工程流体力学基础

合集下载

工程流体力学 第4章 粘性流体动力学基础

工程流体力学 第4章 粘性流体动力学基础

沿程损失水头 (hf):
hf

LV2 D 2g
达西(Darcy)公式
λ:为沿程损失系数,与流动状态、管壁的粗糙度等有关
hf不仅与管段长度成正比,还与管道直径成反比
2020年1月10日
FESTO气动中心
局部阻力水头损失 :当流体在运动中遇到局部障 碍(半开阀门、管道弯头、粗细管接口、滤网等)时, 流线会发生局部变形,并且由于流动分离、二次流等 原因产生漩涡运动,从而耗散一部分机械能,造成水 头损失。
2020年1月10日
FESTO气动中心
解 :(1)求管中心最大流速 umax 2V 2 6.35 12.7cm/s
(2)离管中心 r=20mm 处的流速
u

umax

p
4L
r2
当r=50mm时,管轴处u=0,则有
0 12.7 p 52
4L
p 0.51
4L
则r=20mm在处的流速 u 12.7 0.51 22 10.7cm/s
LV2
d 2g

64 / Re
2020年1月10日
FESTO气动中心
克服沿程阻力而消耗的功率
W

ghf Q

pQ

128 LQ 2 d 4
动能修正系数


1
R2
R u 32rdr 2
0 V
2020年1月10日
FESTO气动中心
例: 设有一恒定有压均匀管流,已知管径d=20mm,管长l=20m, 管 中 水 流 流 速 V=0.12m/s , 水 温 t=10℃ 时 水 的 运 动 粘 度 ν=1.306×10-6m2/s。求沿程阻力损失

4工程流体力学 第四章流体动力学基础

4工程流体力学 第四章流体动力学基础
因为 F 沿 y 轴正向,所以 Fy 取正值
Fy F V•n dS = -V0 dS
= =
=
ρ vV n dS ρ vV n dS ρ vV n dS ρ vV n dS
CS
S0
S1
S2
v = -V0 sin
0
0
§4-2 对控制体的流体力学积分方程(续18)
由于V1,V2在y方向上无分量,
忽略粘性摩擦力,控制体所受表面力包括两
端面及流管侧表面所受的压力,沿流线方向总压
力为:
FSl
pS p δpS δS

p
δp 2
δS
Sδ p 1 δpδS 2
流管侧表面所受压力在流 线方向分量,平均压强
§4-2 对控制体的流体力学积分方程(续27z)
控制体所受质量力只有重力,沿流线方向分
Q2
Q0 2
1 cosθ
注意:同一个问题,控制体可以有不同的取法,
合理恰当的选取控制体可以简化解题过程。
§4-2 对控制体的流体力学积分方程(续23)
微元控制体的连续 方程和动量方程
从流场中取一段长度为l 的流管元,因
为流管侧面由流线组成,因此无流体穿过;流 体只能从流管一端流入,从另一端流出。
CS
定义在系统上 的变量N对时 间的变化率
定义在固定控制 体上的变量N对 时间的变化率
N变量流出控制 体的净流率
——雷诺输运定理的数学表达式,它提供了对
于系统的物质导数和定义在控制体上的物理量
变化之间的联系。
§4-2 对控制体的流体力学积分方程 一、连续方程
在流场内取一系统其体积为 ,则系统内
的流体质量为:
根据物质导数的定义,有:

工程流体力学

工程流体力学

详细描述
随着智能化技术的发展,智能流体控制与调节系统的研 究逐渐成为工程流体力学的前沿领域。通过引入人工智 能、大数据等技术,实现对流体系统的实时监测、预测 和控制,提高流体系统的稳定性和可靠性,为工程实际 提供更好的技术支持。
THANKS FOR WA点一
实验设备
风洞、水槽、压力容器等,用于模拟流体流动和测试流体 动力性能。
要点二
测量技术
压力传感器、流量计、速度计等,用于测量流体的压力、 流量和速度等参数。
数值模拟方法与软件
数值模拟方法
有限元法、有限差分法、边界元法等,通过数值计算 来模拟流体流动。
数值模拟软件
ANSYS Fluent、CFX、SolidWorks Flow Simulation等,用于进行流体动力学分析和模拟。
流体流动的动量方程
一维动量方程
描述流体在一维流动过程中的动量守恒,包括流体的速度、压力 和阻力等。
二维动量方程
描述流体在二维流动过程中的动量守恒,包括流体的速度、压力 和阻力等。
三维动量方程
描述流体在三维流动过程中的动量守恒,包括流体的速度、压力 和阻力等。
流体流动的湍流模型
雷诺平均模型
通过引入雷诺应力来描述湍流中流体的动量交换, 用于模拟湍流流动。
工程流体力学实验与模拟的应用
航空航天
飞机和航天器的空气动力学性能测试和优化 设计。
汽车工程
汽车车身和发动机的流体动力学性能测试和 优化设计。
能源工程
风力发电机叶片和核反应堆冷却系统的流体 动力学性能测试和优化设计。
环境工程
污水处理和排放系统的流体动力学性能测试 和优化设计。
06 工程流体力学前沿研究与 展望

工程流体力学(粘性流体动力学基础公式推导)

工程流体力学(粘性流体动力学基础公式推导)

2h
u
x
vw0
U 0
不可压连方
u v w 0, u 0, u u( y)
x y z
x
运动方程
u t
u
u x
v
u y
w
u z
1
p x
2u ( x 2
2u y 2
2u z2 )
26
运动方程
u t
u
u x
v
u y
w
u z
1
p x
2u ( x 2
2u y2
2u z 2
)
简化为
2u y 2
1
p x
13
px
py
pz
3 p
2 ( vx
x
vy y
vz z
)
(8--9)
问题:上式括号内表示什么?
对于不可压缩流体,故有:
p
1 3
(
px
py
pz
)
(8-10)
即对于粘性不可压缩流体,三个互相垂直的法
向应力的算术平均值恰好等于理想流体的压力。
14
将切向应力和法向应力关系式代入(8--5)式得
vx t
vx
Dt
x
y
z
DVz Z 1 ( zx zy pzz )
Dt
x
y
z
(8-5)
单位质量流体的惯性力
单位质量流体的应力
单位质量流体的质量力
这就是应力形式的粘性流体运动微分方程 8
讨论
1.式(8-5)中未知函数:三个速度分量和六个 应力分量;加上连续性方程,只有四个方程,
2.若要求解,需补充方程。
将(d)式代入(a)式,经移项后可得

工程流体力学知识点总结

工程流体力学知识点总结

工程流体力学知识点总结一、工程流体力学的内容1.流体力学的基本概念工程流体力学是一门重要的工程学科,它是研究运动的流体分布特性、流动过程的动力学特征、流体受力的控制机理以及提供理论支持的工程应用理论。

它综合了物理学、数学、材料学和力学等知识,它包括流体动力学、传热传质、流体力学和流体机械等方面的研究内容。

2.流体动力学流体动力学是流体运动的力学理论,它研究的是流体中的物理量,如流速、压力、密度等的变化和流体运动的规律。

它是流体物理学的基本内容,是工程流体力学的基础理论。

它的研究内容主要包括流体的静力学、流体的流变力学、流体的流动特性、流体的热力学性质、流体的动力学和流体的流动特性等。

3.传热传质传热传质是研究流体在传热和传质的过程中热量和物质的传递机理的一门学科。

它包括流体的热传导、热对流和热辐射、物质的传质、物质输运等方面的内容。

4.流体力学流体力学是一门综合学科,是研究流体的能量、动量和位置变化的动力学特性及其应用的学科。

流体力学研究的内容包括流体的流量和压力、流体的质量和动量、流体的流速、流体的流动特性等。

它主要研究的是流体受力的特性和运动特性,是工程流体力学中最重要的学科之一。

5.流体机械的理论流体机械是研究利用流体动力驱动转子的机械装置的科学,包括机械装置的流体的传动特性、涡轮机械和泵的流量控制、流体中的变频调速以及比热容与流场等。

它是工程流体力学中的重要内容,也是工程设计的重要基础。

二、工程流体力学的应用工程流体力学的基本理论可以应用于各种工程中,如机械制造、空气动力学、海洋技术、热能技术、新能源技术、能源储存和节能技术、化工反应技术等。

它在社会经济建设中发挥着重要作用,可以为社会生产提供良好的环境保护技术手段,也可以为工程设计和技术开发提供依据。

工程流体力学的基本原理与应用

工程流体力学的基本原理与应用

工程流体力学的基本原理与应用工程流体力学是研究液体和气体在静力学和动力学条件下的行为的学科。

它主要涉及流体的力学性质、运动规律以及它们在工程领域中的应用。

本文将从基本原理和应用两个方面来探讨工程流体力学的相关内容。

一、基本原理1. 流体的基本特性流体力学研究的对象是流体,流体包括液体和气体。

与固体不同,流体具有自由流动的性质。

流体具有自由度高、形状可变、受力传递范围广的特点。

2. 流体静力学流体静力学研究的是液体和气体在静止状态下的力学性质。

根据帕斯卡定律,液体和气体在封闭的容器中均能均匀传递压力。

此外,液体的静力学基本性质还包括压力、密度、浮力等。

3. 流体流动的基本方程流体流动的基本方程包括连续方程、动量方程和能量方程。

连续方程描述了质量守恒原理,即单位时间内流入控制体的质量等于单位时间内流出控制体的质量。

动量方程描述了流体运动的动力学原理,以牛顿第二定律为基础。

能量方程则描述了能量在流体中的转化和传递过程。

4. 流体流动的特性流体流动的特性主要包括速度场、压力场和摩擦阻力。

速度场描述了流体各点的速度分布情况,压力场描述了流体各点的压力分布情况。

摩擦阻力是流体流动中由于黏性而产生的流体内部阻碍流动的力。

二、应用领域1. 管道工程工程流体力学在管道工程中的应用非常广泛。

通过对管道流体的运动状态和力学特性的分析,可以优化管道的设计和运行。

例如,可以通过流体力学计算来确定管道的直径、流速、压力以及阀门和泵的选型。

2. 水利工程在水利工程中,工程流体力学可用于分析水流对坝体、堤坝和其他水工结构的稳定性和抗冲刷性能。

利用流体力学原理,可以计算水流对结构的压力分布,从而进行结构的抗击冲和渗流的设计。

3. 船舶工程船舶行进在水中液体流动中,流体力学是一个重要的研究领域。

工程流体力学可以被用于分析舰船的水动力特性,如阻力、浮力和稳定性等,以提高船舶的设计和性能。

4. 风洞实验工程流体力学在风洞实验中的应用是为了研究空气流动对飞行器、建筑物和汽车等的影响。

工程流体力学基础知识

工程流体力学基础知识

工程流体力学复习题第一章流体的力学性质1、连续介质(概念)、假设(质量分布、运动、内应力连续))2、流体的主要物理性质(a)分类(固、液、气各自特点)(b)流动性(c)可压缩性和膨胀性(d)粘性(牛顿内摩擦定律、液体和气体(温度、压力))(e)表面张力(润湿和不润湿)3、牛顿流体和非牛顿流体第二章流体运动学基本概念1、流动分类(流体性质、流动状态、流动空间的坐标数目)2、描述流体运动的两种方法(a)拉格朗日法和欧拉法基本思路(b)质点导数(c)迹线和流线的意义及其求解(,)3、有旋流动和无旋流动(概念及其基本性质)涡量的连续性方程、速度场有势的充要条件是流动无旋等第三章流体静力学1、作用在流体上的力(质量力和表面力)2、流体静止时质量力必须满足的条件3、有势质量力场中静止流体的分界面上,既是等压面也是等势面。

4、静止的正压流场,其质量力必然有势;反之,质量力有势,非正压流场不可能处于静止状态,处于静止状态的必然是正压流场。

5、重力场静止液体的压力分布和物体受力(、)第四章流体流动基本原理1、系统和控制体的定义和区别2、输运公式定义及其表达式(系统质量、动量、能量变化率)3、质量守恒方程(a)定义(,质量流量、质量通量)(b)特殊形式的应用(,稳态、不可压缩)4、动量守恒方程(a)定义(,动量流量)(b)应用5、能量守恒方程(a)定义(b)伯努利方程(简化条件、公式(理想不可压缩流体稳态流动)第五章不可压缩流体的一维层流流动1、常见边界条件(固壁—流体、液体—气体、液体—液体)2、流动条件说明(稳态、不可压缩、一维、层流、充分发展流动)3、狭缝流动(概念、产生流动的因素——压差流、剪切流)4、管内流动分析(切应力和速度分布规律)5、降膜流动分析第六章流体流动微分方程——连续性方程和运动方程(了解)1、连续性方程不可压缩流体2、运动方程(以应力表示的运动方程→引入牛顿流体本构方程→N-S方程)第八章流体力学的实验研究方法1、流动相似(几何相似、运动相似、动力相似的定义和应用)2、相似准则(至少四个相似准数及其物理意义、计算应用)3、量纲分析(常见物理量的量纲、基本量纲(M、L、T)、量纲分析方法:瑞利(Rayleigh)方法和白金汉姆(Buckingham)方法)第九章管内流体流动1、流态的判定(指标、层流、过渡流、湍流)2、圆管内充分发展的层流流动(阻力损失、阻力系数)3、湍流的半经验理论(布辛聂斯克涡粘性假设、普朗特混合长度理论、壁面附近湍流的三个区域)4、圆管内充分发展的湍流流动(光滑管、粗糙管(水力光滑管、过渡型圆管、水力粗糙管)沿程阻力系数)5、圆管内流体流动的速度分布6、沿程阻力损失的计算7、圆管进口段流动分析8、非圆形截面管内的流体流动(水力当量直径的计算)参考公式哈密尔顿算子速度梯度流体的散度旋度。

流体力学基础 第一节 空气在管道中流动的基本规律

流体力学基础 第一节 空气在管道中流动的基本规律

流体力学基础第一节空气在管道中流动的基本规律一、流体力学基础第一节空气在管道中流动的基本规律第一章流体力学基础第一节空气在管道中流动的基本规律工程流体力学以流体为对象,主要研究流体机械运动的规律,并把这些规律应用到有关实际工程中去。

涉及流体的工程技术很多,如水力电力,船舶航运,流体输送,粮食通风除尘与气力输送等,这些部门不仅流体种类各异,而且外界条件也有差异。

通风除尘与气力输送属于流体输送,它是以空气作为工作介质,通过空气的流动将粉尘或粒状物料输送到指定地点。

由于通风除尘与气力输送是借助空气的运动来实现的,因此,掌握必要的工程流体力学基本知识,是我们研究通风除尘与气力输送原理和设计、计算通风除尘与气力输送系统的基础。

本章中心内容是叙述工程流体力学基本知识,主要是空气的物理性质及运动规律。

一、流体及其空气的物理性质(一) 流体通风除尘与气力输送涉及的流体主要是空气。

流体是液体和气体的统称,由液体分子和气体分子组成,分子之间有一定距离。

但在流体力学中,一般不考虑流体的微观结构而把它看成是连续的。

这是因为流体力学主要研究流体的宏观运动规律它把流体分成许多许多的分子集团,称每个分子集团为质点,而质点在流体的内部一个紧靠一个,它们之间没有间隙,成为连续体。

实际上质点包含着大量分子,例如在体积为10-15厘米的水滴中包含着3×107个水分子,在体积为1毫米3的空气中有2.7×1016个各种气体的分子。

质点的宏观运动被看作是全部分子运动的平均效果,忽略单个分子的个别性,按连续质点的概念所得出的结论与试验结果是很符合的。

然而,也不是在所有情况下都可以把流体看成是连续的。

高空中空气分子间的平均距离达几十厘米,这时空气就不能再看成是连续体了。

而我们在通风除尘与气力输送中所接触到的流体均可视为连续体。

所谓连续性的假设,首先意味着流体在宏观上质点是连续的,其次还意味着质点的运动过程也是连续的。

有了这个假设就可以用连续函数来进行流体及运动的研究,并使问题大为简化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

拉普拉斯算子:

=
∇2
=
∂2 ∂x 2
+
∂2 ∂y 2
+
∂2 ∂z 2
11
流体力学 第2章
压强全微分式为:
dp = ∂p dx+ ∂p dy + ∂p dz ∂x ∂y ∂z
= ρ( fxdx + fydy + fzdz) = ρ f ⋅dr
说明体积力向任何方向的投影为该方向的压强增量。
12
流体力学 第2章
5
流体力学 第2章
法向压强
pn
静压强
p pt
切向压强
6
流体力学 第2章
作用在ACD面上 的流体静压强
px
pz 作用的在流A体BC静面压上强
pn
作用在BCD面 上的静压强
作用在ABD和上
py
的静压强
7
流体力学 第2章
1. 流体平衡微分方程式 (1)表面力
应力:
p = p ( x , y , z )
• 大气压
1atm = 101.3kPa = 10.33mH2O
工程大气压at
1at = 1kgf / cm2 = 10mH 2O
• 液柱高
米水柱mH2O (水头高)
毫米汞柱mmHg(汞柱高)
28
流体力学 第2章
压强的换算关系
压强 Pa
bar
mmH2O
工程大气压 标准大气压atm mmHg
工程流体力学基础
1 / 75
流体力学 第2章
第2章 流体静力学 2.1流体静力学的基本方程 2.2流体静压强的分布规律 2.3压强计示方式与度量单位 2.4流体的相对静止 2.5液体对平壁的作用力 2.6液体对曲壁的作用力 2.7浮力与稳定性
2
流体力学 第2章
流体静力学: 研究流体处于绝对或相对静止状态
负压:相对压强为负值。
真空度:负压的绝对(真
空表读数,用Pv表示)。
26
流体力学 第2章
压强基准
完全真空
绝对压强 pab
大气压强 pa
表压强 p g 真空度 p v
习惯上:
p = pg位
• 国际单位制(SI):帕斯卡Pa 1Pa = 1N / m2
标准大气压atm
(2) 水平方向压强保持常数
18
流体力学 第2章
液体静力学方程
p1 = p0 + γz1 p2 = p0 + γz2
p0 → p0 + ∆p0
0
Z1
1 Z2
2
帕斯p1卡=定( p律0 —+ ∆—p水0 )+静γ压z1 强等值传p递1 → p1 + ∆p0 静到止内p液部2 =体各(任点p0 一。+ ∆边p界0 )面+ γ上z2的压强变p化2 →,将p2等+值∆p地0 传
19
流体力学 第2章
z+ p =c ρg
z1
+
p1 ρg
=
z2
+
p2 ρg
P0 P2 P1
20
流体力学 第2章
液体静力学基本方程应用条件: 绝对静止、同种液体、连续(或连通)。
等压面?
21
流体力学 第2章
2. 气体压强的分布
重力场中: fx = fy = 0,fz = g
∂p = 0 ∂p = 0
第2节 流体静压强的分布规律 (液体静力学基本方程、 气体压强的分布)
15
流体力学 第2章
1. 液体静力学基本方程
重力场中: fx = fy = 0,fz = g
∂p = 0 ∂p = 0
∂x
∂y
ρg − ∂p = 0 ∂z
说明:在静止重力液体中,铅垂 方向的压强梯度是由单位体积液 体的重力决定的。
下的力学规律。
不考虑黏性力
作理想流体处理
为什么静止流体可以 不考虑黏性力?
3
流体力学 第2章
第1节 流体静力学的基本方程 (静止流体表面力和质量力之间的平衡关
系——由牛顿第一定律)
4
流体力学 第2章
流体静压强及其特性 (1)流体静压强的方向与作用面相垂直,并指向作用面
的内法线方向。 用反证法证明:假设在静止流体中,流体静压强方向 不与作用面相垂直,而与作用面的切线方向成α角。 (2)静止流体中任意一点流体压强的大小与作用面的方 向无关,即任一点上各方向的流体静压强都相同。 为了证明这一特性,我们在静止流体中围绕任意一点A取 一微元四面体的流体微团ABCD。
24
流体力学 第2章
1. 绝对压强和相对压强
绝对压强(Pab):以绝对 真空为零点起算的压强。
相对压强 (P或Pg):以当 地同高程的大气压强Pa 为零点起算的压强。
当地大气压 Pa=0 三者之间的关系:P=Pab-Pa
25
流体力学 第2章
压强之间的关系: P = Pab - Pa
正压:相对压强为正值 (压力表读数)。
2. 等压面 定义:静止流体中,压强相等的各点组成的面。
由 dp = 0 可得等压面方程: f ⋅ dr = fxdx + f ydy + fzdz = 0
质量力做功为零 质量力处处与等压面垂直
13
流体力学 第2章
(a)静止流体 中等压面为水 平面。 (b)旋转流体 中等压面为旋 转抛物面。
14
流体力学 第2章
p
'
=
p(x, y, z) +
∂p ∂x
dx
A p
z y
O
C dz p’
B
D
dy
dx
x
表面力在x方向上的投影:
pdydz− p'dydz = − ∂p dxdydz ∂x
8
流体力学 第2章
(2)质量力
质量力的解析式为:
f = fxi + fyj+ fzk
总质量力在x方向上的投影:
f x ρdxdydz
γ − dp = 0 dz
16
流体力学 第2章
对连续、均质
γ

dp
=
0
且不可压缩流体, ρ=常数
dz
p = γz + C
液体自由表面上
z = 0, p = p0
∴ p = p0 + γz
由边界条件决定
C = p0
液体静力学方程
17
流体力学 第2章
静压强分布图 均质静止液体中压强分布特征:
(1) 在垂直方向,压强与淹深成线性关系
∂x
∂y
ρg − ∂p = 0 ∂z
γ − dp = 0 dz
22
流体力学 第2章
对不可压缩气体,
ρ很小 p = γz + C ≈ C
即:重力对气体压强的影响很小,可以 忽略不计,认为各点的压强相等。
Ø但若以大气层为研究对象,则必须考虑 空气的压缩性。
23
流体力学 第2章
第3节 压强计示方式与量度单位
9
流体力学 第2章
由平衡条件,x方向的平衡方程为:
所以有:

∂p ∂x
dxdydz+
f x ρdxdydz =
0
fx =
1 ρ
∂p
∂x
fy =
1 ρ
∂p
∂y

fz =
1 ρ
∂p
∂z
ρf = ∇ p
因为静止时,黏性力不存在,上式也适用于黏性流体。10
流体力学 第2章
数学基础
哈密尔顿算子: ∇ = ∂ i + ∂ j + ∂ k ∂x ∂y ∂z
相关文档
最新文档