统计学 相关分析.ppt

合集下载

统计学课件ppt(全)

统计学课件ppt(全)

统计是以数据为食物的动物 统计的本业是消化数据, 并产生有营养的结果。
Data—— Statistics ——Information
经济学家、教育家、人口学家 原北京大学校长 马寅初
• 学者不能离开统计而研究 • 政治家不能离开统计而施政 • 企业家不能离开统计而执业
第一节 统计与统计学
• 统计与统计学的含义 • 统计数据的规律与统计方法
二、统计数据的规律与统计方法
以上例子说明,通过多次观察或试验可 以得到大量的统计数据,利用统计方法是 可以探索其内在的数量规律性。因为客观 事物本身是必然性与偶然性的对立统一, 必然性反映了事物的本质特征,偶然性反 映了事物表现形式的差异。(举例学生的 平均分,标准差)
举例3:《2011年武汉地区高校毕业 生就业报告》
• 即使入职相同行业,不同部门间的收入差 距也较大。从总体看,高校毕业生薪资起 点呈现“研发岗”>“销售岗”>“职能 岗”>“行政岗”的总体态势。 • 在不同性质的企业中,应届高校毕业生工 资最高的是外资企业,达2500元以上的占 到62.3%,达5000元以上的占到8.2%。接 近半数的应届毕业生,工资水平集中在 1500元-2500元之间。
举例5:文学也与统计有关
据统计学家(复旦大学李贤平教授)对《红 楼梦》各回的虚词(47个虚词:之,其,或,呀, 吗,可,便,就……)出现的频率进行统计分析 (原因是由于个人写作特点和习惯的不同,所用 的虚词是不会一样的),采用聚类分析,(物以 聚类,人以群分)发现前80回和后40回明显不同, 出自不同的人,进一步运用判别分析,发现前80 回是曹雪芹缩写,后40回不是高鹗一人所写,而 是曹雪芹亲友将其草稿整理而成,宝黛故事为一 人所写,贾府衰败情景为另一人所写等等,这个 论证在红学界轰动很大。

相关分析 (级适用幻灯片PPT

相关分析 (级适用幻灯片PPT
相关分析 (级适用幻灯片PPT
本PPT课件仅供大家学习使用 请学习完及时删除处理 谢谢!
本章内容
7.1 相关分析概述 7.2 相关分析 7.3 偏相关分析
7.1 相关分析概述
客观事物之间的关系大致可归纳为两大类,即
函数关系:指两事物之间的一种一一对应的关系,如 商品的销售额和销售量之间的关系。
(xi x)2
其中, S y
( yi yˆi )2 n2
ti
i
~ t(n p 1)
(xij xi )2
其中, S y
( yi yˆi )2 n p 1
对于多元线性回归方程,检验统计量为:
9.4.3.4残差分析
变动一个单位所引起的因变量y的平均变动。
9.4.3 线性回归方程的统计检验
9.4.3.1回归方程的拟合优度
回归直线与各观测点的接近程度称为回归方程的拟合优度, 也就是样本观测值聚集在回归线周围的紧密程度 。
1、离差平方和的分解:
建立直线回归方程可知:y的观测值的总变动
可由 (y来y反)2映,称为总变差。引起总变差的
偏相关
单相关:两个变量之间的相关。
复相关:一个变量对两个或两个以上其 他变量的相关关系。
偏相关:在某一现象与多种现象相关的 场合,假定其他变量不变,专门考察其 中两个变量的相关关系称为偏相关。
相关分析的内容
判断社会经济现象之间是否存在相关关 系,是直线相关,还是曲线相关;
确定相关关系的密切程度。
利用城乡居民收入与消费数据文件,绘制城镇 居民人均可支配收入与人均消费支出、农村居 民人均纯收入与人均消费支出的重叠散点图
利用住房状况数据文件,绘制计划购房面积、 常住人口、现有住房面积的矩阵散点图和3-D 散点图

统计学8ppt课件

统计学8ppt课件
原 理
商品销售量q(百件)
商品价格p(元)
33
8
32.5
9
26
11
27
12
25
12.5
23.5
13
21
14
16.5
16

17

合计 219.5

17 112.5
pq 264 292.5 286 324 312.5 305.5 294 264 255 2597.5
P2 64 81 121 144 156.25 169 196 256 289 1476.25


▪ 回归参数估计 ▪ 方程拟合效果评价 ▪ 回归参数的推断
第 八 章
返回本章首页

计 学
第二节 简单线性相关分析


➢ 一、散点图和相关表 ➢ 二、相关系数的测定与应用 ➢ 三、相关系数的密切程度
第 八 章

计 学
一、散点图和相关表


例:近年来国家教育部决定将各高校的后勤社会化。 某从事饮食业的企业家认为这是一个很好的投资机 会,他得到十组高校人数与周边饭店的季销售额的 数据资料,并想根据高校的数据决策其投资规模。
2
-2
3
-1
4
0
5
1
6
2
7
3
28
0
游客(万人) 100 112 125 140 155 168 180 980
t2
1
9
4
4
9
1
16
0
25
1
36
4
49
9
140
28
ty

《统计学原理与应用》课件第07章 相关与回归分析

《统计学原理与应用》课件第07章 相关与回归分析

74.4 172.0 248.0 418.0 575.0 805.2 972.0 1,280.0
104,214
4,544.6
统计学基础
第七章 相关与回归分析
根据计算结果可知:Βιβλιοθήκη x 36.4y 880
n8
x2 207.54
y2 104,214
xy 4,544.6
Fundamentals of Statistics
n x2 ( x)2 n y2 ( y)2
公式7—3
公式7—3是实际工作中使用较多的计算公式
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(四)相关系数的运用
(1)相关系数有正负号,分别表示正相关和负相关。
(2)相关系数的取值范围在绝对值的0 之1 间。其值大小 反映两变量之间相关的密切程度。
统计学基础
第七章 相关与回归分析
二、相关关系的种类
3.相关关系按照相关的方向分为正相关和负相 关 正相关:是指一个变量的数量变动和另一个变 量的数量变动方向一致.
负相关:当一个变量的数量变动与另一个变量 的数量变动方向相反时,称为负相关.
Fundamentals of Statistics
统计学基础
统计学基础
第七章 相关与回归分析
二、相关关系的测定 (一)相关系数的含义:
相关系数是在直线相关的条件下,用来说明两个 变量之间相关关系密切程度的统计分析指标。
Fundamentals of Statistics
统计学基础
第七章 相关与回归分析
(二)相关系数的作用
1.说明直线相关条件下,两变量的相关关系的密切程 度的高低. (见教材第159页说明)

《统计分析方法》课件

《统计分析方法》课件

假设检验的基本原理
80%
提出假设
根据研究目的,提出一个或多个 关于参数的假设。
100%
检验统计量
根据样本数据和提出的假设,计 算一个或多个检验统计量。
80%
决策
根据检验统计量和临界值,决定 是否拒绝或接受提出的假设。
单侧检验与双侧检验
单侧检验
只考虑参数在某一方向上的变化,例如只考虑数值增大或只考虑数值减小。
VS
详细描述
非参数核密度估计通过使用核函数对数据 进行加权,并根据权重生成密度函数,能 够估计出数据的分布情况。该方法不需要 假设数据分布形式,具有较好的灵活性和 稳健性。
非参数秩次检验
总结词
非参数秩次检验是一种不依赖于数据 分布形式的统计检验方法。
详细描述
非参数秩次检验将数据按照大小进行 排序,并赋予秩次,然后根据秩次计 算统计量进行假设检验。该方法能够 处理异常值和离群点,且对数据分布 形式的要求较低。
课程目标
02
01
03
掌握各种统计分析方法的基本原理和应用。
能够根据实际需求选择合适的分析方法。
培养学生对数据的敏感性和分析能力,提高其数据处 理和分析的能力。
02
描述性统计分析
数据的收集与整理
01
02
03
04
确定研究目的
在开始数据收集之前,需要明 确研究的目的和问题,以便有 针对性地收集相关数据。
方差分析的统计模型
方差分析使用F统计量 来检验各组数据的方差 是否存在显著差异。
F统计量的计算公式为 :$F=frac{组间方差}{ 组内方差}$。
如果F统计量大于临界 值,则说明各组数据的 方差存在显著差异,即 数据来自不同总体。

统计学原理相关分析

统计学原理相关分析

二、相关分析的概念
一.相关分析就是对总体中确实具有联系的标志进行分析,其主体是对总 体中具有因果关系标志的分析。
二.现象总体的依存关系类型:
○ 因素标志是决定结果标志发展的条件,根据结果标志对因素标志的不同反应,可分两 种类型。
○ 函数关系是当因素标志的数量确定之后,结果标志的数量也随之完全确定,以y=f(x) 表现
相关系数r的性质:
r 1
0、当r 1 时,x与y为完全线性相关,它们之间存在确定
的函数关系。
r 0.3微弱相关0.3、 r 0.5低度相关
、当
0.5 r
0.8时显,著 表示相x与关0y.存8、在

r
一1定的高线度 性 相相关 关 , r 的
绝对值越大,越接近于1,表示x与y直线相关程度越高,
当r 反0之时越低,。表示 x与y为正相关
要求:编制以学习时间为自变量的直线回归方
03

计算学习时间和学习成绩直接的相关系数,并
04
解释相关的密切程度和方向(15分)
r
定义x2y: 为x 基础y
是,、按通积过x2差两y 方个法 离计 差(x算 相, 乘xn同 来)(样 反y以 映两 两y)变 变协 量 量与 之方各 间自相差平关
均值的 程度。


x公式:(xnx)2、x的标准差y
(y y)2、y标准差 n
即r (xx)(y y)或r (xx)(y y)
①、单变量分组相关表
自变量分组并 计算次数,而 对应的因变量 不分组,只计 算其平均值。
单变量分组相 关表的特点: 使冗长的资料 简化,能够更 清晰地反映出 两变量之间相 关关系。
、双变量分组 相关表:

第九章 相关与回归分析 《统计学原理》PPT课件

第九章  相关与回归分析  《统计学原理》PPT课件

[公式9—4]
r xy n • xy
x y
[公式9—5]
返回到内容提要
第三节 回归分析的一般问题
一、回归分析的概念与特点
(一)回归分析的概念
现象之间的相关关系,虽然不是严格 的函数关系,但现象之间的一般关系值, 可以通过函数关系的近似表达式来反映, 这种表达式根据相关现象的实际对应资料, 运用数学的方法来建立,这类数学方法称 回归分析。
单相关是指两个变量间的相关关系,如 自变量x和因变量y的关系。
复相关是指多个自变量与因变量间的相关 关系。
(二)相关关系从表现形态上划分,可分为 直线相关和曲线相关
直线相关是指两个变量的对应取值在坐标 图中大致呈一条直线。
曲线相关是指两个变量的对应取值在坐 标图中大致呈一条曲线,如抛物线、指数曲线、 双曲线等。
0.578
a y b x 80 0.578 185 3.844
n
n7
7
yˆ 3.844 0.578x
二、估计标准误差 (一)估计标准误差的概念与计算 估计标准误差是用来说明回归直线方程 代表性大小的统计分析指标。其计算公式为:
Syx
y yˆ 2
n
[公式9—8]
实践中,在已知直线回归方程的情况下, 通常用下面的简便公式计算估计标准误差:
[例9—2] 根据相关系数的简捷公式计算有:
r
n xy x y
n x2 x2 n y2 y2
7 218018580
0.978
7 5003 1852 7 954 802
再求回归直线方程:
yˆ a bx
b
n xy x y
n x2 x2
7 2180 18580 7 50031852

统计学第八章 相关与回归分析PPT课件

统计学第八章 相关与回归分析PPT课件

30.07.2020
河北工程大学经济管理学院
9
二、相关关系的种类
把握以下问题: 1、按相关程度划分; 2、按相关方向划分; 3、按相关形式划分; 4、按变量多少划分; 5、按相关性质划分。
30.07.2020
河北工程大学经济管理学院
10
1、按相关程度划分
可分为完全相关、不完全相关和不相关 (1)完全相关:当一种现象的数量变化完全
5、按相关性质划分
分为“真实相关”和“虚假相关”: (1)当两种现象间的相关确实具有内在的联 系时,称之为“真实相关”。例如消费与收入 的相关关系等。 (2)当两种现象间的相关只是表面存在,实 质没有内在联系时,称之为“虚假相关”。 判断依据是实质性科学提供的知识。
30.07.2020
河北工程大学经济管理学院
函数关系是指变量之间存在着严格确定的依
存关系,在这种关系中,当一个或几个变
量取一定量的值时,另一变量有确定值与
之相对应,并且这种关系可以用一个数学
表达式反映出来。例如:某种产品的总成
本S与该产品的产量Q以及该产品的单位成
本P之间的关系可用S=PQ表达,这就是一
种函数关系。通常把作为影响因素的变量
称为自变量,把发生相应变化的变量称为
30.07.2020
河北工程大学经济管理学院
5
一、函数关系与相关关系
▪ 客观现象总是普遍联系和相互依存的, 客观现象间的数量联系存在两种不同 类型:函数关系和相关关系。
▪ 把握三个问题:
▪ 1、函数关系;
▪ 2、相关关系;
▪ 3、二者关系。
30.07.2020
河北工程大学经济管理学院
6
1、函数关系
因变量。在本例中,S是因变量,P与Q则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F Yj f1jf2j fij fcj fij i1
cr
F X1F X2 F Xi F Xc
fijn
i1j1
cr
F X1F X2 F Xi F Xc
fijn
i1j1
11.11.2020
12
条件频数表中各频数因基数不同不 便作直接比较,因此有必要将频数化成 相对频数,使基数标准化。这样,我们 就从频数分布的列联表得到了相对频数 分布的列联表(或称频率分布的列联表)。 下表是r×c相对频数分布列联表的一般 形式。
11.11.2020
9
r×c频数分布列联表的一般形式
11.11.2020
10
自己志愿
快乐家庭 理想工作 增广见闻
总数
知心朋友志愿
快乐家 理想工 增广见



28
9
3
2
41
7
2
4
4
32
54
14
总数
40 50 10 100
11.11.2020
11
两个边际分布:
r
FXi fi1fi2 fij fir fij j1 c
由于数学手段的局限性,我们以学习线性相关为主。在 统计学中,通过分段处理线性相关也可以用于处理曲线相 关。
11.11.2020
6
第二节 定类变量的相关分析
本节内容: 1、列联表 2、削减误差比例 3、λ系数 4、τ系数
11.11.2020
7
1. 列联表
列联表,是按品质标志把两个变量的频数分布进 行交互分类,由于表内的每一个频数都需同时满足两个 变量的要求,所以列联表又称条件频数表。
变量和因变量,或者说自变量和因变量可以根据研究目的 任意选定,例如身高和体重之间的关系。
11.11.2020
5
4. 单相关和复相关 从变量的多少上看,单相关只涉及两个变量,亦称二元
相关;三个或三个以上变量之间的关系称为复相关,亦称多 元相关。 五、直线相关和曲线相关
从变量变化的形式上看,如果关系近似地表现为一条直 线,称为直线相关或线性相关;如果关系近似地表现为一条 曲线,则称为曲线相关或称为非线性相关。
11.11.2020
2
第一节 变量之间的相互关系
1. 相关程度 完全相关,指变量之间为函数关系;完全不相关指变
量之间不存在任何依存关系,彼此独立。不完全相关介于 两者之间。不完全相关是本章讨论的重点。
由于数学手段上的局限性,统计学探讨的最多的是定 距—定距变量间能近似地表现为一条直线的线性相关。在
11.11.202013×c相对频数分布列联表的一般形式
11.11.2020
14
在相对频数分布列联表中,各数据为各分类
出现的相对频数(或者频率)。将频数
f
化成相对
ij
频数 p ij 有两种做法:
①相对频数联合分布
pij
f ij n
两个边际分布 F X i 或
FYj
n
n
②相对频数条件分布
p ij
f ij 或 FX i
p ij
f ij FYj
11.11.2020
15
r×c相对频数联合分布列联表
11.11.2020
16
控制X,Y相对频数条件分布列联表
11.11.2020
17
控制Y,X相对频数条件分布列联表
11.11.2020
18
[例A1]试把下表所示的频数分布列联表,转 化为自变量受到控制的相对频数条件分布列联 表,并加以相关分析。
统计中,对于线性相关,采用相关系数(记作r)这一指标 来量度相关关系程度或强度。就线性相关来说,当r =l 时,表示为完全相关;当r =0时,表现为无相关或零相 关;当0< r <1时,表现为不完全相关。
11.11.2020
3
2. 相关方向:正相关和负相关 所谓正相关关系是指一个变量的值增加时,另一变
第二章 相关分析
第一节 相关关系及种类 第二节 定类变量的相关分析 第三节 定序变量的相关分析 第四节 定距变量的相关分析
11.11.2020
1
社会上,许多现象之间也都有相互联系,例如: 身高与体重、教育程度和收入、学业成就和家庭环境、 智商与父母智力等。在这些有关系的现象中,它们之 间联系的程度和性质也各不相同。
投票行为
受教育程度X
Y
大学以 大学以
FY


投票
160
129
289
弃权
7
61
68
合计:FX
167
190
357
11.11.2020
19
投票行为Y
投票 弃权
r
j 1
受教育程度X
大学以上
大学以下
95.8%(160/167) 4.2%(7/167)
100.0% (167))
67.9%(129/190)
32.1%(61/190)
11.11.2020
4
3. 因果关系与对称关系 因果关系中两个变量有自变量(independent
Variable)和因变量(dependent Variable)之分: (1)两个变量有共变关系; (2)因变量的变化是由自变量的变化引起的; (3)两个变量的产生和变化有明确的时间顺序,前者
称为自变量,后者称为因变量。 表现为对称关系的相关关系,互为根据,不能区分自
本书第十章提出了两总体的检验及估计的问题,这 意味着我们开始与双变量统计方法打交道了。双变量 统计与单变量统计最大的不同之处是,客观事物间的 关联性开始披露出来。这一章我们将把相关关系的讨 论深入下去,不仅要对相关关系的存在给出判断,更 要对相关关系的强度给出测量,同时要披露两变量间 的因果联系,其内容分为相关分析和回归分析这两个 大的方面。
例如,某区调查了357名选民,考察受教育程度与投 票行为之间的关系,将所得资料作成下表,便是一种关 于频数的列联表。
11.11.2020
8
2×2频数分布列联表的一般形式
习惯上把因变量Y放在表侧,把自变量X放在表头。 2×2列联表是最简单的交互分类表。 r×c列联表 r(row)、c(column)
量的值也增加。例如,受教育水平越高找到高薪水工作的 机会也越大。而负相关关系是指一个变量的值增加时,另 一变量的值却减少。例如,受教育水平越高,理想子女数 目越少。要强调的是,只有定序以上测量层次的变量才分 析相关方向,因为只有这些变量的值有高低或多少之分。 至于定类变量,由于变量的值并无大小、高低之分,故定 类变量与其他变量相关时就没有正负方向了。
100.0%
Fy n
(190)
FY n
81.0%(289/357) 19.0%(68/357)
100.0% (357)
从上表可知,受过大学以上教育的被调查者绝大多
数(占95.8%)是投票的,受教育程度在大学以下的被调 查者虽多数也参与投票(占67.9%),但后者参与投票的百 分比远小于前者;前者只有4.2%弃权,而后者则有32.1% 弃权。两相比较可知,受教育程度不同,参与投票的行
相关文档
最新文档