信道与信道容量剖析
光通信中的信道建模与信道容量分析

光通信中的信道建模与信道容量分析光通信是一项现代通信技术,它采用光作为信号传输介质,其速度快、带宽宽、并且不受电磁干扰的特点使得其在很多应用场景中得到了广泛的应用。
如何对光通信中的信道进行建模和分析,是光通信领域的研究热点之一。
本文将阐述光通信中的信道建模和信道容量分析的相关内容。
一、光通信中的信道建模信道建模是对通信信道的特性进行描述和抽象的过程。
在光通信中,信道包含光纤、空气等传输介质。
光纤是光通信中最常用的传输介质之一。
根据信道的不同特点,光通信中的信道建模可以分为线性模型和非线性模型两种。
在光纤通信中,信道传输会受到各种噪声的影响,包括热噪声、自发噪声等。
为了对光纤通信中的信道进行建模,研究者通常采用线性模型。
线性模型是将光纤通信中的信号当成一个线性系统,其输入输出过程满足线性定理。
基于线性模型,研究者通常采用瑞利衰落模型或高斯白噪声模型进行分析,瑞利衰落模型适用于描述室内环境或者非常短距离的光纤传输,而高斯白噪声模型适用于描述长距离的光纤传输。
基于线性模型的推导,可以得到光强度和相位的三级统计特性,包括均值、方差和自相关函数等。
在某些情况下,非线性模型可能更适合描述光纤通信中的信道特性。
例如在光纤的高功率传输中,非线性效应会给信道带来一定影响。
非线性模型通常可以建立在薛定谔方程的基础上,对于一些常见的非线性效应,例如半波电流调制效应、自相位调制效应等,都可以采用非线性模型进行建模。
二、光通信中的信道容量分析信道容量是指单位时间内,发送端和接收端之间可以传输的有效信息量。
在光通信中,信道容量分析是评估光通信系统传输性能的重要指标。
光通信中信道容量分析的方法包括香农容量计算法和基于信息论的分析方法。
香农容量是指在理想情况下,对于一定的信道带宽和信道传输速率,通信系统可以最大化信息传输速率的极大值。
在光通信中,香农容量可以通过奈奎斯特公式进行计算。
该公式指出,当信道带宽为B,信号的传输速率为R时,理论最大的信息传输率C为2B log2 (1+SNR)。
信道与信道容量

1.6.2 信道容量
根据香农信息论,对于连续信道,如果信道带宽为B, 并且受到加性高斯白噪声的干扰,则信道容量的理论公式为
C=B㏒2(1+S/N)(b/s) 式中。 N为白噪声的平均功率; S是信号的平均功率; S/N 为信噪比。信道容量C是指信道可能传输的最大信息速率 (即信道能达到的最大传输能力)。虽然上式是在一定条件 下获得的(要求输入信号也为高斯信号才能实现上述可能 性),但对其他情况也可作为近似式使用。
例1 已知彩色电视图象由5ⅹ105个像素组成。设每个像素有 64种彩色度,每种彩色度有16个亮度等级。设所有彩色度和 亮度等级的组合机会均等,并统计独立。(1)试计算每秒 传送100个画面所需信道容量;(2)如果接受机信噪比为 30dB,为了传送彩色图象所需信道带宽为多少?
例2 设有一个图像要在电话线路中实现传真传输。大约要传输2.25ⅹ106个 像素,每个像素有12个亮度等级。假设所有亮度等级都是等概率的,电 话电路具有3kHz带宽和30dB信噪比。试求在该标准电话线路上传输一 张传真图片需要的最小时间。
在数字通信系统中,如果仅研究编码和解码问题, 可得到另一种广义信道---编码信道。编码信道的范围是 从编码器输出端至解码器输入端。这是因为从编码和解 码角度来看,编码器是把信源产生的消息信号转化为数 字信号。反之,解码器是将数字信号恢复原来的消息信 号;而编码器输出端至解码器输入端之间的一切环节只 是起了传输数字信号的作用,所以可以把它看成一个整 体---编码信道。当然,根据研究问题的不同,还可以定 义其他广义信道。
解: Rb = RBN㏒2N
RBN= Rb/×106 / 29.9 ×103=0.269 ×103s=4.5min
例3 已知八进制数字信号的传输速率为1600波 特。试问变换成二进制数字信号时的传输速率为多 少? 解: Rb = RBN㏒2N = 1600× ㏒28 = 4800 b/s
信道、信道容量、数据传输速率

信道、信道容量、数据传输速率简介:信道、信道容量、数据传输速率(比特率)、电脑装置带宽列表一、信道的概念信道,是信号在通信系统中传输的通道,是信号从发射端传输到接收端所经过的传输媒质,这是狭义信道的定义。
广义信道的定义除了包括传输媒质,还包括信号传输的相关设备。
信道容量是在通信信道上可靠地传输信息时能够达到的最大速率。
根据有噪信道编码定理,给定信道的信道容量是其以任意小的差错概率传输信息的极限速率。
信道容量的单位为比特每秒、奈特每秒等等。
香农在第二次世界大战期间发展出信息论,并给出了信道容量的定义和计算信道容量的数学模型。
他指出,信道容量是信道的输入与输出的互信息量的最大值,这一最大取值由输入信号的概率分布决定。
二、信道的分类(一)狭义信道的分类狭义信道,按照传输媒质来划分,可以分为有线信道、无线信道和存储信道三类。
1. 有线信道有线信道以导线为传输媒质,信号沿导线进行传输,信号的能量集中在导线附近,因此传输效率高,但是部署不够灵活。
这一类信道使用的传输媒质包括用电线传输电信号的架空明线、电话线、双绞线、对称电缆和同轴电缆等等,还有传输经过调制的光脉冲信号的光导纤维。
2. 无线信道无线信道主要有以辐射无线电波为传输方式的无线电信道和在水下传播声波的水声信道等。
无线电信号由发射机的天线辐射到整个自由空间上进行传播。
不同频段的无线电波有不同的传播方式,主要有:地波传输:地球和电离层构成波导,中长波、长波和甚长波可以在这天然波导内沿着地面传播并绕过地面的障碍物。
长波可以应用于海事通信,中波调幅广播也利用了地波传输。
天波传输:短波、超短波可以通过电离层形成的反射信道和对流层形成的散射信道进行传播。
短波电台就利用了天波传输方式。
天波传输的距离最大可以达到400千米左右。
电离层和对流层的反射与散射,形成了从发射机到接收机的多条随时间变化的传播路径,电波信号经过这些路径在接收端形成相长或相消的叠加,使得接收信号的幅度和相位呈随机变化,这就是多径信道的衰落,这种信道被称作衰落信道。
信道、信道容量、数据传输速率

简介:信道、信道容量、数据传输速率(比特率)、电脑装置带宽列表一、信道的概念信道,是信号在通信系统中传输的通道,是信号从发射端传输到接收端所经过的传输媒质,这是狭义信道的定义。
广义信道的定义除了包括传输媒质,还包括信号传输的相关设备。
信道容量是在通信信道上可靠地传输信息时能够达到的最大速率。
根据有噪信道编码定理,给定信道的信道容量是其以任意小的差错概率传输信息的极限速率。
信道容量的单位为比特每秒、奈特每秒等等。
香农在第二次世界大战期间发展出信息论,并给出了信道容量的定义和计算信道容量的数学模型。
他指出,信道容量是信道的输入与输出的互信息量的最大值,这一最大取值由输入信号的概率分布决定。
二、信道的分类(一)狭义信道的分类狭义信道,按照传输媒质来划分,可以分为有线信道、无线信道和存储信道三类。
1. 有线信道有线信道以导线为传输媒质,信号沿导线进行传输,信号的能量集中在导线附近,因此传输效率高,但是部署不够灵活。
这一类信道使用的传输媒质包括用电线传输电信号的架空明线、电话线、双绞线、对称电缆和同轴电缆等等,还有传输经过调制的光脉冲信号的光导纤维。
2. 无线信道无线信道主要有以辐射无线电波为传输方式的无线电信道和在水下传播声波的水声信道等。
无线电信号由发射机的天线辐射到整个自由空间上进行传播。
不同频段的无线电波有不同的传播方式,主要有:地波传输:地球和电离层构成波导,中长波、长波和甚长波可以在这天然波导内沿着地面传播并绕过地面的障碍物。
长波可以应用于海事通信,中波调幅广播也利用了地波传输。
天波传输:短波、超短波可以通过电离层形成的反射信道和对流层形成的散射信道进行传播。
短波电台就利用了天波传输方式。
天波传输的距离最大可以达到400千米左右。
电离层和对流层的反射与散射,形成了从发射机到接收机的多条随时间变化的传播路径,电波信号经过这些路径在接收端形成相长或相消的叠加,使得接收信号的幅度和相位呈随机变化,这就是多径信道的衰落,这种信道被称作衰落信道。
通信课件信道及信道容量

• 信道的基本概念 • 信道数学模型:调制、编码信道模型 • 恒参信道特性及其对信号传输的影响 • 随参信道特性及其对信号传输的影响 • 分集接收技术 • Shannon信道容量公式
1
信道的基本概念
• 信道:信号通道,必不可少 • 影响通信系统可靠性能的两个主要因素:噪声和信道传输特性的
不理想。
• 由于多径使得确定的载波信号Acosω0t变成了包络和相位都受 到调制的窄带信号,衰落信号。从时域来看,多径时延扩散; 从频域来看,频率展宽
15
随参信道对信号传输的影响(续2)
• 时变多径信道
R(t)
t 时域:瑞利衰落(快衰落)
f0 频域:频率弥散
16
随参信道对信号传输的影响例举
• 以两条路径且衰减恒定为例
3
信道数学模型
• 反映信道输出和输入之间的关系。 • 调制信道模型:传输已调信号,关心的是信号的失真
情况及噪声对信号的影响。已调信号的瞬时值是连续 变化的,故也称调制信道为连续信号,甚至称为信道 。 • 编码信道模型:输出输入都是数字信号→数字序列变 换,离散或数字信道。包含调制信道→依赖于调制信 道的性能,噪声的干扰体现在误码上,关心的是误码 率而不是信号失真情况→使用转移概率来描述。
ui (t)cos[0t i (t)] ui (t) cos i (t) cosot ui (t) sin i (t) sin ot
X c (t) cosot X s (t) cosot V (t) cos[ot (t)]
V(t) Xc2(t) Xs2(t)
(t) arctg(Xc (t) Xs (t))
2
N
(bit/s)
Shannon公式
网络传输技术——信道和信道容量的概念

信道和信道容量 信道:传输信息的必经之路称为“信道”。
从信道的传输介质来分,信道有有线与⽆线信道之分,⽽按其频率来分呢,⼜有窄带、话⾳频带、宽带之分,如果从它所传输的信号类型来分呢,⼜有数字信道与模拟信道的概念,⽽按实际和幻想来分呢,⼜有物理信道和逻辑信道的概念区别。
有线就是有传输线,⽆线就是没有传输线,只是有线的信道除传输介质外,每隔⼀定距离需设置增⾳器或中继器等放⼤设备,因为信号传输时会引起衰减、引⼊邻路⼲扰或噪声。
⽽⽆线信道的电磁波能量向各⽅发射,所以效率较低。
为此,⽆线电传播⽤定向天线发射,可把能量集中⼀些。
为了传播得远,常⽤频率很⾼的振荡波来传送。
因此,必须有⼀个⾼频发射机,产⽣很⾼的振荡波,通过天线发射出去;在接收端,通过接收天线和接收机来接收。
窄带信道⼯作速率在300bps以下,主要⽤于⾮话⾳业务。
话⾳频带(话⾳级)。
当信道为公共交换络的⼀部分时,速率为4800bps。
当这类信道⽤作专⽤线时,可⽤到9600bps以上。
如家⽤常规拨号电话或公⽤投币电话的线路,把⽤户室内电话系统连接在⼀起的线路,连接终端与计算机的⾼速数据线路,计算机售票(民航机票)专⽤线路等就是与交换线路相对的话⾳级专⽤线路。
宽带信道:速率超过9600Us的信道,⽤于需要⾼吞吐量的场合。
如:⾦融机构、经纪业等⽤户的⾼速计算机线路,⽤来连接其交换局的电话公司信道。
数字信道:直接传输2进制数。
模拟信道:传输的是模拟信号或受⼆进制数据调制的正弦信号。
物理信道:是指⽤来传送信号或数据的物理通路,络中两个结点之间的物理通路称为通信链路,物理信道由传输介质及有关设备组成。
逻辑信道也是⼀种通路但在信号收、发点之间并不存在⼀条物理上的传输介质,⽽是在物理信道基础上,由结点内部的边来实现。
通常把逻辑信道称为“连接”。
信道容量:指信道能传输信息的能⼒,⼀般以单位时间内可传送信息的bit数表⽰。
实⽤中,信道容量应⼤于传输速率,否则⾼的传输速率得不到充分发挥利⽤。
信道、信道容量、数据传输速率

二、信道的分类
(一)狭义信道的分类
狭义信道,按照传输媒质来划分,可以分为有线信道、无线信道和存储信道三类。
1. 有线信道
有线信道以导线为传输媒质,信号沿导线进行传输,信号的能量集中在导线附用电线传输电信号的架空明线、电话线、双绞线、对称电缆和同轴电缆等等,还有传输经过调制的光脉冲信号的光导纤维。
天波传输:短波、超短波可以通过电离层形成的反射信道和对流层形成的散射信道进行传播。短波电台就利用了天波传输方式。天波传输的距离最大可以达到400千米左右。电离层和对流层的反射与散射,形成了从发射机到接收机的多条随时间变化的传播路径,电波信号经过这些路径在接收端形成相长或相消的叠加,使得接收信号的幅度和相位呈随机变化,这就是多径信道的衰落,这种信道被称作衰落信道。
调制信道的数学模型为:
y(t) = x(t) * h(t;τ) + n(t)
其中x(t)是调制信道在时刻t的输入信号,即已调信号。y(t)是调制信道在时刻t的输出信号。h(t;τ)是信道的冲激响应,τ代表时延,h(t;τ)表示在时刻t、延时为τ时信道对冲激函数δ(t)的响应,描述了信道对输入信号的畸变和延时。*为卷积算子。n(t) 是调制信道上存在的加性噪声,与输入信号x(t)无关,又被称为"加性干扰"。由于信道的线性性质,并且考虑信道噪声,x(t) * h(t;τ) + n(t)就是x(t)通过由信道响应h(t;τ)描述的调制信道的输出。调制信道可以同时有多个输入信号和多个输出信号,这时的x(t)和y(t)是矢量信号。
第三章信道及信道容量PPT课件

第一节 信道分类及表示参数 第二节 单符号离散信道及其容量 第三节 离散序列信道及其容量 第四节 连续信道及其容量
05.12.2020
1
研究信道容量的意义?
信道是信息传输的通道。由于干扰而丢失的信息为 H(X|Y ); 在接收端获取的关于发送端信源X的信息量是:
I(X;Y)=H(X)-H(X|Y) 即:信道中平均每个符号传送的信息量。对于信道,所关心的问 题是平均每个符号传送的最大信息量。这就是信道容量C=max I(X;Y) bit/符号
每个数字对应一种颜色(反之未必),数字已知,则颜色确 定,H(X|Y)=0。H(X,Y)=H(Y)=…..
6、2.21(3)信号放大问题。课上已经强调过,仍出错。
7、向孔祥品学习
05.12.2020
9
复习:第四节 连续信源的熵和互信息
一、单符号连续信源的熵 相对熵(差熵)
H c(X ) p X (x)lop X g (x)dx Hc(XY )p(xy)lopg(xy)dxdy Hc(Y/X )p(xy)lopg(y/x)dxdy
(2) 离散无记忆信道(DMC-Discrete Memoryless Channel)
仍是单符号离散信道,符号集中的符号数目大于2 。
05.12.2020
7
转移概率矩阵(传递阵矩)P :
P11 P12 P1m
P [
P ij
]
P21
P22
P2m
Pn1
Pn2
Pnm
m
m
转移概率矩 元阵 素中 之 1。 各 和 P(b 行 j等 |ai)的 于 Pij1
2 Pm2,通常m0,2 P,此时有:
H0C5.1(2X.202)0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离散无记忆信道DMC
• 信道输入是n元符号X∈{a1, a2, …, an} • 信道输出是m元符号Y∈{b1, b2, …, bm} • 转移矩阵
– 已知X,输出Y统计特性
b1 b2 bm
p11 p12 p1m a1
P
p21
p22
p2m
a2
pn1
pn2
pnm
an
p11
a1
p12
p21
a2
p22
:
:
:
an
pnm
m
p(bj | ai ) 信1道与信道容i量剖析1,2,n
j 1
b1 b2
: : :
bm
6
3.2 离散单个符号信道 及其容量
信道与信道容量剖析 7
信道容量
• 平均互信息I (X;Y):
– 接收到符号Y后平均每个符号获得的关于X
的信息量。
信道与信道容量剖析 10
无干扰离散信道
• 无噪无损信道
C
max
p(ai )
I
(
X
;Y
)
max
H
(
X
)
max
H
(Y
)
log
2
n
• 有噪无损信道(一对多)
C
max
p(ai )
I
(
X
;Y
)
max
H
(Y
)
log
2
m
• 无噪有损信道(多对一)
C
max
p(ai )
I
(
X
;Y
)
max
H
(
X
)
log
2
n
信道与信道容量剖析 11
3.2.1 对称DMC信道
• 对称离散信道:
• 对称性:
– 每一行都是由同一集{p1, p2,…pm} 的诸元素 不同排列组成——输入对称
– 每一列都是由集{q1, q2,…qn}的诸元素不同 排列组成——输出对称
1 1 1
1 P 3
1 6
1 3 1 6
1 1
6
6
P
1 1
3信道与3信道容量剖析
I(X;Y) H(X ) ቤተ መጻሕፍቲ ባይዱH(X |Y) H(Y) H(Y | X )
H (Y | X ) p(ai ) p(bj | ai ) log p(bj | ai )
i
j
p(bj | ai ) log p(bj | ai )
j
H (Y | ai ) i 1,2,n
H (Y | X ) H (Y |信a道i与) 信道H容量(剖p析1, p2, pm) 15
I(X;Y) i
j
p(xi ) p( y j | xi ) log
p(y j | xi ) p(y j )
n
p( y j ) p(xi ) p( y j | xi ) i 1
• 信道的信息传输率就是平均互信息
信道与信道容量剖析 8
信道容量
• 信道容量C:
– 最大的信息传输率
C max I (X ;Y ) p(ai )
第三章
信道与信道容量
信道与信道容量剖析
内容
3.1 信道分类和表示参数 3.2 离散单个符号信道及其容量 3.3 离散序列信道及其容量 3.4 连续信道及其容量
信道与信道容量剖析 2
信道
• 设信道的输入X=(X1, X2 … Xi,… ), Xi ∈{a1 … an} 输出Y= (Y1, Y2 … Yj,…), Yj ∈{b1 … bm}
对称DMC信道
• 若输入符号和输出符号个数相同,都等于n,且信 道矩阵为
1 p
P
n
p 1
p n 1 1 p
p
n
p
1
n 1
p n 1
p n 1
1
p
• 此信道称为强对称信道 (均匀信道)
– 信道矩阵中信各道与列信道之容量和剖也析 等于1 14
对称DMC信道
• 对称离散信道的平均互信息为
• 信道转移概率矩阵p(Y|X):
– 描述输入/输出的统计依赖关系,反映信道统计关 系
p(Y|X)
X
Y
信道
信道与信道容量剖析 3
无干扰(无噪声)信道
• 无干扰(无噪声)信道
– 信道的输出信号Y与输入信号X之间有确定 的关系Y=f (X),已知X后就确知Y
– 转移概率:
p(Y
|
X
)
1, 0,
Y f(X) Y f(X)
• 单位时间的信道容量:
1
Ct
T
max
p(ai )
I ( X ;Y )
信道与信道容量剖析 9
信道容量的计算
• 对于一般信道,信道容量计算相当复杂,我们只 讨论某些特殊类型的信道:
• 离散信道可分成: • 无干扰(无噪)信道
– 无嗓无损信道 – 有噪无损信道 – 无噪有损信道
• 有干扰无记忆信道 • 有干扰有记忆信道
I (X ;Y ) H (Y ) H (Y | X ) H ( p p) H ( p)
1 H( p)
信道与信道容量剖析 18
信道与信道容量剖析 17
H(Y) ( p p)log 1 ( p p)log 1
p p
p p
H( p p)
H (Y | X ) p(ai ) p(bj | ai ) log p(bj | ai )
i
j
p(bj | ai ) log p(bj | ai )
j
[ p log p p log p] H ( p)
对称DMC信道
• 对称DMC信道的容量:
C log m H ( p1, p2 pm )
m
log m pij log pij j 1
• 上式是对称离散信道能够传输的最大的平均信息量,它
只与对称信道矩阵中行矢量{p1, p2,…pm }(第二项为矩 阵任一行元素的信息熵 )和输出符号集的个数m有关。
信道与信道容量剖析 4
有干扰无记忆信道
• 有干扰无记忆信道
– 信道的输出信号Y与输入信号X之间没有确 定的关系,但转移概率满足:
p(Y | X ) p( y1 | x1) p( y2 | x2) p( yL | xL )
• 有干扰无记忆信道可分为: – 二进制离散信道 – 离散无记忆信道 – 离散输入、连续输出信道 – 波形信道
2
1
6
1
3 1 2 1
6
1
3
1
3 6 2
满足对称 性,所对应 的信道是 对称离散 信道。
12
对称DMC信道
• 信道矩阵
1 1 1 1 P 3 3 6 6
1 1 1 1 6 3 6 3
P
0.7 0.2
0.1 0.1
0.2 0.7
• 不具有对称性,因而所对应的信通不是对 称离散信道。
信道与信道容量剖析 13
• 强对称信道的信道容量:
C
log
2
n
信H道与(信1道容p量,剖析p ,, n 1
n
p) 1
16
BSC信道容量
• •
设二进制对称信道的输入概率空间 信道矩阵:
X 0
P
1
P
1 p
p
p 1 p
p p
p p
1
p(b 0) p(ai ) p(b0 | ai ) p p i0
1
p(b 1) p(ai )p(b1 | ai ) p p i0