八年级数学直角三角形教师讲义带答案资料

合集下载

解直角三角形——教师版(带完整答案)

解直角三角形——教师版(带完整答案)

(C).
2 2
(D). 2 2
2、如果 是锐角,且 cos
4 ,那么 sin 的值是( ) . 5
(C)
(A)
9 25
(B)
4 5
3 5
(D)
16 25
) .
3、等腰三角形底边长为 10 ㎝,周长为 36cm,那么底角的余弦等于( (A)
5 13
(B)
12 13Leabharlann (C)10 13(D) )
21.如图是五角星,已知 AC=a,求五角星外接圆的直径(结果用含三角函数的式子表示) 。
6 / 14
参考答案 一、选择题 1、B 2、C 3、A 4、D 5、B 6、B 7、C 8、A 9、A 10、A 二、填空题 11、
1 2
12、2.3
13、1.5 +20tan
14、13
15、3.93 米
s i nA
A的对边 a 斜边 c
B . 锐 角 A 的 邻 边 与 斜 边 的 比 叫 做 ∠ A 的 余 弦 , 记 为 cosA , 即
cos A
A的邻边 b 斜边 c A的对边 a A的邻边 b
C.锐角 A 的对边与邻边的比叫做∠A 的正切,记为 tanA,即 tan A
sin 2 A cos2 A 1
tanA tan(90°—A)=1 tanA=
sin A cos A
4 1.在 Rt△ABC 中,∠C=90°,sinA= 5 ,则 cosB 的值等于( b )
3 A. 5
4 B. 5
3 C. 4
5
D. 5
2.在正方形网格中, △ ABC 的位置如图所示,则 cos B 的值为( b

自学初中数学资料 直角三角形(资料附答案)

自学初中数学资料 直角三角形(资料附答案)

自学资料一、直角三角形【知识探索】1.如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等.(简记为:H.L).【错题精练】例1.如图,在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1.0,1.21,1.44,正放置的四个正方形的面积为S1、S2、S3、S4,则S1+S2+S3+S4=______.【解答】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=1.21,S3+S4=1.44,∴S1+S2+S3+S4=2.44.第1页共41页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训故填:2.44.【答案】2.44例2.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,将边AB沿AE翻折,使点B落在BC上的点D处,再将边AC沿AF翻折,使点C落在AD延长线上的点C′处,两条折痕与斜边BC分别交于点E,F,则线段C′F的长为()A. 85B. √32C. 35D. 45【解答】解:∵Rt△ABC中,∠BAC=90°,AB=6,AC=8,∴BC=10,∵将边AB沿AE翻折,使点B落在BC上的点D处,∴∠AEC=∠AEB,∠BAE=∠DAE,∵∠BED=180°,∴∠CEA=90°,即CE⊥AE,∵S△ABC=12AB×AC=12AE×BC,∴AE=4.8,在Rt△ACE中,CE=√AC2−AE2=6.4,∵将边AC沿AF翻折,使点C落在AD延长线上的点C′处,∴CF=C'F,∠CAF=∠C'AF,∵∠BAE+∠DAE+∠CAF+∠C'AF=∠BAC=90°,∴∠EAF=45°,且CE⊥AE,∴∠EAF=∠EFA=45°,∴AE=EF=4.8,∵CF=CE-EF=6.4-4.8=1.6,∴C'F=1.6=85,故选:A.【答案】A第2页共41页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例3.如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.【答案】解:(1)Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∴∠ADE+∠EDC=∠B+∠BAD.又∵∠ADE=45°,∴45°+∠EDC=45°+∠BAD.∴∠EDC=∠BAD.∴△ABD∽△DCE.(2)①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意.②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=2,BC=22,AE=AC-EC=2-BD=2-(22-2)=4-22,③若AE=DE,此时∠DAE=∠ADE=45°,如下图所示易知AD⊥BC,DE⊥AC,且AD=DC.第3页共41页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训由等腰三角形的三线合一可知:AE=CE=12AC=1.例4.△ABC是⊙O的内接三角形;(1)如图1,若BC=4√2,AC=7,∠ACB=45°,求⊙O的半径.(2)如图2,若AB=7,BC=5,AC=8,求∠C的度数及⊙O的半径.(3)如图3,△ABC是⊙O的内接三角形,BE是AC边上的高,连结BO.①请证明:∠CBE=∠ABO;②若AB=7,BC=6,AC=8,请求出⊙O的半径.【答案】解:(1)作直径BD,BH⊥AC于H,连结AD,如图1,在Rt△BCH中,CH=BH=√22BC=√22•4√2=4,∴AH=AC-CH=7-4=3,在Rt△ABH中,AB=√AH2+BH2=5,∵BD为直径,∴∠BAD=90°,第4页共41页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∵∠D=∠ACB=45°,∴△ABD为等腰直角三角形,∴BD=√2AB=5√2,∴⊙O的半径为5√22;(2)作直径BD,BH⊥AC于H,连结AD,如图2,设CH=a,BH=b,则AH=AC-CH=8-a,在Rt△BCH中,a2+b2=52①,在Rt△BAH中,(8-a)2+b2=72②,①-②得-64+16a=-24,解得a=52,在Rt△BCH中,∵BC=5,CH=52,∴∠CBH=30°,∴∠C=60°,∵BD为直径,∴∠BAD=90°,∵∠D=∠ACB=60°,∴AD=√33AB=7√33,∴BD=2AD=14√33∴⊙O的半径为7√33;(3)①证明:作直径BD,连结AD,如图3,∵BE⊥AC,∴∠CBE+∠C=90°,∵BD为直径,∴∠BAD=90°,∴∠D+∠ABD=90°,∵∠D=∠ACB,∴∠CBE=∠ABO;②设CE=a,BE=b,则AE=AC-CE=8-a,在Rt△BCE中,a2+b2=62①,第5页共41页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训在Rt△BAE中,(8-a)2+b2=72②,①-②得-64+16a=-13,解得a=5116,在Rt△BCE中,∵BC=6,CE=5116,∴BE=√BC2−CE2=21√1516,∵∠CBE=∠ABD,∴Rt△ABD∽Rt△EBC,∴BDBC =AB BE,∴BD=6×721√1516=32√1515,∴⊙O的半径为16√1515.例5.如图,AB是圆O的直径,CD是圆O的一条弦,且CD⊥AB于点E.(1)若∠A=48°,求∠OCE的度数;(2)若CD=4√2,AE=2,求圆O的半径.【答案】解:(1)∵CD⊥AB,∠A=48°,∴∠ADE=42°.∴∠AOC=2∠ADE=84°,∴∠OCE=90°-84°=6°;(2)解:因为AB是圆O的直径,且CD⊥AB于点E,所以CE=12CE=12×4√2=2√2,在Rt△OCE中,OC2=CE2+OE2,设圆O的半径为r,则OC=r,OE=OA-AE=r-2,所以r2=(2√2)2+(r-2)2,解得:r=3.所以圆O的半径为3.第6页共41页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训例6.如图,点D在半圆O上,半径OB=√61,AD=10,点C在弧BD上移动,连接AC,H是AC上一点,∠DHC=90°,连接BH,点C在移动的过程中,BH的最小值是()A. 5B. 6C. 7D. 8【解答】解:如图,取AD的中点M,连接BD,HM,BM.∵DH⊥AC,∴∠AHD=90°,∴点H在以M为圆心,MD为半径的⊙M上,∴当M、H、B共线时,BH的值最小,∵AB是直径,∴∠ADB=90°,∴BD=√(2√61)2−102=12,BM=√BD2+DM2=√122+52=13,∴BH的最小值为BM-MH=13-5=8.故选:D.【答案】D例7.如图所示,P、Q分别是Rt△ABC两直角边AB、AC上两点,M为斜边BC的中点,且PM⊥QM,MD⊥AB于点D,ME⊥AC于点E.求证:(1)△MPD∽△MQE;(2)AD•PD=AE•EQ:(3)PB2+QC2=PM2+QM2.【答案】证明:(1)∵MD⊥AB于点D,ME⊥AC,∠A=90°,∴∠MDP=∠MEA=∠A=90°,∴四边形ADME是矩形,∴AD=EM,AE=DM,∠DME=90°,∵PM⊥QM,第7页共41页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训∴∠PMQ=90°,∴∠DMP=∠EMQ,∴△MPD∽△MQE;(2)∵△MPD∽△MQE,∴PDEQ =DMEM,∵AD=EM,AE=DM,∴PDEQ =AEAD,∴AD•PD=AE•EQ;(3)如图,以M点为中心,△MCQ顺时针旋转180°至△MBN,∴△MCQ≌△MBN,∴BN=QC,MN=MQ,∠MBN=∠C,连接PN,PQ,∵PM⊥QM,∴PM垂直平分NQ,∴PN=PQ,∵△ABC是直角三角形,BC是斜边,∴∠ABC+∠C=90°,∴∠ABC+∠MBN=90°,即△PBN是直角三角形,根据勾股定理可得,PN2=PB2+BN2,∴PQ2=PB2+QC2,∵PQ2=PM2+QM2,∴PB2+QC2=PM2+QM2.例8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为()cm2.A. 3cm2B. 4cm2C. 7cm2D. 49cm2第8页共41页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【解答】解:∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a2,正方形B的面积=b2,正方形C的面积=c2,正方形D的面积=d2,又∵a2+b2=x2,c2+d2=y2,∴正方形A、B、C、D的面积和=(a2+b2)+(c2+d2)=x2+y2=72=49cm2.故选:D.【答案】D例9.如图,点E是Rt△ABC、Rt△ABD的斜边AB的中点,AC=BC,∠DBA=20°,那么∠DCE的度数是______.【解答】解:∵点E是Rt△ABD的斜边AB的中点,AB,∴ED=EB=12∴∠EDB=∠DBA=20°,∴∠DEA=∠EDB+∠DBA=40°,∵点E是Rt△ABC的斜边AB的中点,AC=BC,AB,CE⊥AB,∴EC=12∴∠DEC=130°,ED=EC,∴∠DCE=25°,故答案为:25°.【答案】25°例10.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,求AM的最小值.第9页共41页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训【答案】解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=12EF=12AP.当AP⊥BC时,AP的最小值即为直角三角形ABC斜边上的高125,∴AM的最小值是65.例11.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则CD的长为______.【解答】解:连接CD,∵∠ACB=90°,∠A=30°,AB=4,第10页共41页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训∴∠B=60°,BC=12AB=2,∵以点B为圆心,BC长为半径画弧,交边AB于点D,∴△BCD是等边三角形,∴CD=BC=2,故答案为:2.【答案】2例12.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?【答案】解:(1)由题意,⊙O是△ABC内接圆,D为切点,如图1,连结OD,OC.设⊙O半径为r,纸盒长度为h',则CD=√3r,BC=2√3r则圆柱型唇膏和纸盒的体积之比为:πr2ℎ′√34(2√3r)2ℎ′=√39π(若设△ABC的边长为a,则圆柱型唇膏和纸盒的体积比为112πa2ℎ′√34a2ℎ′=√39π)(2)易拉罐总体积和纸箱容积的比:l2r•b2r•πr2ℎlbℎ=π4;(3)∵√39ππ4=4√39=√4881<1∴第二种包装的空间利用率大.例13.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【答案】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=12AD,在RT△ABC中,∵M是AC中点,∴BM=12AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=12AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=12AC=1,∴BN=√2例14.如图,点D为线段AB延长线上一点,△ABC和△BDE分别是以AB,BD为斜边的等腰直角三角形.连接CE并延长,交AD的延长线于F,△ABC的外接圆圆O交CF与点M.若AB=6,BD=2.(1)求CE长度;(2)证明:AC2=CM•CF;【答案】解:(1)∵△ABC 和△BDE 等腰直角三角形,AB=6,BD=2.∴BC=√22AB=3√2,BE=√22BD=√2,∠ABC=∠EBD=45°,∴∠CBE=90°,∴CE=√CB 2+BE 2=2√5;(2)证明:连接AM ,则∠AMC=∠ABC=∠CAF=45°,∵∠ACM=∠FCA∴△ACM ∽△FCA ,∴AC CF =CM AC ,∴AC 2=CM•CF ;(3)∵∠ABC=∠BDE ,∴DE ∥BC ,∴△EDF ∽△CBF ,∴DF BF =DE BC =EF CF ,∴EF EF+CE =DF BD+DF =√23√2=13,∴BF=3,CF=3√5,∵BF•AF=FM•CF ,∴FM=9√55, ∴CM=3√5-9√55=6√55.例15.如图,在平面直角坐标系中,△ABC 的顶点A 在第一象限,点B ,C 的坐标为(2,1),(6,1),∠BAC=90°,AB=AC ,直线AB 交x 轴于点P .若△ABC 与△A'B'C'关于点P 成中心对称,则点A'的坐标为______.【解答】解:如图:点B,C的坐标为(2,1),(6,1),得BC=4.由∠BAC=90°,AB=AC,得AB=2√2,∠ABD=45°,∴BD=AD=2,A(4,3),设AB的解析式为y=kx+b,将A,B点坐标代入,得{2k+b=14k+b=3,解得{k=1b=−1,AB的解析式为y=x-1,当y=0时,x=1,即P(1,0),由中点坐标公式,得x A′=2x P-x A=2-4=-2,y A′=2y A′-y A=0-3=-3,A′(-2,-3).故答案为:(-2,-3).【答案】(-2,-3)例16.Rt△ABC中,∠BAC=90°,AB=AC=2.以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段BD的长为______.【解答】解:①以A为直角顶点,向外作等腰直角三角形DAC,∵∠DAC=90°,且AD=AC,∴BD=BA+AD=2+2=4;②以C为直角顶点,向外作等腰直角三角形ACD,连接BD,过点D作DE⊥BC,交BC的延长线于E.∵△ABC是等腰直角三角形,∠ACD=90°,∴∠DCE=45°,又∵DE⊥CE,∴∠DEC=90°,∴∠CDE=45°,∴CE=DE=2×√2=√2,2在Rt△BAC中,BC=√22+22=2√2,∴BD=√BE2+DE2=√(2√2+√2)2+(√2)2=2√5;③以AC为斜边,向外作等腰直角三角形ADC,∵∠ADC=90°,AD=DC,且AC=2,∴AD=DC=ACsin45°=2×√2=√2,2又∵△ABC、△ADC是等腰直角三角形,∴∠ACB=∠ACD=45°,∴∠BCD=90°,又∵在Rt△ABC中,BC=√22+22=2√2,∴BD=√BC2+CD2=√(2√2)2+(√2)2=√10.故BD的长等于4或2√5或√10.【答案】4或2√5或√10【举一反三】1.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,BC=4√3,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B'DE的位置,B'D交AB于点F.若△AB'F为直角三角形,则AE的长为______.【解答】解:①如图1中,当∠AFB′=90°时.在Rt△ABC中,∵∠B=30°,AC=4,∴AB=2AC=8,∵BD=CD,∴BD=CD=12BC=2√3,由折叠的性质得:∠BFD=90°,B'E=BE,∴∠BDF=60°,∴∠EDB=∠EDF=30°,∴∠B=∠EDB=30°,∴BE=DE=B'E,∵∠C=∠BFD=90°,∠DBF=∠ABC=90°,∴△BDF∽△BAC,∴BFBC =BDAB,即BF4√3=2√38,解得:BF=3,设BE=DE=x,在Rt△EDF中,DE=2EF,∴x=2(3-x),②如图2中,当∠AB′F=90°时,作EH⊥AB′交AB′的延长线于H.设AE=x.∵AD=AD,CD=DB′,∴Rt△ADC≌Rt△ADB′(HL),∴AC=AB′=4,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=12B′E=12(8-x),EH=√3B′H=√32(8-x),在Rt△AEH中,∵EH2+AH2=AE2,∴[√32(8-x)]2+[4+12(8-x)]2=x2,解得:x=285,综上所述,满足条件的AE的值为6或285.故答案为:6或285.【答案】6或2852.如图,已知∠ACB=90°,AC>BC,分别以△ABC的边AB,BC,CA为一边向△ABC外作正方形ABDE,正方形BCMN,正方形CAFG,连接EF,GM,设△AEF,△CGM的面积分别为S1,S2,则下列结论正确的是()A. S1=S2B. S1<S2C. S1>S2D. S1≤S2【解答】解:过E作ER⊥AF,交FA的延长线于R,设△ABC的三边BC,AC,AB的长分别为a、b、c,∵分别以△ABC的边AB、BC、CA为一边向△ABC外作正方形ABDE、BCMN、CAFG,∵AE=AB,∠ARE=∠ACB=90°,∠EAR=∠CAB,∴△AER≌△ABC,∴ER=BC=a,而FA=b,1∵CG=b ,CM=a ,∴S 2=12ab ,∴S 1=S 2,故选:A .【答案】A3.如图,在△AOB 中,已知∠AOB=90°,AO=3,BO=4.将△AOB 绕顶点O 按顺时针方向旋转α(0°<α<90°)到△A 1OB 1处,此时线段OB 1与边AB 的交点为点D ,则在旋转过程中,线段B 1D 长的最大值为( )A. 4.5B. 5C. 125D. 85【解答】解:因为OB 1的长度是定值,所以当OD 最短即可OD ⊥AB 时,B 1D 长的取最大值.∵如图,在△AOB 中,已知∠AOB=90°,AO=3,BO=4,∴AB=√OA 2+OB 2=√32+42=5,则12OA•OB=12AB•OD ,OD=OA•OB AB =3×45=125. 由旋转的性质知:OB 1=OB=4,∴B 1D=OB 1-OD=4-125=85.即线段B 1D 长的最大值为85.【答案】D4.已知:如图,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.(1)求证:∠DAC=∠DBA;(2)求证:PD=PF;(3)连接CD,若CD=3,BD=4,求⊙O的半径和DE的长.【答案】(1)证明:∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA,∵AB是⊙O的直径,DE⊥AB,∴∠ADB=∠AED=90°,∴∠ADE+∠DAE=90°,∠DBA+∠DAE=90°,∴∠ADE=∠DBA,∴∠DAC=∠ADE,∴∠DAC=∠DBA;(2)证明:∵AB为直径,∴∠ADB=90°,∵DE⊥AB于E,∴∠DEB=90°,∴∠ADE+∠EDB=∠DFA+∠DAC=90°,又∵∠ADE=∠DAP,∴∠PDF=∠PFD,∴PD=PF;(3)解:连接CD,∵∠CBD=∠DBA,∵CD=3,∴AD=3,∵∠ADB=90°,∴AB=5,故⊙O的半径为2.5,∵DE×AB=AD×BD,∴5DE=3×4,∴DE=2.4.即DE的长为2.4.5.如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=1BC.2(1)求∠BAC的度数;(2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H;求证:四边形AFHG是正方形;(3)若BD=6,CD=4,求AD的长.【答案】(1)解:连接OB和OC;∵OE⊥BC,∴BE=CE;BC,∵OE=12∴∠BOC=90°,∴∠BAC=45°;(2)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°;由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°,∠BAG=∠BAD,∠CAF=∠CAD,∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;∴四边形AFHG是正方形;(3)解:由(2)得,∠BHC=90°,GH=HF=AD,GB=BD=6,CF=CD=4;设AD的长为x,则BH=GH-GB=x-6,CH=HF-CF=x-4.在Rt△BCH中,BH2+CH2=BC2,∴(x-6)2+(x-4)2=102;解得,x1=12,x2=-2(不合题意,舍去);∴AD=12.6.如图所示的“勾股树”中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为12cm,则A、B、C、D四个小正方形的面积之和为______cm2.【解答】解:如右图所示,根据勾股定理可知,S正方形2+S正方形3=S正方形1,S正方形C+S正方形D=S正方形2,S正方形A+S正方形B=S正方形3,∴S正方形C+S正方形D+S正方形A+S正方形B=S正方形1=122=144.故答案是144.【答案】1447.已知△ABC是等腰直角三角形,∠A=90°,AB=√2,点D位于边BC的中点上,点E在AB上,点F 在AC上,∠EDF=45°.(1)求证:∠DFC=∠EDB;(2)求证:CF•BE=1;(3)当BE=1时,求△FCD的面积.【答案】(1)证明:∵∠EDF=45°,∴∠EDB+∠FDC=135°,∵∠B=∠C=45°,∴∠DFC+∠FDC=135°,∴∠BDE=∠DFC;(2)证明:∵∠B=∠C,∠BED=∠FDC,∴△BDE∽△CFD,∴BDFC =BECD,∴CF•BE=BD•CD=1,(3)解:∵△ABC是等腰直角三角形,∠A=90°,AB=√2,∴BC=2,∵点D位于边BC的中点上,∴BD=DC=BE=1,∠B=∠C=45°,∴∠BDE=67.5°,∠EDF=45°,∴∠FDC=∠DFC=67.5°,CF=CD=1,∴DC边上的高是√22,∴S△CDF=12×1×√22=√24.8.如图,在矩形ABCD中,BC=8,CD=6,E为AD上一点,将△ABE沿BE折叠,点A恰好落在对角线BD上的点F处,则折线BE的长为()A. 2√5B. 3√3C. 3√5D. 6√3【解答】解:在Rt△BCD中,利用勾股定理得BD=10,设AE=x,则EF=x,DE=8-x,在Rt△DEF中,∵BF=AB=6,∴DF=10-6=4.则(8-x)2=x2+42,解得x=3,在Rt△ABE中,BE=√AB2+AE2=√32+62=3√5.故选:C.【答案】C9.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若CF=6,AC=AF+2,则四边形BDFG的周长为()A. 9.5B. 10C. 12.5D. 20【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵点D是AC中点,AC,∴BD=DF=12∴四边形BGFD是菱形,设AF=x,则AC=x+2,FC=6,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即x2+62=(2+x)2,解得:x=8,故AC=10,故四边形BDFG的周长=4BD=2×10=20.故选:D.【答案】D10.如图,BC是半圆O的直径,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E,CE=√5,CD=2.(1)求直径BC的长;(2)求弦AB的长.【答案】解:(1)∵BC是半圆O的直径,∴∠BDC=90°,由CE=√5,CD=2,得DE=1,∵△ADE∽△BCE,∴ADBC =DECE,∴BC=2√5.(2)∵△ABE∽△DCE,∴AEAB =DEDC=12,设AE=x,∵AB2+AC2=BC2,∴(x+√5)2+(2x)2=(2√5)2,解得:x=−2√5±8√510,∵x>0,∴x=35√5,∴AB=2x=65√5.11.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB 于点D,则CD̂的长为()A. 16π B. 13πC. 23π D. 2√33π【解答】解:∵∠ACB=90°,AB=4,∠A=30°,∴∠B=60°,BC=2∴CD̂的长为60π×2180=2π3, 故选:C .【答案】C12.如图,△ABC 中,∠C=90°,CA=CB ,E 、F 分别为CA 、CB 上一点,CE=CF ,M 、N 分别为AF 、BE 的中点.求证:AE=√2MN .【答案】证明:如图,取AB 的中点G ,连接MG 、NG ,∵M 、N 分别为AF 、BE 的中点,∴NG=12AE ,NG ∥AE ,MG=12BF ,MG ∥BF ,∵CE=CF ,∠C=90°,∴AE=BF ,∠MGN=∠C=90°,∴MG=NG ,∴△MNG 是等腰直角三角形,∴NG=√22MN ,∴AE=2NG=NG=√22×2MN=√2MN ,即AE=√2MN .13.如图,在Rt △ABC 中,∠ACB=90°,AB=10,AC=6,点D 是BC 上一动点,连接AD ,将△ACD 沿AD 折叠,点C 落在点E 处,连接DE 交AB 于点F ,当△DEB 是直角三角形时,DF 的长为______.【解答】解:①如图1中,当∠EDB=90°,四边形ACDE是正方形,此时CD=AC=6,∵BC=√AB2−AC2=8,∴BD=BC-CD=8-6=2,∵tan∠ABC=DFBD =AC BC,∴DF2=6 8,∴DF=32.②如图2中,当∠DEB=90°时,AC=AE=6,则BE=4,设CD=DE=x,在Rt△BDE中,(8-x)2=x2+42,∴x=3,综上所述,满足条件的DF的值为3或32.故答案为3或32.【答案】3或3214.在Rt△ABC中,AB=5,BC=3,则斜边中线长为______.【解答】解:在Rt△ABC中,AB=5,BC=3,①AB为斜边时,斜边中线长为12AB=2.5;②AB和BC为直角边长时,由勾股定理得:斜边长=√52+32=√34,则斜边中线长为12AC=√342;故答案为:2.5或√342.【答案】2.5或√34215.已知如图,Rt△ABC中,∠ACB=90°,E是斜边AB的中点,D是线段AC延长线上的一点,连结DB、DE,DE与BC交于点G.给出下列结论:①若AD=BD,则AC•AD=AE•AB;②若AB=BD,则DG=2GE;③若CD=BE,则∠A=2∠ADE.其中正确的是()A. ①②B. ①③C. ②③D. ①②③【解答】解:①∵AD=BD,E是斜边AB的中点,∴DE⊥AB,又∠ACB=90°,∠A=∠A,∴△AED∽△ACB,∴ACAE =ABAD,即AC•AD=AE•AB,①正确;②∵AB=BD,∠ACB=90°,∴BC是△ABD的中线,又DE是△ABD的中线,∴点G是△ABD的重心,∴DG=2GE,②正确;③连接CE,∵∠ACB=90°,E是斜边AB的中点,∴EC=EA=EB,∴∠A=∠ECA,CD=CE,∴∠CDE=∠CED,∵∠ECA=∠CDE+∠CED=2∠ADE,∴∠A=2∠ADE,③正确;故选:D.【答案】D16.已知:Rt△ABC中,∠B=90°,AB=4,BC=3,点M、N分别在边AB、AC上,将△AMN沿直线MN折叠,点A落在点P处,且点P在射线CB上,当△PNC为直角三角形时,PN的长为______.【解答】解:在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∴AC=√32+42=5,设AN=PN=x,则CN=5=x①当∠NPC=90°时,如图1,∵∠NPC=∠B=90°,∠C=∠C,∴△NPC ∽△ABC ,∴PN AB =CNAC ,∴x 4=5−x 5, x=209,即PN=209;②当∠PNC=90°时,如图2,∵∠PNC=∠ABC=90°,∠C=∠C∴△NPC ∽△ABC ,∴PN AB =NC AC ,∴x 4=5−x 3, x=207,即PN=207;综上,PN 的长为209或207.故答案为:209或207.【答案】209或207.1.勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)∠DAB=90°,求证:a 2+b 2=c 2证明:连接DB ,过点D 作DF ⊥BC 交BC 的延长线于点F ,则DF=b-aS四边形ADCB=S△ADC+S△ABC=-12b2+12abS四边形ADCB=S△ADB+S△BCD=12c2+12a(b-a)∴12b2+12ab=12c2+12a(b-a)化简得:a2+b2=c2请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明如图(2)中∠DAB=90°,求证:a2+b2=c2【答案】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=12ab+12b2+12ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=12ab+12c2+12a(b-a),∴12ab+12b2+12ab=12ab+12c2+12a(b-a),∴a2+b2=c2.2.如图,已知在Rt△ABC中,E,F分别是边AB,AC上的点,AE=13AB,AF=13AC,分别以BE、EF、FC为直径作半圆,面积分别为S1,S2,S3,则S1,S2,S3之间的关系是()A. S1+S3=2S2B. S1+S3=4S2C. S1=S3=S2D. S2=13(S1+S3)【解答】解:∵在Rt△ABC中,AE=13AB,AF=13AC,∴AE=12BE,AF=12CF,EF2=AE2+AF2,∴EF2=14BE2+14CF2.∴12π•14EF2=18π•(14BE2+14CF2),即S2=14(S1+S3).∴S1+S3=4S2.故选:B.【答案】B3.如图,沿折痕AE叠矩形ABCD的一边,使点D落在BC边上的点F处,若AB=8,且△ABF的面积为24,求EC的长.【答案】解:∵S△ABF=24,AB=8,∴BF=6.∴AF=10=AD.∴FC=4.设EC=x,则EF=DE=8-x.根据勾股定理,得CF2+CE2=EF2即16+x2=(8-x)2,∴x=3.即EC=3.4.如图,已知⊙O的半径为5,弦AB、CD所对的圆心角分别是∠AOB,∠COD,且∠AOB与∠COD互补,弦CD=8,则弦AB的长为()A. 6B. 8C. 5√2D. 5√3【解答】解:解:如图,延长AO交⊙O于点E,连接BE,则∠AOB+∠BOE=180°,又∵∠AOB+∠COD=180°,∴∠BOE=∠COD,∴BE=CD,∵AE为⊙O的直径,∴∠ABE=90°,∴AB=√AE2−BE2=√102−82=6,故选:A.【答案】A5.△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A. 95B. 125C. 185D. 365【解答】解:在Rt△ABC中,∵AC=3,BC=4,∴AB=√32+42=5.过C作CM⊥AB,交AB于点M,如图所示,由垂径定理可得M为AE的中点,∵S△ABC=12AC•BC=12AB•CM,且AC=3,BC=4,AB=5,∴CM=125,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+(125)2,解得:AM=95,∴AE=2AM=185.故选:C.【答案】C6.如图,已知平行四边形ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF交于H,BF、AD的延长线交于G,下面结论正确的是()①DB=√2BE;②∠A=∠BHE;③连CG,则四边形BCGD为平行四边形;④AD2+DH2=2DC2.A. ①②③④B. ①②③C. ①②④D. ②③④【解答】解:∵∠BDE=45°,DE⊥BC,∴DB=√2BE,BE=DE.∵DE⊥BC,BF⊥CD,∴∠BEH=∠DEC=90°.∵∠BHE=∠DHF,∴∠EBH=∠CDE,∴△BEH≌△DEC,∴∠BHE=∠C,BH=CD,EH=EC,∵▱ABCD中,∴AD=BC,∠A=∠C,∴∠A=∠BHE,∴AD2+DH2=BC2+DH2=(BE+EC)2+(DE-HE)2=(BE+HE)2+(BE-HE)2=2BE2+2HE2=2(BE2+HE2)=2BH2=2DC2,∴正确的有①②④.故选:C.【答案】C7.如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若FG=5,CF=6,则四边形BDFG的面积为______.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CE⊥BD,∴CE⊥AG,又∵BD为AC的中线,AC,∴BD=DF=12∴四边形BDFG是菱形,过点B作BH⊥AG于点H,∵四边形BDFG是菱形,∴GF=DF=5,∵∠BEF=∠EFH=∠BHF=90°,∴四边形BHFE是矩形,∴BH=EF=1CF=3,2∴S菱形BDFG=GF•BH=15.故答案为:15.【答案】158.已知△ABC中,∠BAC=60°,D是线段BC上一个动点,以AD为直径画⊙O分别交AB,AC于E、F.(1)如图1,若AD=4,求EF的长;(2)如图2,若∠ABC=45°,AB=2√2,求EF的最小值.【答案】解:(1)作直径EP,连结PF,如图1,∵EP为⊙O的直径,∴∠EFP=90°,∵∠P=∠EAF=60°,∴∠PEF=30°,∴PF=12PE,EF=√3PF=√32EP,∵EP=AD=4,∴EF=√32×4=2√3;(2)∵EF=√32EP=√32AD,∴当AD最小时,EF最小,当AD⊥BC时,AD最小,如图2,∵∠ABC=45°,AB=2√2,∴AD=√2AB=2,2∴EF=√3×2=√3,2即EF的最小值为√3.9.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,求BD的长.【答案】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=10.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8-x)2=102.解得:x1=2,x2=0(舍去).∴BD=2.如图2所示:当∠B′ED=90°时,C与点E重合.∵AB′=10,AC=6,∴B′E=4.设BD=DB′=x,则CD=8-x.在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8-x)2+42.解得:x=5.∴BD=5.综上所述,BD的长为2或5.10.如图,AB是⊙O的直径,AB=10,P是半径OA上的一动点,PC⊥AB交⊙O于点C,在半径OB 上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB两侧,连结CD交AB于点E.点P从点A出发沿AO向终点O运动,在整个运动过程中,△CEP与△DEQ的面积和的变化情况是()A. 一直减小B. 一直不变C. 先变大后变小D. 先变小后变大【解答】解:连接OC,OD,PD,CQ.设PC=x,OP=y.延长CP 与圆交于点F,∵PC⊥AB,QD⊥AB,∴∠CPO=∠OQD=90°,∵PC=OQ,OC=OD,∴Rt△OPC≌Rt△DQO,∴Rt△OPC≌Rt△DQO,∴∠FOD=90°,∴∠PCE=45°,∴OP=DQ=y,∴△CEP与△DEQ的面积和为S=(x2+y2)÷2=OD2÷2=12.5.故选:B.【答案】B11.如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.【答案】(1)证明:∵CD⊥AB∴∠CEB=90°∴∠C+∠B=90°,同理∠C+∠CNM=90°∴∠CNM=∠B∵∠CNM=∠AND∴∠AND=∠B,∵AĈ=AĈ,∴∠D=∠B,∴∠AND=∠D,∴AN=AD;(2)解:设OE的长为x,连接OA∵AN=AD,CD⊥AB∴DE=NE=x+1,∴OD=OE+ED=x+x+1=2x+1,∴OA=OD=2x+1,∴在Rt△OAE中OE2+AE2=OA2,∴x2+42=(2x+1)2.解得x=53或x=-3(不合题意,舍去),∴OA=2x+1=2×53+1=133,即⊙O的半径为133.12.如图,在△ABC中,∠ACB=90∘,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连结CD.(1)若∠A=28∘,求∠ACD的度数.(2)设BC=a,AC=b.①线段AD的长是方程x2+2ax−b2=0的一个根吗?说明理由.②若AD=EC,求ab的值.【解答】(1)解:∵∠ACB=90∘,∠A=28∘,∴∠B=62∘,∵BD=BC,∴∠BCD=∠BDC=59°,∴∠ACD=90∘−∠BCD=31∘;(2)解:①由勾股定理得,AB=√AC2+BC2=√a2+b2,∴AD=√a2+b2−a,解方程x2+2ax−b2=0得,x=−2a±√4a2+4b22=±√a2+b2−a,∴线段AD的长是方程x2+2ax−b2=0的一个根;②∵AD=AE,∴AE=EC=b2,由勾股定理得,a2+b2=(12b+a)2,整理得,ab =34.【答案】(1)∠ACD=31∘;(2)①线段AD的长是方程x2+2ax−b2=0的一个根;②ab =34.13.(1)如图,在△ABC中,∠BAC=90°,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA,求∠DAE的度数;(2)如果把第(1)题中“AB=AC”条件删去,其余条件不变,那么∠DAE的度数改变吗?试证明;(3)如果把(1)题中“∠BAC=90°”的条件改为“∠BAC>90°”,其余条件不变,试探究∠DAE与∠BAC非学科培训∠BAC.理由:设∠CAE=x,∠BAD=y,则∠B=180°-2y,∠E=∠CAE=x,∴∠BAE=180°-∠B-∠E=2y-x,∴∠DAE=∠BAE-∠BAD=2y-x-y=y-x,∠BAC=∠BAE-∠CAE=2y-x-x=2y-2x,∴∠DAE=12∠BAC.第41页共41页自学七招之错题本锁骨术:巧用智能错题本,错题定期反复练非学科培训。

辅导解直角三角形概念及复习教案及习题附答案

辅导解直角三角形概念及复习教案及习题附答案

解直角三角形一、知识点讲解:1.解直角三角形的依据在直角三角形ABC中,如果∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,那么(1)三边之间的关系为(勾股定理)(2)锐角之间的关系为∠A+∠B=90°(3)边角之间的关系为2.其他有关公式面积公式:(hc为c边上的高)3.解直角三角形的条件在除直角C外的五个元素中,只要已知其中两个元素(至少有一个是边)就可以求出其余三个元素。

4.解直角三角形的关键是正确选择关系式在直角三角形中,锐角三角函数是勾通三角形边角关系的结合部,只要题目中已知加未知的三个元素中有边,有角,则一定使用锐角三角函数,应如何从三角函数的八个公式中迅速而准确地优选出所需要的公式呢?(1)若求边:一般用未知边比已知边,去寻找已知角的某三角函数(2)若求角:一般用已知边比已知边(斜边放在分母),去寻找未知角的某三角函数。

(3)在优选公式时,尽量利用已知数据,避免“一错再错”和“累积误差”。

5.解直角三角形时需要注意的几个问题(1)在解直角三角形时,是用三角知识,通过数值计算,去求出图形中的某些边的长度或角的大小,这是数形结合为一种形式,所以在分析问题时,一般先根据已知条件画出它的平面或截面示意图,按照图中边角之间的关系去进行计算,这样可以帮助思考,防止出错。

(2)有些图形虽然不是直角三角形,但可添加适当的辅助线把它们分割成一些直角三角形和矩形,从而把它们转化为直角三角形的问题来解决。

(3)按照题目中已知数据的精确度进行近似计算二、例题解析:例1、已知直角三角形的斜边与一条直角边的和是16cm,另一条直角边为8cm,求它的面积,解:设斜边为c,一条直角边为a,另一条直角边b=8cm,由勾股定理可得,由题意,有c+a=16 ,b=8例2、在△ABC中,求:a、b、c的值及∠A。

解:,由直角三角形的边角关系,得,即又∵a+b=3+例3、已知△ABC中,∠C=90°,若△ABC的周长为30,它的面积等于30,求三边长。

初中数学 三角形模块5-3 直角三角形讲义(含答案解析)

初中数学 三角形模块5-3 直角三角形讲义(含答案解析)

第三部分直角三角形一、知识梳理:1.直角三角形的性质:(1)直角三角形两个锐角互余;(2)直角三角形斜边上的中线等于斜边的一半;(3)直角三角形中,30°角所对的直角边等于斜边的一半;(4)勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方,即如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达:222+=a b c (5)勾股数:勾股数就是可以构成一个直角三角形三边的一组正整数.2.直角三角形的判定:(1)有一个角是90°的三角形是直角三角形;(2)有两个角的三角形是直角三角形;(3)如果三角形一边的中线等于这边的一半,那么这个三角形是直角三角形;(4)勾股定理逆定理:如果三角形的三条边长a,b,c满足关系式:222+=a b c,那么这个三角形是直角三角形.二、题型练题型一直角三角形的两锐角互余例1.若直角三角形的一个锐角为15︒,则另一个锐角等于________.75°【分析】根据三角形内角和定理计算即可.【详解】解:∵另一个锐角为15°,∴另一个锐角为180°-90°-15°=75°,故答案为:75°.【点睛】本题考查了直角三角形的性质,解题的关键是掌握直角三角形两锐角互余.变式11.如图,直线a ∥b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 作直线l 的垂线交直线b 于点C ,若∠1=60°,则∠2的度数为()A.30°B.35°C.40°D.60°【答案】A【解析】【分析】由AC l ⊥及160∠=︒,可求得ACB ∠的度数,再由//a b 即可求出2∠的度数.【详解】∵AC l ⊥,160∠=︒∴90130ACB ∠=︒-∠=︒∵//a b∴230ACB ∠=∠=︒故选:A【点睛】本题主要考查了平行线的性质及直角三角形的性质.题型二直角三角形斜边上的中线例2.如图在ABC ∆中,CF AB ⊥于F ,BE AC ⊥于E ,M 为BC 的中点,5EF =,EFM ∆的周长为13,则BC 的长是()A .6B .8C .10D .12B 【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,求出BC =2MF =2EM ,所以MF =EM ,然后列式整理得到△EFM的周长=BC+EF,代入数据进行计算即可.【详解】解:∵在△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,∴BC=2MF,BC=2EM.∴MF=EM.∴△EFM的周长=MF+EM+EF=BC+EF.∵EF=5,△EFM的周长为13,∴BC=13-5=8故选:B.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟练掌握性质是解题的关键.变式22.如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点连接AF,BF,∠AFB=90°,且AB=8,BC=14,则EF的长是()A.2B.3C.4D.5【答案】B【解析】【分析】根据直角三角形的性质得到DF=4,根据BC=14,由三角形中位线定理得到DE=7,解答即可.【详解】解:∵∠AFB=90°,点D是AB的中点,∴DF=12AB=4,∵BC=14,D、E分别是AB,AC的中点,∴DE=12BC=7,∴EF=DE-DF=3,故选:B【点睛】本题考查了直角三角形的性质和中位线性质,掌握定理是解题的关键.题型三直接考查勾股定理例3.已知直角三角形的两边长分别为3和4,则斜边长为()A.4B.5C.4或5D.5C【分析】由于此题中直角三角形的斜边不能确定,故应分4是直角三角形的斜边长和直角边长两种情况讨论.【详解】解: 直角三角形的两边长分别为3和4,∴①4是此直角三角形的斜边长;②当45=.综上所述,斜边长为4或5故选:C.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.变式33.如图,在三角形ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=()A. 2.5B.3C.2D.3.5【答案】C【解析】【分析】首先利用勾股定理可以算出AB的长,再根据题意可得到AD=AC,根据BD=AB-AD即可算出答案.【详解】解:∵AC =3,BC =4,∴AB =5,∵以点A 为圆心,AC 长为半径画弧,交AB 于点D ,∴AD =AC ,∴AD =3,∴BD =AB -AD =5-3=2.故选C .【点睛】此题主要考查了勾股定理,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.题型四勾股数例4.下列数组是勾股数的是()A .2、3、4B .0.3、0.4、0.5C .6、8、10D .7、12、15C【分析】根据勾股数的定义:满足222+=a b c 的三个正整数,称为勾股数逐一判断即可.【详解】A .22223134+=≠,此数组不是勾股数;B .0.3、0.4、0.5不是整数,此数组不是勾股数;C .222 6810+=,此数组是勾股数;D .222 71219315+=≠,此数组不是勾股数;故选:C .【点睛】本题考查了勾股数的知识,解答此题要用到勾股数的定义,及勾股定理的逆定理:已知△ABC 的三边满足222+=a b c ,则△ABC 是直角三角形.变式44.如图,这是一株美丽的勾股树,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的边长是3、5、2、3,则最大正方形E 的边长是()A.13B.C.47D.【答案】B【解析】【分析】设中间两个正方形的边长分别为x 、y ,最大正方形E 的边长为z ,根据勾股定理进行求解.【详解】设中间两个正方形的边长分别为x 、y ,最大正方形E 的边长为z ,由勾股定理得:x 2=32+52=34,y 2=22+32=13,z 2=x 2+y 2=47,即最大正方形E 的面积为:z 2=47,边长为z 故选B .【点睛】本题考查勾股定理,掌握以直角三角形斜边为边长的正方形的面积等于两个以直角边为边长的正方形面积之和是解题的关键.题型五勾股定理的证明例5.勾股定理是人类最伟大的十个科学发现之一,在《周髀算经》中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今.迄今为止己有400多种证明勾股定理的方法.下面是数学课上创新小组验证过程的一部分.请认真阅读并根据他们的思路将后续的过程补充完整:将两张全等的直角三角形纸片按图所示摆放,其中b a >,点E 在线段AC 上,点B D 、在边AC 两侧,试证明:222+=a b c .见解析.【分析】首先连结BD ,作DF BC ⊥延长线于F ,则AE b a =-,根据Rt ABC Rt DAE D @D ,易证90DAB ︒∠=,再根据ADE ABC ADFB DFCE S S S S D D =++四边形四边形,ADB DFB ADFB S S S ∆∆=+四边形,两者相等,整理即可得证.【详解】证明:连结BD ,作DF BC ⊥延长线于F ,则AE b a=-ADE ABC ADFB DFCES S S S D D =++四边形四边形()1122ab ab b a b =++-⋅2ab b ab=+-2b =Rt ABC Rt DAE∆≅∆ AB AD c\==ADE BAC∴∠=∠90ADEDAE °??Q 90BAC DAE °\??即90DAB ︒∠=,∴AD AB⊥∴ADB DFBADFB S S S ∆∆=+四边形()()21122c a b b a =++⋅-222111222c b a =+-即有:2222111222b c b a =+-∴222+=a b c 【点睛】本题考查了勾股定理的证明,用两种方法表示出四边形ADFB 的面积是解本题的关键.变式55.勾股定理现约有500种证明方法,是用代数思想解决几何问题的最重要的工具之一.中国古代最早对勾股定理进行证明的是三国时期吴国的数学家赵爽,赵爽创制了如图1所示的“勾股圆方图”,在该图中,以弦c 为边长所得到的正方形ABCD 是由4个全等的直角三角形再加上中间的小正方形EFGH 组成的,其中BF a =,AF b =.(1)请利用面积相等证明勾股定理;(2)在图1中,若大正方形ABCD 的面积是13,2BF =,求小正方形EFGH 的面积;(3)图2是由“勾股圆方图”变化得到的,正方形MNKT 由八个全等的直角三角形和正方形EFGH 拼接而成,记图中正方形MNKT ,正方形ABCD ,正方形EFGH 的面积分别为1S ,2S ,3S .若12348S S S ++=,求边AB 的长度.【答案】(1)证明见解析;(2)1;(3)4【解析】【分析】(1)根据大正方形的面积=4个全等直角三角形的面积+小正方形的面积证明可得结论;(2)由勾股定理可得AF 的长,从而可得小正方形的边长,进一步可求出小正方形的面积;(3)分别求出正方形MNKT ,正方形ABCD ,正方形EFGH 的边长,求出其面积,代入12348S S S ++=,进一步整理可得解.【详解】解:(1)∵Rt ABF Rt DAE Rt CDH Rt BCG∆≅∆≅∆≅∆∴BF AF DH CG a ====,AF DE CH BG b====∴小正方形EFGH 的边长=b a-又大正方形的边长为c∴正方形ABCD 的面积为2c ,4个全等直角三角形的面积和为2ab ,正方形EFGH 的面积为()2b a -,由“大正方形的面积=4个全等直角三角形的面积+小正方形的面积”得;2214()2c ab b a =⨯+-∴()222c ab b a =+-经过整理可得222c a b =+(2)∵大正方形ABCD 的面积是13,∴213c =∵2BF =,且222BF AF AB +=∴2221349AF AB BE =-=-=∴3AF =(负值舍去)∴321EF =-=∴小正方形EFGH 的面积为1;(3)∵正方形MNKT 由八个全等的直角三角形和正方形EFGH 拼接而成,∴AM AF b ==,MB BF a ==,∴正方形MNKT 的边长为a b +,∴正方形MNKT 的面积为()2a b +.而正方形ABCD 的边长为c ,正方形EFGH 的边长为()b a -,∴正方形ABCD 的面积为2c ,正方形EFGH 的面积为()2b a -,∴()()22248a b c b a +++-=,整理得,2348c =,∴4c =(负值舍去)【点睛】此题考查的是勾股定理的证明和应用,能够准确识图是解答本题的关键.题型六勾股定理的实际应用例6.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底墙到左墙角的距离为1.5m ,顶端距离地面2m ,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面0.7m ,那么小巷的宽度为()A .3.2mB .3.5mC .3.9mD .4mC【分析】如图,在Rt △ACB 中,先根据勾股定理求出AB ,然后在Rt △A ′BD 中根据勾股定理求出BD ,进而可得答案.【详解】解:如图,在Rt △ACB 中,∵∠ACB =90°,BC =1.5米,AC =2米,∴AB 2=1.52+22=6.25,∴AB =2.5米,在Rt △A ′BD 中,∵∠A ′DB =90°,A ′D =0.7米,BD 2+A ′D 2=A ′B 2,∴BD 2+0.72=6.25,∴BD 2=5.76,∵BD>0,∴BD=2.4米,∴CD=BC+BD=1.5+2.4=3.9米.故选:C.【点睛】本题考查了勾股定理的应用,正确理解题意、熟练掌握勾股定理是解题的关键.变式66.小明想知道学校旗杆多高,他发现旗杆上的绳子垂到地面还多2m,当他把绳子的下端拉开10m后,发现下端刚好接触地面,则旗杆的高为()A.16mB.20mC.24mD.28m【答案】C【解析】【分析】根据题意设旗杆的高AB为x米,则绳子AC的长为(x+2)米,再利用勾股定理即可求得AB的长,即旗杆的高.【详解】解:如图:设旗杆的高AB为x米,则绳子AC的长为(x+2)米,在Rt△ABC中,BC=10米,由勾股定理得:AB2+BC2=AC2,∴x2+102=(x+2)2,解得:x=24,∴AB=24.∴旗杆的高24米,故选:C .【点睛】本题考查学生利用勾股定理解决实际问题的能力,解题关键是构造直角三角形利用勾股定理列出方程.题型七勾股定理的逆定理例7.下列四组数中不能构成直角三角形的一组是()A .4,5,6B .7,24,25C .5,12,13D .1,2A【分析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【详解】解:A 、∵222456+≠,∴三条线段不能组成直角三角形,故A 选项符合题意;B 、∵22272425+=,∴三条线段能组成直角三角形,故B 选项不符合题意;C 、∵22251213+=,∴三条线段能组成直角三角形,故C 选项不符合题意;D 、∵22212+=,∴三条线段能组成直角三角形,故D 选项不符合题意;故选:A .【点睛】本题考查了勾股定理逆定理,熟悉定理是关键.变式77.在如图的网格中,每个小正方形的边长为1,A 、B 、C 三点均在正方形格点上,若AD 是ABC 的高,则AD 的长为()A. B. C. D.2【答案】D【解析】【分析】结合格点的特点利用勾股定理求得AB 2,AC 2,BC 2,然后利用勾股定理逆定理判定△ABC 的形状,从而利用三角形面积求解.【详解】解:由题意可得:2222420AB =+=222215AC =+=2223425BC =+=∵222+AB AC BC =∴△ABC 是直角三角形又∵AD 是ABC 的高∴1122AC AB BC AD ⋅=⋅,11522AD ⨯,解得:=2AD 故选:D .【点睛】本题考查勾股定理及其逆定理,掌握勾股定理,利用网格特点,准确计算是解题关键.题型八勾股定理的逆定理的应用例8.如图所示的网格是正方形网格,ABC ∆是()三角形.A .锐角B .直角C .钝角D .等腰A【分析】根据勾股定理求出三边的长,再利用勾股定理逆定理可作判断.【详解】解:根据网格图可得:2224117AC =+=,2223110AB =+=,2224325CB =+=,222171025AC AB CB +=+>= ,ABC ∆∴是锐角三角形,故选:A .【点睛】本题考查了三边的关系,会利用三边关系确定三角形的形状:若三角形的三边分别为a 、b 、c ,①当a 2+b 2>c 2时,△ABC 为锐角三角形;②当a 2+b 2<c 2时,△ABC 为钝角三角形;③当a 2+b 2=c 2时,△ABC 为直角三角形.变式88.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75︒的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为()A.北偏西15︒B.南偏西75°C.南偏东15︒或北偏西15︒D.南偏西15︒或北偏东15︒【答案】C【解析】【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵222241857632490030+=+==,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C .【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.题型九勾股定理与折叠问题例9.如图,矩形纸片ABCD 中,AB =CD =4,AD =BC =8,∠BAD =∠B =∠C =∠D =90°,将纸片沿EF 折叠,使点C 与点A 重合,使点G 与点D 重合.(1)求证:AE =AF ;(2)求GF 的长.(1)详见解析;(2)3【分析】(1)根据翻折的性质可得AEF CEF ∠=∠,根据两直线平行,内错角相等可得∠=∠AFE CEF ,然后求出AEF AFE ∠=∠,根据等角对等边可得AE AF =;(2)根据翻折的性质可得AE CE =,设AE CE x ==,则8BE x =-,再根据勾股定理有:2224(8)x x =+-,于是有5AE AF ==,进而得到3GF FD ==.【详解】解:(1)由翻折的性质得,AEF CEF ∠=∠,矩形ABCD 的对边//AD BC ,AFE CEF ∴∠=∠,AEF AFE ∴∠=∠,AE AF ∴=;(2)由翻折的性质得,AE CE =,设AE CE x ==,则8BE x =-,在Rt ABE ∆中,222AE AB BE =+,2224(8)x x ∴=+-,解得:5x =,5AE ∴=,又由(1)可知,5AF =,853FD AD AF ∴=-=-=,由翻折的性质得,3GF FD ==.【点睛】本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记各性质并作利用勾股定理列方程求出AE 的长度是解题的关键.变式99.如图,在Rt ABC 中,90,5,8ACB AC BC ∠=︒==,点D 是边BC 的中点,点E是边AB 上的任意一点(点E 不与点B 重合),沿DE 翻折DBE 使点B 落在点F 处,连接AF ,则线段AF 长的最小值是()A.2B.4-C.3D.4-【答案】B【解析】【分析】连接AD ,以D 为圆心,以CD 为半径画圆,交AD 于G ,根据题意可知点F 在D 上,当G 和F 重合时AF 有最小值,然后利用勾股定理计算长度即可.【详解】解:连接AD ,以D 为圆心,以CD 为半径画圆,交AD 于G ,根据题意可知点F 在D 上,当G 和F 重合时AF 有最小值,∵点D 是边BC 的中点,∴142CD GD BC ===,在Rt △ACD 中AD =∴4AG AD GD =-=.故选:B【点睛】本题主要考查圆的性质和勾股定理,能够找到点F 的运动轨迹是解题的关键.题型十最短距离问题例10.如图,台阶A 处的蚂蚁要爬到B 处搬运食物,它爬的最短距离是_____.25【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【详解】解:如图所示:台阶平面展开图为长方形,根据题意得:20AC =,55515BC =++=,则蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长.由勾股定理得:222AB AC BC =+,即2222015AB =+,∴25AB =,故答案为:25【点睛】本题主要考查了平面展开图—最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.变式1010.如图,正方形ABCD ,AB 边上有一点E ,3AE =,1EB =,在AC 上有一点P ,使为EP BP +最短.则最短距离EP BP +为_________.【答案】5【解析】【分析】连接DE ,交直线AC 于点P ,根据四边形ABCD 是正方形可知B 、D 关于直线AC 对称,所以DE 的长即为EP+BP 的最短距离,再根据勾股定理即可得出结论.【详解】连接DE,交直线AC于点P,∵四边形ABCD是正方形,∴B、D关于直线AC对称,∴DE的长即为EP+BP的最短距离,∵AE=3,EB=1,∴AD=AB=AE+BE=4,∴5==.故答案为:5.【点睛】本题考查了轴对称-最短路线问题、正方形的性质以及勾股定理的运用,熟知两点之间线段最短是解答此题的关键.实战练11.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M、C两点间的距离为()A0.5km A.0.6km B.0.9km C.1.2km【答案】D【解析】【详解】根据直角三角形斜边上的中线等于斜边的一半即可求得距离为1.2km.故选D视频12.如图,在Rt △ABC 中,∠C =90︒,AC =4,BC =3,把Rt △ABC 绕着点A 逆时针旋转,使点C 落在AB 边的C ′上,C'B 的长度是()A.1B.32C.2D.52【答案】A【解析】【分析】首先由勾股定理求出AB =5,再由旋转的性质得出4AC AC '==,从而可求出BC '的长.【详解】解:在Rt △ABC 中,∠C =90︒,AC =4,BC =3,∴222AB AC BC =+∴5AB ===由旋转的性质得,4AC AC '==∴541C B AB AC ''=-=-=故选:A .【点睛】此题主要考查了旋转的性质和勾股定理的运用,运用勾股定理求出AB =5是解答此题的关键.13.下列各组数中不是勾股数的是()A.3,4.5B.6.8.10C.5,12.13D.4,5,6【答案】D【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满足两小边的平方和等于最长边的平方.【详解】解:A 、32+42=25=52,是勾股数,此选项不符合题意;B 、62+82=100=102,是勾股数,此选项不符合题意;C 、52+122=169=132,是勾股数,此选项不符合题意;D 、42+52=41≠62,不是勾股数,此选项符合题意.故选:D .【点睛】此题主要考查了勾股数:满足a 2+b 2=c 2的三个正整数,称为勾股数.注意:①三个数必须是正整数,例如:2.5、6、6.5满足a 2+b 2=c 2,但是它们不是正整数,所以它们不是勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…14.满足下列条件的三角形:①三边长之比为3:4:5;②三内角之比为3:4:5;③n 2﹣1,2n ,n 2+1;1+1-,6.其中能组成直角三角形的是()A.①③B.②④C.①②D.③④【答案】A【解析】【分析】欲求证是否为直角三角形,若已知三边长,只要验证两小边的平方和是否等于最长边的平方;若已知三个角的度数,只要验证是否存在直角即可.【详解】①三边长之比为3:4:5;则有222(3)(4)(5)x x x +=,为直角三角形;②三个内角度数之比为3:4:5,则各角度数分别为31804512︒⨯=︒,41806012︒⨯=︒,51807512︒⨯=︒,不是直角三角形;③22222(1)(2)(1)n n n -+=+ ,∴是直角三角形;④116++=<,∴构不成三角形.故选:A .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.15.《九章算术》是我国古代的数学名著,书中有“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺.问折者高几何?意思是:一根竹子,原高一丈(一丈10=尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部3尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x 尺,则可列方程为()A.2223(1)x x -=- B.2223(10)x x -=-C.2223(1)x x +=- D.2223(10x)x +=-【答案】D【解析】【分析】根据勾股定理列方程解答.【详解】解:设折断处离地面的高度为x 尺,则斜边为(10-x )尺,根据勾股定理得:2223(10x)x +=-,故选:D .【点睛】此题考查勾股定理的实际应用,正确理解题意得到直角三角形确定三边的关系式是解题的关键.16.如图所示,将一根长为24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在外面的长为hcm ,则h 的取值范围是()A.0<h ≤11B.11≤h ≤12C.h ≥12D.0<h ≤12【答案】B【解析】【分析】根据题意画出图形,先找出h的值为最大和最小时筷子的位置,再根据勾股定理解答即可.【详解】解:当筷子与杯底垂直时h最大,h最大=24﹣12=12cm.当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB=13cm,∴h=24﹣13=11cm.∴h的取值范围是11cm≤h≤12cm.故选:B.【点睛】本题考查了勾股定理的实际应用问题,解答此题的关键是根据题意画出图形找出何时h有最大及最小值,同时注意勾股定理的灵活运用,有一定难度.17.某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q、R处,且相距30海里.如果知道“远航”号沿东北方向航行,则“海天”号沿()方向航行.A.西南B.东北C.西北D.东南【答案】C【解析】【分析】根据路程=速度×时间分别求得PQ、PR的长,再进一步根据勾股定理的逆定理可以证明三角形PQR是直角三角形,从而进行分析求解.【详解】解:根据题意得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里).∵242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.由“远航号”沿东北方向航行可知,∠1=45°,则∠2=45°,即“海天”号沿西北方向航行.故选:C.【点睛】本题考查勾股定理的应用,解题的关键是能够根据勾股定理的逆定理发现直角三角形进行解答.18.如图,在 ABC中,AB=8,BC=6,AC=10,D为边AC上一动点,DE⊥AB于点E,DF⊥BC于点F,则EF的最小值为()A.5B. 4.8C.3D.2.4【答案】B【解析】【分析】根据三个角都是直角的四边形是矩形,得四边形EDFB是矩形,根据矩形的对角线相等,得EF=BD,则EF的最小值即为BD的最小值,根据垂线段最短,知:BD的最小值即等于直角三角形ABC斜边上的高.【详解】如图,连接BD.∵在△ABC中,AB=8,BC=6,AC=10,∴AB 2+BC 2=AC 2,即∠ABC =90°.又∵DE ⊥AB 于点E ,DF ⊥BC 于点F ,∴四边形EDFB 是矩形,∴EF =BD .∵BD 的最小值即为直角三角形ABC 斜边上的高,即4.8,∴EF 的最小值为4.8,故选:B .【点睛】此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质,要能够把要求的线段的最小值转换为便于分析其最小值的线段.19.如图,在四边形ABCD 中,1AB BC ==,CD =,AD =,AB BC ⊥,则四边形ABCD 的面积是()A. 2.5B.3C. 3.5D.4【答案】A【解析】【分析】如下图,连接AC ,在Rt △ABC 中先求得AC 的长,从而可判断△ACD 是直角三角形,从而求得△ABC 和△ACD 的面积,进而得出四边形的面积.【详解】如下图,连接AC∵AB=BC=1,AB ⊥BC∴在Rt △ABC 中,,111122ABC S =⨯⨯=∵,又∵(222+=∴三角形ADC 是直角三角形∴122ADC S == ∴四边形ABCD 的面积=12+2=52故选:A .【点睛】本题考查勾股定理的逆定理,遇到此类题型我们需要敏感一些,首先就猜测△ADC 是直角三角形,然后用勾股定理逆定理验证即可.20.某高速公路的同一侧有A ,B 两个城镇,如图所示,它们到高速公路所在直线MN 的距离分别为2km AE =,3km BF =,12km EF =,要在高速公路上E 、F 之间建一个出口Q ,使A 、B 两城镇到Q 的距离之和最短,在图中画出点Q 所在位置,并求出这个最短距离.【答案】见解析,13km【解析】【分析】作点B 关于MN 的对称点C ,连接AC 交MN 于点Q ,连接QB ,此时QA+QB 的值最小.作AD ⊥BC 于D ,在Rt △ACD 中,利用勾股定理求出AC 即可;【详解】解:作点B 关于MN 的对称点C ,连接AC 交MN 于点Q ,则点Q 为所建的出口;此时A 、B 两城镇到出口Q 的距离之和最短,最短距离为AC 的长.作AD BC ⊥于D ,则90ADC ∠=︒,AE ⊥MN ,BF ⊥MN∴四边形AEFD 为矩形∴12AD EF ==,2DF AE ==在t R ADC 中,12AD =,5DC DF CF =+=,∴由勾股定理得:13AC ===∴这个最短距离为13km .【点睛】本题考查作图-应用与设计,轴对称-最短问题、勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,学会添加常用辅助线,构造直角三角形解决问题.培优练21.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB 由点A 行驶向点B ,已知点C 为一海港,且点C 与直线AB 上两点A ,B 的距离分别为300km 和400km ,又AB=500km ,以台风中心为圆心周围250km 以内为受影响区域.(1)海港C 受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有小时.【答案】(1)海港C受台风影响,理由见解析;(2)7.【解析】【分析】(1)根据勾股定理的逆定理得出△ABC是直角三角形,利用等面积法得出CD的长,从而可得海港C是否受台风影响;(2)根据勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.【详解】解:(1)海港C受台风影响.理由:如图,过点C作CD⊥AB于D,∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC•BC=CD•AB∴CD=240(km)∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受到台风影响.(2)当EC=250km,FC=250km时,正好影响C港口,∵ED=70(km)∴EF=140km∵台风的速度为20km/h,∴140÷20=7(小时)即台风影响该海港持续的时间为7小时.故答案为:7.【点睛】本题考查了勾股定理及逆定理的应用,解答此类题目的关键掌握勾股定理及其逆定理并构造直角三角形,利用勾股定理解决问题.。

八年级数学直角三角形之手拉手模型和半角模型 专题讲义

八年级数学直角三角形之手拉手模型和半角模型 专题讲义

八年级数学直角三角形之手拉手模型和半角模型专题讲义引言直角三角形是初中数学中的重要概念,其中手拉手模型和半角模型是两种常见的解题方法。

本讲义将重点介绍这两种方法及其应用。

手拉手模型手拉手模型又称拇指定理,是由勾股学派刘徽发现的。

其基本思想是,直角三角形两个锐角的正切值相乘等于1。

我们可以用手指的姿势模拟这个过程:将拇指和食指分别竖直和水平伸出,拇指代表一个锐角的正切值,食指代表另一个锐角的正切值,那么当两根手指合并时所得的掌心面积就代表直角边上的长度,也就是拇指和食指的正切值之积。

根据手拉手模型,我们可以很方便地求解直角三角形中所有角和边的长度。

例如,已知直角三角形斜边长度为5,一个锐角的正切值为1/2,那么另一个锐角的正切值就为2,直角边上的长度也就是2×1/2=1。

因此,该直角三角形的三个角分别为30°、60°和90°,另外两条边长分别为1和√3。

半角模型半角模型是一种更加直观的解法,其基本思想是将直角三角形内的一条角平分为两个角,使其变为两个相似三角形。

具体方法是,连一条从直角顶点出发经过斜边中点的直线,将直角三角形分为两个全等的直角三角形,然后根据正弦、余弦和正切的定义计算各个角的值和三条边的长度。

半角模型的优点在于能够直观地理解三角形内各条边和角的关系,并且不依赖特定的公式和计算器。

但是它也有缺点,即对于较为复杂的三角函数运算,可能需要更多的时间和细心的推导。

应用实例手拉手模型和半角模型在初中数学中都有广泛的应用,例如:- 求解直角三角形内的各个角度和边长;- 利用正弦、余弦和正切计算斜率、角度、距离等物理量;- 确定平行线、垂线、角平分线等几何关系;- 求解三角函数方程和不等式等。

结论手拉手模型和半角模型是初中数学教学中常用的解题方法,它们能够帮助学生加深对直角三角形及其三角函数的理解,培养数学思维和解决实际问题的能力。

但是,应当注意避免机械使用公式和方法,要灵活运用不同的思路和技巧,提高数学素养和创造力。

八年级数学第11讲.特殊三角形之直角三角形.提高班.教师版

八年级数学第11讲.特殊三角形之直角三角形.提高班.教师版

八年级数学第11讲.特殊三角形之直角三角形.提高班.教师版11特别三角形之直角三角形满分晋级三角形 10 级勾股定理与逆定理三角形 11 级特别三角形之直角三角形三角形 12 级成比率线段漫画释义秋天班第十讲秋天班第十一讲暑期班第四讲知识互联网题型一:直角三角形的性质及判断思路导航有一个角是直角的三角形叫做直角三角形,这是初中阶段研究的一个特别三角形,它的性质和判断是常考内容,也是解决初中几何问题的常用手段.一、直角三角形1.直角三角形的性质:⑴ 两锐角互余;⑵ 三边知足勾股定理;⑶ 斜边上的中线等于斜边的一半;⑷30 角所对的直角边等于斜边的一半.此外,直角三角形中还有一个重要的结论:两直角边的乘积等于斜边与斜边上高的乘积,即ab ch .2.直角三角形的判断:⑴ 有一个角是直角;⑵ 两锐角互余;⑶ 勾股定理的逆定理;⑷ 一条边上的中线等于这条边的一半.二、等腰直角三角形等腰直角三角形是集等腰三角形和直角三角形为一体的特别图形,除具备等腰三角形和直角三角形的全部性质以外,它的底边中线也同时具备了“三线合一”和“斜边中线”的共同特色,堪称“集大成者”.另外,等腰直角三角形还能够当作是正方形的“半成品”,所以“复原正方形”也是等腰直角三角形常用的辅助线做法之一.例题精讲【引例】如图,正方形ABCD 的边长为 4 ,E、F分别在BC、CD上,且A B A B图1BE CF 3 , AE、BF 订交于M,求BM的长.【分析】∵ ABCD 是正方形,∴ AB BC 4 ,ABC C 90 ,∵ BE CF 3 ,∴ △ ABE ≌△ BCF ,∴BAE CBF ,∴BME 90又由勾股定理可知AE 5 ,在 Rt△ ABE 中,BM AE ,∴AB BE AE BM ,∴ BM AB BE12 .AE5典题精练【例 1】 1.在△ ABC 中,若 A35,B55,则这个三角形是__________三角形.C2.如图,在△ ABC 中,ACB90, CD AB ,若 A 28,则 B _______,ACD________,BCD ________.A BDA3.如图,已知图中每个小正方形的边长为1,则点 C 到AB所在直线的距离等于.(十三中分校期中)BC4.如图,在四边形 ABCD 中,∠ A= 60°,∠ B=∠ D= 90°,BC =2,CD= 3,则 AB =.A ADDB C B C E5.已知 Rt△ ABC 中,∠ C= 90°, AB 边上的中线长为2,且 AC+ BC= 6,则 S△ABC=.【分析】 1.直角2.62 ; 62 ; 283.24.8 3 .经过向外补形,将四边形问题转变为三角形问题来解决.35.∵AB 边上的中线长为 2,∴ AB=4,∴ AC2+BC2=AB2=16∵ AC+ BC= 6,∴ AC BC 22+BC2+2AC BC=3636 ,即 AC1∴S △ ABCAC BC 52【例 2】 若直角三角形的两条直角边长为 a 、 b ,斜边为 c ,斜边上的高为 h ,求证:⑴ 1 1 1 ;⑵ a b c h .2 2 2a b h【分析】 ⑴ ∵ a 2 b 2 c 2 , ab ch ,∴ c ab 2 2a 2b 2 ,h , 代入得 a b2h1 1 1∴ 2 b 2h 2.a⑵ 由 a 2b 2c 2 , ab ch ,则 a 22ab b 2 c 2 2ch ,22∴ 22ab222ch2,即 aabch bc h ,∴ a b ch .题型二:特别直角三角形的边角关系思路导航特别的直角三角形是指30 ,60 ,90 和 45 ,45 ,90 的直角三角形,它们的三条边之间有特殊的比率关系, 分别是 1: 3 : 2 和 1:1: 2 ,娴熟运用这类特别的比率关系, 能够在解题过程中大幅提升解题的速度与正确率.例题精讲【引例】 已知, Rt △ ABC 中, C 90 , A 30, AC6 ,求 BC 、AB 的长.【分析】 解法一: ∵ C90 ,A30 ,∴ BC1AB ,2设 BC x ,则 AB 2x ,那么 x 2 622x 22 (舍负),解得 x ∴ BC2 , AB2 2 .解法二: ∵ C 90 ,A 30 ,∴ BC : AC : AB1: 3 :2 ,∴ BCAC 62 , ∴ AB 2BC 22 .33典题精练【例 3】⑴在△ ABC中,a、b、c分是A、B、C的,且A :B :C 1 : 2 ,: a 与 c 的关系是____________.⑵如,把两同样的含30 角的三角尺如搁置,A E若 AD 6 6 cm,三角尺的最.DBC(四中期中)⑶ 如,以等腰直角三角形AOB 的斜直角向外作第 2 个等腰直角三B 2角形 ABA1,再以等腰直角三角形 ABA1的斜直角向外作第 3 个等腰直角三角形 A1BB1,⋯,这样作下去,若OA OB 1 ,第8个等腰直A1角三角形的面是.A【分析】⑴ c 2a ;⑵12cm ;⑶64 .O BB 1【例 4】如,点D、E是等△ ABC的BC、AC上的点,且点, BQ ⊥ AD 。

2-8直角三角形全等的判定 讲义 2022—2023学年浙教版数学八年级上册

  2-8直角三角形全等的判定 讲义 2022—2023学年浙教版数学八年级上册

2.8直角三角形全等的判定知识点梳理直角三角形全等的判定1、斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).2、直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.题型一“HL”证全等1.如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A.AC=AD B.AB=AB C.∠ABC=∠ABD D.∠BAC=∠BAD 2.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还要添加一个条件是()A.AB=DC B.∠A=∠D C.∠B=∠C D.AE=BF3.如图,已知∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD 全等.以下给出的条件适合的是()A.∠ABC=∠ABD B.∠BAC=∠BAD C.AC=AD D.AC=BC4.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是.5.如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE ≌Rt△BEC.6.如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.7.如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足,AE=CF.求证:∠ACB=90°.8.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且BE=CF.求证:AB=AC.题型二直角三角形全等的辨别1.下列条件中,不能判定两个直角三角形全等的是()A.一个锐角和斜边对应相等B.两条直角边对应相等C.两个锐角对应相等D.斜边和一条直角边对应相等2.下列条件中:①两条直角边分别相等;②两个锐角分别相等;③斜边和一条直角边分别相等;④一条边和一个锐角分别相等;⑤斜边和一锐角分别相等;⑥两条边分别相等.其中能判断两个直角三角形全等的有()A.6个B.5个C.4个D.3个3.下列条件不能证明两个直角三角形全等的是()A.斜边和一直角边对应相等B.一直角边和一角对应相等C.两条直角边对应相等D.斜边和一锐角对应相等4.下列说法正确的有()①两个锐角分别相等的的两个直角三角形全等;②一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等;③两边分别相等的两个直角三角形全等;④一个锐角和一条边分别相等的两个直角三角形全等.A.1B.2C.3D.45.下列结论正确的是()A.有两个锐角相等的两个直角三角形全等B.一条斜边对应相等的两个直角三角形全等C.两个等边三角形全等D.有两边及其夹角对应相等的两个三角形全等题型三一般三角形全等的判定方法证直角三角形1.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A.1B.2C.5D.无法确定2.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O.如果AB=AC,那么图中全等的直角三角形的对数是()A.1B.2C.3D.43.如图所示,∠C=∠D=90°,添加下列条件①AC=AD;②∠ABC=∠ABD;③∠BAC =∠BAD;④BC=BD,能判定Rt△ABC与Rt△ABD全等的条件的个数是()A.1B.2C.3D.44.已知:AB⊥BC,AD⊥DC,∠1=∠2,问:△ABC≌△ADC吗?说明理由.答案与解析题型一“HL”证全等1.如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A.AC=AD B.AB=AB C.∠ABC=∠ABD D.∠BAC=∠BAD【分析】由已知两三角形为直角三角形,且斜边为公共边,若利用HL 证明两直角三角形全等,需要添加的条件为一对直角边相等,即BC =BD 或AC =AD .【解答】解:需要添加的条件为BC =BD 或AC =AD ,理由为:若添加的条件为BC =BD ,在Rt △ABC 与Rt △ABD 中,∵{BC =BD AB =AB, ∴Rt △ABC ≌Rt △ABD (HL );若添加的条件为AC =AD ,在Rt △ABC 与Rt △ABD 中,∵{AC =AD AB =AB, ∴Rt △ABC ≌Rt △ABD (HL ).故选:A .2.如图,BE =CF ,AE ⊥BC ,DF ⊥BC ,要根据“HL ”证明Rt △ABE ≌Rt △DCF ,则还要添加一个条件是( )A .AB =DC B .∠A =∠D C .∠B =∠C D .AE =BF【分析】根据垂直定义求出∠CFD =∠AEB =90°,再根据全等三角形的判定定理推出即可.【解答】解:条件是AB =CD ,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,{AB=CDBE=CF,∴Rt△ABE≌Rt△DCF(HL),故选:A.3.如图,已知∠C=∠D=90°,添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD 全等.以下给出的条件适合的是()A.∠ABC=∠ABD B.∠BAC=∠BAD C.AC=AD D.AC=BC【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A.∵∠ABC=∠ABD,∠C=∠D=90°,AB=AB,∴Rt△ABC≌Rt△ABD(AAS),故本选项不符合题意;B.∵∠BAC=∠BAD,∠C=∠D=90°,AB=AB,∴Rt△ABC≌Rt△ABD(AAS),故本选项不符合题意;C.∵∠C=∠D=90°,AB=AB,AC=AD,∴Rt△ABC≌Rt△ABD(HL),故本选项符合题意;D.根据∠C=∠D=90°,AB=AB,AC=BC不能推出Rt△ABC≌Rt△ABD,故本选项不符合题意;故选:C.4.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是AC=DE.【分析】先求出∠ABC=∠DBE=90°,再根据直角三角形全等的判定定理推出即可.【解答】解:AC=DE,理由是:∵AB⊥DC,∴∠ABC=∠DBE=90°,在Rt△ABC和Rt△DBE中,{AC=DEBE=BC,∴Rt△ABC≌Rt△DBE(HL).故答案为:AC=DE.5.如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE ≌Rt△BEC.【分析】根据已知条件,利用直角三角形的特殊判定方法可以证明题目结论.【解答】证明:∵∠1=∠2,∴DE=CE.∵∠A=∠B=90°,∴△ADE和△EBC是直角三角形,而AD=BE.∴Rt△ADE≌Rt△BEC(HL)6.如图,点C、E、B、F在一条直线上,AB⊥CF于B,DE⊥CF于E,AC=DF,AB=DE.求证:CE=BF.【分析】先根据直角三角形全等的判定方法证得Rt△ABC≌Rt△DEF(HL),则BC=EF,即CE=BF.【解答】证明:∵AB⊥CF,DE⊥CF,∴∠ABC=∠DEF=90°.在Rt△ABC和Rt△DEF中,{AC=DFAB=DE,∴Rt△ABC≌Rt△DEF(HL).∴BC=EF.∴BC﹣BE=EF﹣BE.即:CE=BF.7.如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足,AE=CF.求证:∠ACB=90°.【分析】先利用HL定理证明△ACE和△CBF全等,再根据全等三角形对应角相等可以得到∠EAC=∠BCF,因为∠EAC+ACE=90°,所以∠ACE+∠BCF=90°,根据平角定义可得∠ACB=90°.【解答】证明:如图,在Rt△ACE和Rt△CBF中,{AC=BCAE=CF,∴Rt△ACE≌Rt△CBF(HL),∴∠EAC=∠BCF,∵∠EAC+∠ACE=90°,∴∠ACE+∠BCF=90°,∴∠ACB=180°﹣90°=90°.8.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,且BE=CF.求证:AB=AC.【分析】利用“HL”证明△BED和△CFD全等,再根据全等三角形对应角相等可得∠B =∠C,然后根据等角对等边即可得证.【解答】证明:∵D是BC的中点,∴BD =CD ,∵DE ⊥AB ,DF ⊥AC ,∴△BED 和△CFD 都是直角三角形,在△BED 和△CFD 中,{BD =CD BE =CF, ∴△BED ≌△CFD (HL ),∴∠B =∠C ,∴AB =AC (等角对等边).题型二 直角三角形全等的辨别1.下列条件中,不能判定两个直角三角形全等的是( )A .一个锐角和斜边对应相等B .两条直角边对应相等C .两个锐角对应相等D .斜边和一条直角边对应相等【分析】根据已知及全等三角形的判定方法进行分析,从而得到答案.【解答】解:A 、一个锐角和斜边对应相等,正确,符合AAS ,B 、两条直角边对应相等,正确,符合判定SAS ;C 、不正确,全等三角形的判定必须有边的参与;D 、斜边和一条直角边对应相等,正确,符合判定HL .故选:C .2.下列条件中:①两条直角边分别相等;②两个锐角分别相等;③斜边和一条直角边分别相等;④一条边和一个锐角分别相等;⑤斜边和一锐角分别相等;⑥两条边分别相等.其中能判断两个直角三角形全等的有()A.6个B.5个C.4个D.3个【分析】画出两直角三角形,根据选项条件结合图形逐个判断即可.【解答】解:①两条直角边分别相等;正确;②两个锐角分别相等;错误;③斜边和一条直角边分别相等,正确;④一条边和一个锐角分别相等;错误;⑤斜边和一锐角分别相等;正确;⑥两条边分别相等,错误;其中能判断两个直角三角形全等的有3个.故选:D.3.下列条件不能证明两个直角三角形全等的是()A.斜边和一直角边对应相等B.一直角边和一角对应相等C.两条直角边对应相等D.斜边和一锐角对应相等【分析】此题需用排除法,对各个选项进行分析从而确定答案.【解答】A、符合HL,正确;B、仅知道一条直角边和一角也不能确定确定其它各边的长,从而不能判定两直角三角形相等,错误;C、知道两直角边,可以求得第三边.从而利用SSS,正确;D、知道斜边和一锐角,可以推出另一角的度数.从而可以确定其它边,正确.故选:B.4.下列说法正确的有()①两个锐角分别相等的的两个直角三角形全等;②一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等;③两边分别相等的两个直角三角形全等;④一个锐角和一条边分别相等的两个直角三角形全等.A.1B.2C.3D.4【分析】根据直角三角形全等的判定方法逐条判定即可得到结论,【解答】解:①两个锐角分别相等的的两个直角三角形不一定全等,故该说法错误;②如图,已知:∠B=∠E=90°,BC=EF,AM=BM,DN=EN,CM=FN,求证:△ABC≌△DEF,证明:∵∠B=∠E=90°,BC=EF,CM=FN,∴Rt△BCM≌Rt△EFN(HL),∴BM=EN∵AM=BM,DN=EN,∴AB=DE,∴Rt△ABC≌Rt△EFN(SAS),故一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等的说法正确;③两对应边分别相等的两个直角三角形全等,如果是一个直角三角形的两条直角边和另一个直角三角形的一条直角边和一条斜边分别相等,这两个直角三角形不全等,故该说法错误;④一个锐角和一条边分别对应相等的两个直角三角形不一定全等,如果一个直角三角形的一条直角边和另一个直角三角形的一条斜边相等,这两个直角三角形不全等,故该说法错误;故选:A.5.下列结论正确的是()A.有两个锐角相等的两个直角三角形全等B.一条斜边对应相等的两个直角三角形全等C.两个等边三角形全等D.有两边及其夹角对应相等的两个三角形全等【分析】利用全等三角形的判定方法进行分析即可.【解答】解:A、由于判断两个三角形全等,必须要一组边相等,所以有两个锐角相等的两个直角三角形全等的说法错误;B、由于直角三角形除了直角,还需两个条件才能判断这两个直角三角形全等,所以一条斜边对应相等的两个直角三角形全等的说法错误;C、由于判断两个三角形全等,必须要一组边相等,所以两个等边三角形全等的说法错误;D、有两边及其夹角对应相等的两个三角形全等,说法正确;故选:D.题型三一般三角形全等的判定方法证直角三角形1.已知如图,AD ∥BC ,AB ⊥BC ,CD ⊥DE ,CD =ED ,AD =2,BC =3,则△ADE 的面积为( )A .1B .2C .5D .无法确定【分析】因为知道AD 的长,所以只要求出AD 边上的高,就可以求出△ADE 的面积.过D 作BC 的垂线交BC 于G ,过E 作AD 的垂线交AD 的延长线于F ,构造出Rt △EDF ≌Rt △CDG ,求出GC 的长,即为EF 的长,然后利用三角形的面积公式解答即可.【解答】解:过D 作BC 的垂线交BC 于G ,过E 作AD 的垂线交AD 的延长线于F , ∵∠EDF +∠FDC =90°,∠GDC +∠FDC =90°,∴∠EDF =∠GDC ,于是在Rt △EDF 和Rt △CDG 中,{∠F =∠DGC ∠EDF =∠GDC DE =DC,∴△DEF ≌△DCG ,∴EF =CG =BC ﹣BG =BC ﹣AD =3﹣2=1,所以,S △ADE =(AD ×EF )÷2=(2×1)÷2=1.故选:A .2.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O.如果AB=AC,那么图中全等的直角三角形的对数是()A.1B.2C.3D.4【分析】共有3对,分别为△ADC≌△AEB、△BOD≌△COE、Rt△ADO≌Rt△AEO;做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找即可.【解答】解:∵CD⊥AB,BE⊥AC,∴∠ADC=∠AEB=90°,∵在△ADC和△AEB中,{∠ADC=∠AEB ∠DAC=∠EAB AC=AB,∴△ADC≌△AEB(AAS);∴AD=AE,∠C=∠B,∵AB=AC,∴BD=CE,在△BOD和△COE中,{∠B=∠C∠BOD=∠COE BD=CE,∴△BOD ≌△COE (AAS );∴OB =OC ,OD =OE ,在Rt △ADO 和Rt △AEO 中,{OA =OA OD =OE, ∴Rt △ADO ≌Rt △AEO (HL );∴共有3对全等直角三角形,故选:C .3.如图所示,∠C =∠D =90°,添加下列条件①AC =AD ;②∠ABC =∠ABD ; ③∠BAC =∠BAD ; ④BC =BD ,能判定Rt △ABC 与Rt △ABD 全等的条件的个数是( )A .1B .2C .3D .4【分析】根据直角三角形的全等的条件进行判断,即可得出结论.【解答】解:①当AC =AD 时,由∠C =∠D =90°,AC =AD 且AB =AB ,可得Rt △ABC ≌Rt △ABD (HL );②当∠ABC =∠ABD 时,由∠C =∠D =90°,∠ABC =∠ABD 且AB =AB ,可得Rt △ABC ≌Rt △ABD (AAS );③当∠BAC =∠BAD 时,由∠C =∠D =90°,∠BAC =∠BAD 且AB =AB ,可得Rt △ABC ≌Rt △ABD (AAS );④当BC =BD 时,由∠C =∠D =90°,BC =BD 且AB =AB ,可得Rt △ABC ≌Rt △ABD (HL );20 故选:D .4.已知:AB ⊥BC ,AD ⊥DC ,∠1=∠2,问:△ABC ≌△ADC 吗?说明理由.【分析】根据全等三角形的判定定理AAS 进行证明.【解答】解:△ABC ≌△ADC .理由如下:∵AB ⊥BC ,AD ⊥DC ,∴∠B =∠D =90°.在△ABC 与△ADC 中,{∠B =∠D ∠1=∠2AC =AC,∴△ABC ≌△ADC (AAS ).。

直角三角形与勾股定理习题与讲义【含答案】

直角三角形与勾股定理习题与讲义【含答案】

直角三角形与勾股定理【复习目标】1.掌握直角三角形的边、角之间所存在的关系,掌握勾股定理以及逆定理。

2.熟练应用直角三角形的勾股定理和逆定理来解决实际问题. 3.掌握直角三角形常用的判定方法。

【直击考点】1.若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2= 。

c 2 2.若 a 、b 、c 是△ABC 的三边,且a 2+b 2=c 2,则∠C= 。

90° 3.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________. 1694.直角三角形斜边上的中线等于斜边的一半 ;三角形中一条边上的中线等于这条边的一半,那么这条边所对的角是直角 。

5.直角三角形中,30°的角所对的边等于斜边的一半 ;一直角边等于斜边的一半,这条直角边所对的角等于 30 度。

【名题点拔】考点1 “双垂图”中的计算问题例1 已知:在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60°,CD=3,求线段AB 的长。

点拨:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,对图形及性质应熟练掌握,能够灵活应用。

“双垂图”中有:3个直角三角形, 6条线段,4个锐角。

知道其中的任意两条线段,或一条线段和一个锐角,总可以求出其余的线段。

欲求AB ,可由AB=BD+CD ,分别在两个三角形中利用勾股定理和特殊角,求出BD=3和AD=1。

或欲求AB ,可由22BC AC AB +=,分别在两个三角形中利用勾股定理和特殊角,CD求出AC=2和BC=23。

因此AB=4。

考点2 勾股定理在轴对称问题中的应用例2 如图,有一个直角三角形纸片,两直角边AC =6c m ,BC =8c m ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,求CD 的长。

点拨:设CD =x ,在Rt △BDE 中使用勾股定理列方程即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直角三角形一、直角三角形的性质重点:直角三角形的性质定理与其推论:①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半;②推论:(1)在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°.难点:1.性质定理的证明方法.2.性质定理与其推论在解题中的应用.二、直角三角形全等的判断重点:掌握直角三角形全等的判定定理:斜边、直角边公理:斜边和一条直角边对应相等的两个直角三角形全等()难点:创建全等条件与三角形中各定理联系解综合问题。

三、角平分线的性质定理1.角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图4,∵是∠的平分线,F是上一点,且⊥于点C,⊥于点D,∴=.定理的作用:①证明两条线段相等;②用于几何作图问题;角是一个轴对称图形,它的对称轴是角平分线所在的直线.图42.关于三角形三条角平分线的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的数学表示:如图6,如果、、分别是△的内角∠、∠、∠的平分线,那么:①、、相交于一点I;②若、、分别垂直于、、于点D、E、F,则==.定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题.(2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心).3.关于线段的垂直平分线和角平分线的作图:(1)会作已知线段的垂直平分线;(2)会作已知角的角平分线;(3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.四、勾股定理的证明与应用1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么222+=a b c勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c =,b =,a =②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为cbaHG F EDCBAbacbac cabcab a bcc baED CBA斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 与222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理与其逆定理的应用勾股定理与其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:ABC30°D C BA ADB C10、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n 的线段勾股定理经典例题透析类型一:勾股定理的直接用法 1、在△中,∠90°(1)已知6, 10,求b , (2)已知40,9,求c ; (3)已知25,15,求a.思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1) 在△中,∠90°,6,10(2) 在△中,∠90°,40,9(3) 在△中,∠90°,25,15举一反三【变式】:如图∠∠90°, 1312, 3,则的长是多少?CBDA【答案】∵∠90°13, 12∴2 2-2=132-122=25∴5又∵∠90°且3∴由勾股定理可得22-2=52-32=16∴4∴的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出、的长,进而求出的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠∠90°,∠60°,4,2。

求:四边形的面积。

分析:如何构造直角三角形是解本题的关键,可以连结,或延长、交于F,或延长、交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

解析:延长、交于E。

∵∠∠60°,∠90°,∴∠30°。

∴28,24,∴222=82-42=48,。

∵2= 22=42-22=12,∴。

∴S四边形△△··类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。

(1)求A、C两点之间的距离。

(2)确定目的地C在营地A的什么方向。

解析:(1)过B点作∴∠∠60°∵30°+∠∠180°∴∠90°即△为直角三角形由已知可得:500m,由勾股定理可得:所以(2)在△中,∵500m,1000m∴∠30°∵∠60°∴∠30°即点C在点A的北偏东30°的方向举一反三【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于.如图所示,点D在离厂门中线0.8米处,且⊥AB,与地面交于H.解:=1米(大门宽度一半),=0.8米(卡车宽度一半)在△中,由勾股定理得:===0.6米,CH=0.6+2.3=2.9(米)>2.5(米).因此高度上有0.4米的余量,所以卡车能通过厂门.(二)用勾股定理求最短问题4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.思路点拨:解答本题的思路是:最省电线就是线路长最短,通过利用勾股定理计算线路长,然后进行比较,得出结论.解析:设正方形的边长为1,则图(1)、图(2)中的总线路长分别为=3,=3图(3)中,在△中同理∴图(3)中的路线长为图(4)中,延长交于H,则⊥,=由∠=与勾股定理得:====∴=1-2=1-∴此图中总线路的长为4=3>2.828>2.732∴图(4)的连接线路最短,即图(4)的架设方案最省电线.举一反三【变式】如图,一圆柱体的底面周长为20,高AB为4,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.解:如图,在△ABC中,BC=底面周长的一半=10,根据勾股定理得(提问:勾股定理)∴===≈10.77()(勾股定理).答:最短路程约为10.77.类型四:利用勾股定理作长为的线段5、作长为、、的线段。

相关文档
最新文档