三角形内切圆知识点总结

合集下载

三角形的内切圆知识点总结

三角形的内切圆知识点总结

三角形的内切圆知识点总结三角形的内切圆是指能够与三角形的三条边都相切的圆。

它在三角形中起到了重要的几何作用,不仅在数学中有重要的应用,也在实际生活中有许多实际意义。

本文将从三角形的内切圆的定义、性质、构造方法、应用等方面进行探讨。

一、内切圆的定义三角形的内切圆是指能够与三角形的三条边都相切的圆。

换句话说,内切圆的圆心与三角形的三边的交点都在同一条直线上。

内切圆的半径被称为三角形的内切圆半径,通常用r表示。

二、内切圆的性质1. 内切圆的圆心与三角形的三边的交点都在同一条直线上,这条直线被称为内切圆的欧拉线。

2. 内切圆的半径与三角形的三边的长度有一定的关系。

根据欧拉定理,内切圆的半径r等于三角形的周长p与面积S的比值的一半,即r = S/p。

3. 内切圆的半径r与三角形的三个内角的正弦值的倒数之和有关,即1/r = (sinA + sinB + sinC)/p,其中A、B、C分别为三角形的三个内角。

4. 内切圆的圆心与三角形的三个内角的平分线相交。

三、内切圆的构造方法1. 根据内切圆的定义,可以通过直接计算三角形的内切圆半径和圆心的坐标来构造内切圆。

2. 另一种构造内切圆的方法是利用三角形的角平分线和垂直平分线的性质。

首先,通过角平分线找到三个内角的平分线交点,然后通过垂直平分线找到三个内边的中点,最后通过这些点来确定内切圆的圆心和半径。

四、内切圆的应用1. 在数学中,内切圆广泛应用于三角形的面积、周长、角度、长度等问题的计算中。

通过内切圆的性质,可以简化计算过程,提高计算的准确性。

2. 在几何建模中,内切圆可以用来确定三角形的外接圆和外接圆的圆心。

通过内切圆和外接圆的关系,可以更好地理解和描述三角形的形状和结构。

3. 在工程和建筑中,内切圆的应用十分广泛。

例如,在建筑物的设计和施工中,内切圆可以用来确定柱子和墙壁的形状和位置,从而提高建筑物的稳定性和美观性。

三角形的内切圆是与三角形的三条边都相切的圆,具有一系列重要的性质和应用。

初中数学九年级《三角形的内切圆》

初中数学九年级《三角形的内切圆》
求证:BE=CE
B
E O
C
D A
课堂小结:
通过本节课的学习,你知道三角形 的外接圆与内切圆的区别吗?
在模拟考试中,有学生大题做得 好,却在选择题上失误丢分,主 要原因有二:
1、复习不够全面,存在知识死角,或者部分
知识点不够清楚导致随便应付;
2、解题没有注意训练解题技巧 ,导致耽误宝
贵的时间。
选择题考查的内容覆盖了初中阶段所学的重要 知识点,要求学生通过计算、推理、综合分析进行判 断,从“相似”的结论中排除错误选项的干扰,找到 正确的选项。部分学生碰到选择题提笔就计算,答题 思维比较“死”,往往耗时过多,如果一个选择题是 "超时"答对的,那么就意味着你已隐性丢分了,因为占 用了解答别的题目的时间.因此,除了具备扎实的基 本功外,巧妙的解题技巧也是必不可少的。
y
y
y
y
O
x
O
x
O
x
O
x
A
B
C
点拨 (A)对抛物线来讲a<0,对直线来讲a>0矛盾.
D
(B)∵当x=0时,一次函数的y与二次函数的y都等于c
∴两图象应交于y轴上同一点.
∴(B)错,应在(C)(D)中选一个
(D)答案对二次函数来讲a>0,对一次函数来讲a<0,
∴矛盾,故选(C).
1.结论排除法: 例2、如图:某同学把一块三角形的玻璃打碎成三块,现在
当A沿数轴移动4个单位到点B时,点B
所表示的实数是( )
A2
B -6
C -6或2 D 以上都不对
直接分类法
练习1、商场促销活动中,将标价为 200元的商品,在打8折的基础上,再 打8折销售,现该商品的售价是( ) A 160元 B 128元 C 120元 D 88元

三角形内切圆

三角形内切圆

A
O B C
例 2 △ABC 的内切圆⊙O 与 BC、CA、AB 分别相切于点 D、E、F,且 AB=9cm,BC=14cm,CA=13cm,求 AF、 BD、CE 的长
. 例 2、⊙I 内切于△ABC,切点分别为 D、E、F,试说明 (1)△ABC 三边长分别为 a、b、c,⊙I 的半径 r,则有 S△ABC=
名称
确定方法
图形
性质 (1)OA=OB=OC;
外心
三角形三边中垂线的交点 (2)外心不一定在三角形的内部. (1)到三边的距离相等;
内心
三角形三条角平分线的交点
(2)OA、OB、OC 分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.
例 1 如图,在△ABC 中,点 O 是内心, (1)若∠ABC=50, ∠ACB=70°,求∠BOC 的度数。 (2)若∠A=80 °,则∠BOC = 度。 (3)若∠BOC=100 °,则∠A = 度。 (4)试探索: ∠A 与∠BOC 之间存在怎样的数量关系?请说明理由。

1 (a+b+c) 2

F . I E

(2)△ABC 中,若∠ACB=90°,AC=b , BC=a , AB=c,求内切圆半径 r 的长。

例 3、如图,△ABC 中,内切圆 I 和边 BC、CA、AB 分别相切于点 D、E、F,∠B=60°,∠C=70°.求∠EDF 的度数。
A
F
I
E
B
D
C

中考数学复习----《三角形的内切圆与内心》知识点总结与专项练习题(含答案解析)

中考数学复习----《三角形的内切圆与内心》知识点总结与专项练习题(含答案解析)

中考数学复习----《三角形的内切圆与内心》知识点总结与专项练习题(含答案解析)知识点总结1. 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

几何语言:若弦CD AB ,交于点P ,则PD PC PB PA ⋅=⋅。

推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。

几何语言:若AB 是直径,CD 垂直AB 于点P ,则PB PA PD PC ⋅==22。

2. 弦切角定理:(1)弦切角的定义:如图像∠ACP 这样,顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

(2)弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半。

等于这条弧所对的圆周角。

即∠PCA=∠PBC 。

3. 切线长定理:(1)切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。

(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角。

4. 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT2=PA•PB(切割线定理)。

推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。

几何语言:∵PBA,PDC是⊙O的割线∴PD•PC=PA•PB由上可知:PT2=PA•PB=PC•PD。

5. 三角形的内切圆与内心:内切圆与内心的概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。

三角形的内心就是三角形三个内角角平分线的交点。

练习题1、(2022•恩施州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,⊙O为Rt△ABC的内切圆,则图中阴影部分的面积为(结果保留π).【分析】根据题意,先作出相应的辅助线,然后求出内切圆的半径,再根据图形可知:阴影部分的面积=△ABC的面积﹣正方形CEOD的面积﹣⊙O面积的,代入数据计算即可.【解答】解:作OD⊥AC于点D,作OE⊥CB于点E,作OF⊥AB于点F,连接OA、OC、OB,如图,∵∠C=90°,OD=OE=OF,∴四边形CEOD是正方形,∵AC=4,BC=3,∠C=90°,∴AB===5,∵S△ABC=S△AOC+S△COB+S△BOA,∴=,解得OD=OE=OF=1,∴图中阴影部分的面积为:﹣1×1﹣π×12×=5﹣π,故答案为:5﹣π.2、(2022•泰州)如图,△ABC中,∠C=90°,AC=8,BC=6,O为内心,过点O的直线分别与AC、AB边相交于点D、E.若DE=CD+BE,则线段CD的长为.【分析】连接BO,CO,结合内心的概念及平行线的判定分析可得当DE=CD+BE时,DE∥BC,从而利用相似三角形的判定和性质分析计算.【解答】解:如图,过点O的直线分别与AC、AB边相交于点D、E,连接BO,CO,∵O为△ABC的内心,∴CO平分∠ACB,BO平分∠ABC,∴∠BCO=∠ACO,∠CBO=∠ABO,当CD=OD时,则∠OCD=∠COD,∴∠BCO=∠COD,∴BC∥DE,∴∠CBO=∠BOE,∴BE=OE,则DE=CD+BE,设CD=OD=x,BE=OE=y,在Rt△ABC中,AB==10,∴,即,解得,∴CD=2,过点O作D′E′⊥AB,作DE∥BC,∵点O为△ABC的内心,∴OD=OE′,在Rt△ODD′和Rt△OE′E中,,∴△ODD′≌△OE′E(ASA),∴OE=OD′,∴D′E′=DE=CD+BE=CD′+BE′=2+=,在△AD′E′和△ABC中,,∴△AD′E′∽△ABC,∴,∴,解得:AD′=,∴CD′=AC﹣AD′=,故答案为:2或.3、(2022•黔东南州)如图,在△ABC中,∠A=80°,半径为3cm的⊙O是△ABC的内切圆,连接OB、OC,则图中阴影部分的面积是cm2.(结果用含π的式子表示)【分析】根据角A的度数和内切圆的性质,得出圆心角DOE的度数即可得出阴影部分的面积.【解答】解:∵∠A=80°,⊙O是△ABC的内切圆,∴∠DOE=180°﹣()=180°﹣(180°﹣∠A)=130°,∴S扇形DOE==(cm2),故答案为:.4、(2022•宜宾)我国古代数学家赵爽的“弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形(如图所示).若直角三角形的内切圆半径为3,小正方形的面积为49,则大正方形的面积为.【分析】如图,设内切圆的圆心为O,连接OE、OD,则四边形EODC为正方形,然后利用内切圆和直角三角形的性质得到AC+BC=AB+6,(BC﹣AC)2=49,接着利用完全平方公式进行代数变形,最后解关于AB的一元二次方程解决问题.【解答】解:如图,设内切圆的圆心为O,连接OE、OD,则四边形EODC为正方形,∴OE=OD=3=,∴AC+BC﹣AB=6,∴AC+BC=AB+6,∴(AC+BC)2=(AB+6)2,∴BC2+AC2+2BC×AC=AB2+12AB+36,而BC2+AC2=AB2,∴2BC×AC=12AB+36①,∵小正方形的面积为49,∴(BC﹣AC)2=49,∴BC2+AC2﹣2BC×AC=49②,把①代入②中得AB2﹣12AB﹣85=0,∴(AB﹣17)(AB+5)=0,∴AB=17(负值舍去),∴大正方形的面积为289.故答案为:289.。

三角形的内切圆知识点总结

三角形的内切圆知识点总结

三角形的内切圆知识点总结三角形的内切圆是指能够与三角形的三条边都相切的圆。

它是三角形的一个特殊圆形,具有一些独特的性质和应用。

本文将从几何性质、相关公式和应用等方面对三角形的内切圆进行总结。

一、内切圆的几何性质1. 内切圆与三角形的三条边相切,因此它的圆心必定在三角形的内部,可以通过三角形的三条角平分线的交点来确定。

2. 内切圆的半径是由三边长确定的,具体公式为:内切圆半径r =2 * 三角形的面积 / 三角形的周长。

3. 内切圆的圆心到三角形三边的距离相等,即内切圆的圆心到三角形三边的距离分别等于内切圆的半径。

4. 内切圆与三角形的三个内角的角平分线相交于同一点,即内切圆的圆心与三角形三个内角的角平分线交于同一点。

二、内切圆的相关公式1. 内切圆的半径公式:内切圆半径 r = 2 * 三角形的面积 / 三角形的周长。

2. 内切圆的圆心坐标公式:设三角形的三个顶点坐标分别为(x1, y1),(x2, y2),(x3, y3),则内切圆的圆心坐标为:圆心横坐标 x = (a * x1 + b * x2 + c * x3) / (a + b + c)圆心纵坐标 y = (a * y1 + b * y2 + c * y3) / (a + b + c)其中,a、b、c分别为三角形三个内角的角平分线所对应的边的长度。

三、内切圆的应用1. 几何问题求解:内切圆可以用于求解三角形的面积、周长、角度等几何问题。

通过求解内切圆的半径和圆心坐标,可以推导出一些与三角形相关的几何问题。

2. 优化问题求解:内切圆可以用于优化问题的求解。

例如,在给定三角形的面积不变的情况下,求解能够使内切圆半径最大的三角形,或者求解能够使内切圆的面积最大的三角形等。

3. 工程应用:内切圆在工程中有着广泛的应用。

例如,在建筑设计中,内切圆可以用于确定柱子、柱形结构的尺寸和布局,以保证结构的稳定性和均匀性。

另外,在制造业中,内切圆可以用于确定零件的加工和装配尺寸,提高产品质量和工艺效率。

三角形的外接圆和内切圆的性质与计算

三角形的外接圆和内切圆的性质与计算

三角形的外接圆和内切圆的性质与计算三角形是几何学中最基本的图形之一,而三角形的外接圆和内切圆又是三角形的重要性质之一。

本文将详细探讨三角形的外接圆和内切圆的性质,并介绍如何计算它们。

【一、三角形的外接圆】外接圆是指可以与三角形的三个顶点相切的圆。

具体而言,三角形的外接圆满足以下性质:1. 外接圆的圆心位于三角形的垂直平分线的交点。

即三角形的三条垂直平分线的交点是外接圆的圆心。

2. 外接圆的半径等于三角形三边的中线的一半。

其中,中线是连接三角形的一个顶点和对立边中点的线段。

3. 外接圆的直径等于三角形的外角平分线的长度。

在计算外接圆时,我们可以利用以下公式:1. 外接圆的圆心坐标可以通过三角形的顶点坐标计算得出。

假设三角形的三个顶点坐标分别为A(x1,y1)、B(x2,y2)和C(x3,y3)。

外接圆的圆心坐标为:圆心横坐标 = (x1 + x2 + x3) / 3圆心纵坐标 = (y1 + y2 + y3) / 32. 外接圆的半径可以通过三角形的顶点坐标计算得出。

假设外接圆的半径为R。

则R的长度等于三角形任意一条边的一半,可以使用以下公式计算:R = (a + b + c) / (4 * S)其中,a、b、c分别为三角形的三条边长,S为三角形的面积,可以使用海伦公式或其他计算方法得出。

【二、三角形的内切圆】内切圆是指可以与三角形的三条边相切的圆。

具体而言,三角形的内切圆满足以下性质:1. 内切圆的圆心位于三角形的内角平分线的交点。

即三角形的三条内角平分线的交点是内切圆的圆心。

2. 内切圆的半径等于三角形的面积除以半周长。

其中,半周长等于三角形的周长除以2。

在计算内切圆时,我们可以利用以下公式:1. 内切圆的圆心坐标可以通过三角形的顶点坐标计算得出。

假设三角形的三个顶点坐标分别为A(x1,y1)、B(x2,y2)和C(x3,y3)。

内切圆的圆心坐标为:圆心横坐标 = (a * x1 + b * x2 + c * x3) / (a + b + c)圆心纵坐标 = (a * y1 + b * y2 + c * y3) / (a + b + c)其中,a、b、c分别为三角形的三条边长。

三角形的内切圆定义

三角形的内切圆定义

三角形的内切圆定义
三角形的内切圆是指可以恰好嵌入一个三角形内部,且与三条边相切
的圆。

该圆被称为三角形的内切圆,也称为唯一的内切圆。

三角形的
内切圆的圆心被称为三角形的内心,其半径被称为三角形的内切圆半径。

三角形的内切圆在三角形的几何性质研究中有着广泛的应用。

三角形的内切圆有着很多独特的性质。

首先,内切圆的圆心是三角形
三条角平分线的交点。

其次,内切圆半径等于三角形的半周长与面积
的比值,也就是r=(s-a)(s-b)(s-c)/s,其中r表示三角形的内切圆半径,s表示三角形的半周长,a、b、c分别表示三角形三条边的长度。

在计算三角形的面积方面,内切圆也是非常有用的工具。

因为三角形
的内切圆半径r等于三个角的平均值与面积的比值,也就是
r=(A+B+C)/2S,其中A、B、C分别表示三角形的三个内角,S表示
三角形的面积。

除此之外,三角形的内切圆还可以用来判断三角形的形状。

如果三角
形的内心和外心重合,那么该三角形一定是等腰三角形或等边三角形。

如果三角形的内心和重心重合,那么该三角形一定是等边三角形。

总之,三角形的内切圆是三角形中非常重要的一个概念,它在数学和
物理等多个领域中都有着广泛的应用,是我们研究三角形的性质和口算面积的一个重要工具。

切线长定理及三角形的内切圆—知识讲解(提高)

切线长定理及三角形的内切圆—知识讲解(提高)

切线长定理及三角形的内切圆—知识讲解(提高)责编:常春芳【学习目标】1.了解切线长定义;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线长定理1.切线长:经过圆外一点能够作圆的两条切线,切线上这一点到切点间的线段长叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.要点诠释:切线长定理包含两个结论:线段相等和角相等.要点二、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫作圆的外切三角形.三角形的内心到三角形的三边距离相等.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 三角形的内心是这个三角形的三条角平分线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;(3)内心在三角形内部.【典型例题】类型一、切线长定理1.(2015•常德)已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.【答案与解析】证明:(1)如图1,连接FO,∵F为BC的中点,AO=CO,∴OF∥AB,∵AC是⊙O的直径,∴CE⊥AE,∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠0EC=∠0CE,∵∠ACB=90°,即:∠0CE+∠FCE=90°,∴∠0EC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线;(2)如图2,∵⊙O的半径为3,∴AO=CO=EO=3,∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°,∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=,∵在Rt△ACD中,∠ACD=90°,CD=,AC=6,∴AD=.【总结升华】本题是一道综合性很强的习题,考查了切线的判定和性质,三角形的中位线的性质,勾股定理,线段垂直平分线的性质等,熟练掌握定理是解题的关键.举一反三:【变式】已知:如图,在梯形 ABCD中,AB∥DC,∠B=90°,AD=AB+DC,AD是⊙O的直径.求证:BC和⊙O相切.【答案】作OE⊥BC,垂足为E,∵ AB∥DC,∠B=90°,∴ OE∥AB∥DC,∵ OA=OD,∴ EB=EC,∴ BC是⊙O的切线.2.已知:如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线.【答案与解析】解:连接OD.∵ OA=OD,、∴∠1=∠2.∵ AD∥OC,∴∠1=∠3,∠2=∠4.∴∠3=∠4.又∵ OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC.∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°,∴ DC是⊙O的切线.【总结升华】因为AB是直径,BC切⊙O于B,所以BC⊥AB.要证明DC是⊙O的切线,而DC和⊙O有公共点D,所以可连接OD,只要证明DC⊥OD.也就是只要证明∠ODC=∠OBC.而这两个角分别是△ODC和△OBC的内角,所以只要证△ODC≌△OBC.这是不难证明的.举一反三:【变式】已知:∠MAN=30°,O 为边AN 上一点,以O 为圆心、2为半径作⊙O ,交AN 于D 、E 两点,设AD=x ,⑴如图⑴当x 取何值时,⊙O 与AM 相切;⑵如图⑵当x 为何值时,⊙O 与AM 相交于B 、C 两点,且∠BOC=90°.【答案】解:(1)设AM 与⊙O 相切于点B ,连接OB ,则OB ⊥AB ;在Rt △AOB 中,∠A=30°, 则AO=2OB=4, ∴ AD=AO-OD , 即AD=2.x=AD=2. (2)过O 点作OG⊥AM 于G∵OB=OC=2,∠BOC=90°,∴BC=22 ∵OG⊥BC,2,2,在Rt △OAG 中,∠A=30°∴OA=2OG=22,MNEDO图(1).MANEDBCO图(2)∴x=AD=22-23.(2014•高港区二模)矩形ABCD中,AB=4,AD=3,以AB为直径在矩形内作半圆.DE切⊙O于点E(如图),则tan∠CDF的值为()A.B.C.D.【答案】B;【解析】解:如图,设FC=x,AB的中点为O,连接DO、OE.∵AD、DE都是⊙O的切线,∴DA=DE=3.又∵EF、FB都是⊙O的切线,∴EF=FB=3﹣x.∴在Rt△DCF中,由勾股定理得,(6﹣x)2=x2+42,解得,x=,则tan∠CDF===.故选B.类型二、三角形的内切圆4.(2015•西青区二模)已知四边形ABCD中,AB∥CD,⊙O为内切圆,E为切点.(Ⅰ)如图1,求∠AOD的度数;(Ⅱ)如图1,若AO=8cm,DO=6cm,求AD、OE的长;(Ⅲ)如图2,若F是AD的中点,在(Ⅱ)中条件下,求FO的长.OCBA【答案与解析】解:(Ⅰ)∵⊙O 为四边形ABCD 的内切圆, ∴AD、AB 、CD 为⊙O 的切线, ∴OD 平分∠ADC,OA 平分∠BAD, 即∠O DA=∠ADC,∠OAD=∠BAC, ∵AB∥CD,∴∠ADC+∠BAC=180°, ∴∠ODA+∠OAD=90°, ∴∠AOD=90°;(Ⅱ)在Rt△AOD 中,∵AO=8cm,DO=6cm , ∴AD==10(cm ),∵AD 切⊙O 于E ,∴OE⊥AD, ∴OE•AD=OD•OA, ∴OE==(cm );(Ⅲ)∵F 是AD 的中点, ∴FO=AD=×10=5(cm ).【总结升华】本题考查了三角形的内切圆与内心,也考查了切线长定理. 举一反三:【变式】如图,△ABC 中,∠C=90°,BC=4,AC=3,⊙O 内切与△ABC ,则△ABC 去除⊙O 剩余阴影部分的面积为( )A.12-πB. 12-2πC. 14-4πD. 6-π【答案】D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识点:三角形内切圆
和三角形各边都相切的圆叫做三角形的,三角形内切圆的圆心叫三角形的
.
例1.(2009湖北省荆门市)Rt △ABC 中,9068C AC BC °,,.则△ABC 的内切
圆半径r
______.
例2. △ABC 中,AB =AC =5,BC =6,求△ABC 的内切圆的半径长。

例3.任意△ABC 中内切圆I 和边BC 、CA 、AB 分别相切于点D 、E 、F ,求证:△DEF 是锐角三
角形。

同步测试1:(2009年宁夏自治区)如图,⊙O 是边长为2的等边三角形ABC 的内切圆,则图中阴影部分的面积为.
同步测试2:如图
7-255,在矩形ABCD 中,AB=6,BC=8,连结
AC ,△ABC 和△ADC 的内切圆分别为⊙O 1和⊙O 2,与AC 的切点分别为E 、F ,则EF 的长是( ). (A)2 (B)7.5 (C)13 (D)15
◆随堂检测
1.已知⊙O 的半径为5㎝,点P 到圆心O 的距离为6㎝,那么点P 的位置(

A.一定在⊙O的内部
B.一定在⊙O的外部
C.一定在⊙O的上
D.不能确定
2.如图,AB是圆O的直径,AC是圆O的切线,A为切点,连结BC交圆O于点D,连结AD,若∠ABC=45°,则下列结论正确的是()
A.
1
2
AD BC B.
1
2
AD AC C.AC AB D.AD DC
3.一个钢管放在V形架内,右图是其截面图,O为钢管的圆心.如果钢管的半径为25 cm,∠MPN=60,则OP=( )
A.50 cm B.253cm C.
33
50
cm D.503cm
4.⊙O的半径为4㎝,若线段OA的长为10㎝,则OA的中点B在⊙O的____;若线段OA的长为7㎝,则OA的中点B在⊙O的____.
5.如图,等边三角形ABC的内切圆半径为3,则ABC
△的周长为.
6.如图,∠ABC=90°,O为射线BC上一点,以点O为圆心、
2
1BO长为半径作⊙O,当射线BA绕点B按顺时针方向旋转度时与⊙0相切.
7.如图,等腰OAB △中,OB OA ,以点O 为圆心作圆与底边
AB 相切于点C .
求证:
BC AC

8.已知O 为原点,点A 的坐标为(4,3),⊙A 的半径为2.过A 作直线l 平行于x 轴,交y 轴于点B, 点P 在直线
l 上运动.
(1)当点P 在⊙A 上时,请你直接写出它的坐标;(2)设点P 的横坐标为12,试判断直线OP 与⊙A 的位置关系,并
说明理由.
9. 如图,已知AB 为半⊙O 的直径,EA ⊥AB 于点A ,D 是EA 上一点,且∠DBA =30°, DB 交⊙O 于点C ,连结OC 并延长交EA 于点P .(1)写出三个不同类型的结论:(2)若⊙O 的半径为
3cm ,求四边形OADC 的面积
10.(2009年本溪)如图所示,AB 是O ⊙直径,OD ⊥弦BC 于点F ,且交O ⊙于点E ,若
AEC ODB .
(1)判断直线BD 和O ⊙的位置关系,并给出证明;
(2)当
108AB BC
,时,求BD 的长.
1.(2009河池)如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC ,60OAC .
(1)求∠AOC 的度数;
(2)在图1中,P 为直径BA 延长线上的一点,当
CP 与⊙O 相切时,求PO 的长;
(3)如图2,一动点M 从A 点出发,在⊙O 上按逆时针方向运动,当MAO
CAO S S △△时,
求动点M 所经过的弧长.
2.(2009年潍坊)如图,在平面直角坐标系xOy 中,半径为
1的圆的圆心
O 在坐标原点,且
与两坐标轴分别交于A B C D 、、、四点.抛物线
2
y
ax
bx c 与y 轴交于点D ,与直
线y
x 交于点M N 、,且MA NC 、分别与圆O 相切于点A 和点C .
(1)求抛物线的解析式;(2)抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长.
(3)过点B 作圆
O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.
3.(09湖南怀化)如图,已知二次函数
2
2
)
(m k m x y 的图象与x 轴相交于两个不同
的点1(0)A x ,、2(0)B x ,,与y 轴的交点为C .设ABC △的外接圆的圆心为点P .
(1)求
P ⊙与y 轴的另一个交点D 的坐标;
(2)如果
AB 恰好为P ⊙的直径,且ABC △的面积等于
5,求m 和k 的值.
4.(2009年茂名市)已知:如图,直径为OA 的M ⊙与x 轴交于点O A 、,点B C 、把OA 分
为三等份,连接MC 并延长交y 轴于点(03)D ,.
(1)求证:OMD BAO △≌△;(2)若直线
l :y
kx
b 把M ⊙的面积分为二等份,求证:
30k
b

5.(2009年达州)如图10,⊙O 的弦AD ∥BC,过点D 的切线交BC 的延长线于点E ,AC ∥DE
交BD 于点H ,DO 及延长线分别交
AC 、BC 于点G 、F.
(1)求证:DF 垂直平分AC ;(2)求证:FC =CE ;(3)若弦AD =5㎝,AC =8㎝,求⊙O 的半径.
6.(2009年义乌)如图,AB 是0的的直径,BC
AB 于点B ,连接OC 交
0于点E ,弦
AD//OC,弦DF
AB 于点G 。

(1)求证:点E 是BD 的中点;
(2)求证:CD 是0的切线;(3)若4sin
5
BAD ,
0的半径为5,求DF 的长。

7.(09湖南怀化)如图,直线DE 经过⊙O 上的点C ,并且OE
OD EC DC ,,
⊙O 交直线
OD 于A 、B 两点,连接BC ,AC ,OC .
求证:(1)OC
DE ;(2)ACD △∽CBD △.
8.(2009年济南)已知,如图②,AB 是O 的直径,CA 与O 相切于点A .连接CO 交O
于点D ,CO 的延长线交O 于点E .连接BE 、BD ,30ABD ∠,
求EBO ∠和C ∠的度数.。

相关文档
最新文档