω x ) p ( x ) d x
i
c
= ∫ 1 − P (ωmax x ) p ( x ) dx = 1 − ∫ P (ωmax x ) p ( x ) dx
d) 续上式:
(
)
P ( error ) = 1 − ∫ P (ωmax x ) p ( x ) dx ≤ 1− ∫ 1 1 c −1 p ( x ) dx = 1 − = c c c
n t
′ ′ ′ Σ′ = ∑ ( x′ k − μ )( x k − μ )
k =1 n
= ∑ Tt ( x 0 k − μ )( x 0 k − μ ) T
t k =1
n t = Tt ∑ ( x 0 k − μ )( x 0 k − μ ) T k =1 = T t ΣT
+∞ ai
1 1 , p ( x ωi ) = exp ( − x − ai bi ) 2bi 2bi = x − a2 x − a1 b2 exp − b1 b1 b2 ;
b)
似然比 =
p ( x ω2 )
p ( x ω1 )
c)
x −1 a1 = 0, b1 = 1, a2 = 1, b2 = 2 ,则: 似然比 = 2exp −x 2
误差率的上界在 p ω1 x = p ω2 x = b) 如果我们令 p ω1 x = p ω2 x =
最小风险贝叶斯例题

最小风险贝叶斯例题
在贝叶斯理论中,我们可以通过考虑不同决策的风险来选择最优决策。
举个例子,假设我们要预测某天的天气,可能有晴天、阴天、雨天三种可能性。
我们可以通过历史数据得到每种天气出现的概率,即先验概率。
但是在实际预测中,不同的预测结果会产生不同的风险。
例如,如果我们将雨天预测为晴天,那么人们可能会忘记带伞而淋雨,这就是预测错误所带来的风险。
因此,我们需要考虑每种预测结果所带来的风险,并选择最小风险的决策。
这就是最小风险贝叶斯决策的思想。
具体来说,在上面的例子中,我们可以定义不同预测结果的风险,例如:
- 将晴天预测为雨天的风险为10元
- 将雨天预测为晴天的风险为20元
- 将阴天预测为雨天的风险为5元
那么,对于某一天的预测结果,我们可以根据先验概率和风险计算出每种决策的期望风险,选择最小期望风险对应的决策。
例如,如果先验概率为P(晴天)=0.6、P(阴天)=0.3、P(雨天)=0.1,我们对某一天的预测结果为晴天,那么三种决策的期望风险分别为: - 预测晴天,期望风险为0.6*0+0.3*20+0.1*5=6元
- 预测阴天,期望风险为0.6*10+0.3*0+0.1*5=7元
- 预测雨天,期望风险为0.6*20+0.3*5+0.1*0=15元
因此,我们应该选择预测晴天的决策,这样就可以最小化风险。
贝叶斯决策例子

贝叶斯决策练习某石油公司拟在一片估计含油的荒地上钻井。
如果钻井,费用为150万,若出油的概率为0.55,收入为800万元;若无油的概率为0.45,此时的收入为0。
该公司也可以转让开采权,转让费为160万元,但公司可以不担任何风险。
为了避免45%的无油风险,公司考虑通过地震试验来获取更多的信息,地震试验费用需要20万元。
已知有油的情况下,地震试验显示油气好的概率为0.8,显示油气不好的概率为0.2;在无油条件下,地震显示油气好的概率为0.15,而显示油气不好的概率为0.85。
又当试验表明油气好时,出让开采权的费用将增至400万元,试验表明油气不好时,出让开采权费用降至100万元,问该公司应该如何决策,使其期望收益值为最大。
解:该公司面临两个阶段的决策:第一阶段为要不要做地震试验,第二阶段为在做地震试验条件下,当油气显示分别为好与不好时,是采取钻井策略还是出让开采权。
若用A 1表示有油,A 2表示无油;用B 1表示地震试验显示油气好,B 2表示地震试验显示油气不好。
由题意可知:1211211222()0.55 ()0.45(|)0.8 (|)0.2(|)0.15 (|)0.85P A P A P B A P B A P B A P B A ======由贝叶斯公式计算得到:11111111212()(|)0.440.44(|)0.867()(|)()(|)0.440.06750.5075P A P B A P A B P A P B A P A P B A ====++ 同理,有: 2112220.0675(|)0.1330.50750.11(|)0.2230.49250.3825(|)0.7770.4925P A B P A B P A B ======该问题对应的决策树图采用逆序的方法,先计算事件点②③④的期望值:事件点 期望值② 800×0.867+0×0.133=693.6(万元)③ 800×0.223+0×0.777=178.4(万元)④ 800×0.55+0×0.45=440(万元) 在决策点2,按max[(693.6-150),400]=543.6万元,故选择钻井,删除出让开采权策略; 在决策点3,按max[(178.4-150),100]=100万元,故选择出让开采权,删除钻井策略; 在决策点4,按max[(440-150),160]=290万元,故选择钻井策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、贝叶斯决策(Bayes decision theory)
【例】某企业设计出一种新产品,有两种方案可供选择:一是进行批量生 产,二是出售专利。
这种新产品投放市场,估计有3种可能:畅销.中等、 滞销,这3种情况发生的可能性依次估计为_和。
方案在各种情况下的 若实际市场状况为畅销,则调查结果为畅销.中等和滞销的概率分别为、 和;若实际市场状况为中等,则调查结果为畅销、中等和滞销的概率分别 为、和;若实际市场状况为滞销,则调查结果为畅销、中等和滞销的概率 分别为、和。
问:企业是否委托专业市场调查机构进行调查 解:
1•验前分析:
记方案dl 为批量生产,方案d2为出售专利
E(dl)=*80+*20+* (-5) = (万元)
E (d2)=40*+7*+l*=(万元)
记验前分析的最大期望收益为El,则El=max{E(dl),E(d2)} = (万元)
因此验前分析后的决策为:批量生产
E1不作市场调查的期望收益
2•预验分析:
(1)设调查机构调查的结果畅销、中等、滞销分别用H1、H2、H3表示 方案 万元
6,
0.2
0.5 0- 3 批»生产山
R0 20 -5 岀書专利必
40 7 I
利润及期望利润如下
企业可以以1000元的成本委托专业市场调查机构调查该产品销售前景。
由全概率公式
P(H1)=*+*+*=
P(H2)=*+*+*=
P(H3)=*+*+*=
(2)由贝叶斯公式有
P(?3|H1)=*=
P(?l H2)=*=
P(?2 H2)=*=
P(?3|H2)=*=
P(?1|H3)=*=
P(?2 H3)=*=
P(?3|H3)=*=
(3)用后验分布代替先验分布,计算各方案的期望收益值a)当市场调查结果为畅销时
E(dl|Hl)=80* P(?1!H1)+2O* P(?2 Hl) + (-5)* P(?3|H1) =80*+20*+ (-5) *=(万元)
E(d2|Hl)=40* P(?l Hl)+7* P(?2|H1)+1* P(?3|H1)
=40*+7*+l*=(万元)
因此,当市场调查畅销时,最优方案是dl,即批量生产
b)当市场调查结果为中等时
E(dl|H2)=80* P(?l 丨H2)+20* P(?2 H2) + (-5)* P(?3|H2) = (万
元)
E(d2|H2)=40* P(?liH2)+7* P(?2|H2)+1* P(?3|H2)
=40*+7*+l*=(万元)
所以市场调查为中等时,最优方案是:db即批量生产C)当市场调查结果为滞销时
E(dl|H3)=80* P(?1!H3) +20* P(?2 H3) + (-5)* P(?3|H3)
=80*+20*+(-5)*=(万元)
E(d2|H3)=40* P(?l;H3)+7* P(?2|H3)+1* P(?3|H3)
=40*+7*+l*=(万元)
因此市场调查为滞销时,最优方案是:d2,即出售专利
(4)通过调查,该企业可获得的收益期望值为
E2= E(dllHl)* P(H1)+ E(dliH2)* P(H2) + E(d2 H3)* P(H3) =*+*+* 二(万元)
通过调查,该企业收益期望值能增加
E2-E1=(万元)
因此,在调查费用不超过万元的情况下,应进行市场调查
3.验后分析
(1)本题中调查费用10000600,所以应该进行市场调查
(2)当市场调查结果为畅销时,选择方案1,即批量生产
(3)当市场调查结果为中等时时,选择方案1,即批量生产(4)当市场调查结果为滞销时,选择方案2,即出售专利。