大学物理练习册上答案
四川大学大学物理学练习册上册习题答案

,m/s 6/(1):−==t x v ΔΔ解质点运动学(1)——答案一、选择题1.D2.B3.D4.D5.D 二、填空题 1. 23 m/s2. ()[]t t A t ωβωωωββsin 2cos e 22 +−−; ()ωπ/1221+n (n = 0, 1, 2,…) 3. 0.1 m/s 24. bt +0v ; 2402/)(b R bt ++v5. −g /2; ()g 3/322v 三、计算题1.2.3.(1)t A y tA x ωωsin cos 21==,消去t 得轨道方程为1222212=+A y A x (椭圆)(2)r j t A i t A dtvd j t A i t A dtrd 2221221sin cos a cos sin v ωωωωωωωωω−=−−==+−==a 与反向,故a 恒指向椭圆中心。
(3)当t=0时,x=A 1,y=0,质点位于ωπ2=t 时,2212sin,02cosA A y A x ====ππ。
质点位于图中的Q 点。
显然质点在椭圆形轨,910(2)2t t dx/dt v −==,/16(2)s v −=,1810t −=dt dv a /(3)=s2(2)m/26−=a vx 处的速度为解:设质点在dt dx dx dv dt dv a ⋅==dxdv v =x 263+=,)63(002dx x vdv v x∫∫+=)4(631/2x x v +=道上沿反时针方向运动。
在M 点,加速度a 的切向分量t a 如图所示。
可见在该点切向加速度t 的方向与速度v 的方向相反。
所以,质点在通过M 点速率减小。
4.5.所以质点的运动方程为:解:先求质点的位置,s 2=t 225220×+×=s )(m)(60在大圆=dt ds v /=,1020t +=m/s40(2)=v 时s 2=t dt dv a t /=m/s10=R va n/2=。
大学物理学练习册参考答案全

大学物理学练习册参考答案单元一 质点运动学四、学生练习 (一)选择题1.B2.C3.B4.B5.B (二)填空题1. 0 02.2192x y -=, j i ρρ114+, j i ρρ82-3.16vi j =-+v v v ;14a i j =-+v vv;4. 020211V kt V -;5、16Rt 2 4 6 112M h h h =-v v(三)计算题1 解答(1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m .(3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).2.解答 1)由t y t x ππ6sin 86cos 5==消去t 得轨迹方程:1642522=+y x 2)tdt dy v t dtdx v y x ππππ6cos 486sin 30==-==当t=5得;πππππ4830cos 48030sin 30===-=y x v vt dt dv a t dtdv a y y xx ππππ6sin 2886cos 18022-==-==当t=5 030sin 28818030cos 180222=-==-=-=πππππdt dv a a yy x 3.解答:1)()t t dt t dt d t tvv 204240+=+==⎰⎰⎰则:t t )2(42++=2)()t t t dt t t dt d ttr )312(2)2(4322++=++==⎰⎰⎰t t t )312()22(32+++=4. [证明](1)分离变量得2d d vk t v=-, 故020d d v tv vk t v =-⎰⎰, 可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.5.解答(1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).6.解答:当s 2=t 时,4.022.0=⨯==t βω 1s rad -⋅ 则16.04.04.0=⨯==ωR v 1s m -⋅064.0)4.0(4.022=⨯==ωR a n 2s m -⋅08.02.04.0=⨯==βτR a 2s m -⋅22222s m 102.0)08.0()064.0(-⋅=+=+=τa a a n单元二 牛顿运动定律(一)选择题 1.A 2.C 3.C 4.C 5 A 6.C (二)填空题 1. 022x F t COS F X ++-=ωωω2.略3. )13(35-4. 50N 1m/s5.21m m t f +∆ )()(212122221m m m t m t m t m f +∆+∆+∆6. 0 18J 17J 7J7. mr k rk (三)计算题1.解答:θμθcos )sin (f f mg =- ; θμθμsin cos +=mgf0cos sin =+=θμθθd df; 0tan =θ ; 037=θ θsin hl ==037sin 5.12. 解答;dtdvmkv F mg =--分离变量积分得 0ln(1)v tktm mdvmg F kvktmg F dt v e mg F kv mg F m k-----=??----蝌 3解答:烧断前 2221211();a L L a L w w =+=烧断后,弹簧瞬间的力不变,所以2a 不变。
大学物理练习册答案

振动的相位差为 –1 = /6。若第一个简谐振动的振幅为10 3 cm = 17.3 cm,则 第二个简谐振动的振幅为__ __ cm,第一、二两个简谐振动的相位差1 2
为
。
三、计算题
1、由一个电容 C=4.0μF 的电容器和一个自感为 L=10mH 的线圈组成的 LC 电
路,当电容器上电荷的最大值 Q0=6.0×10-5C 时开始作无阻尼自由振荡,试求:
x1
0.05cos(t
1 4
)
(SI),
x2
0.05cos(t
9 ) 12
(SI)
其合成运动的运动方程为 x =
。
8
3、已知一物体同时参与两个同方向同频率的简谐振动,这两个简谐振动的振
动曲线如下图所示,其中 A1 >A 2 ,则该物体振动的初相为__ __。
x
A2
x2
t
A1
x1
4、两个同方向同频率的简谐振动,其合振动的振幅为 20 cm,与第一个简谐
(C)x=6m 的质点向右运动
10
(D)x=6m 的质点向下运动
4、如右图所示,一平面简谐波以波速 u 沿 x 轴正方向传播,O 为坐标原
点.已知 P 点的振动方程为 y Acost ,则( )
(A)O 点的振动方程为 y Acos(t l / u) ; (B)波的表达式为 y Acos[t (l / u) (x / u)] ; (C)波的表达式为 y Acos[t (l / u) (x / u)] ; (D)C 点的振动方程为 y Acos(t 3l / u) 。
(A) A 2
(B) A 4
(C) A 2
(D) A
二、填空题
1、已知简谐振动
大学物理练习册习题及答案

习题及参考答案第2章 质点动力学参考答案一 思考题2-1如图,滑轮绳子质量忽略不计,忽略一切摩擦力,物体A 的质量m A 大于物体B 的质量m B ,在A 、B 运动过程中弹簧秤的读数是(A )()12m m g + (B )()12m m g -(C )12122m m g m m ⎛⎫⎪+⎝⎭ (D )12124m m g m m ⎛⎫⎪+⎝⎭2-2用水平压力F 把一个物体压着靠在竖直的墙面上保持静止,当F 逐渐增大时,物体所受的静摩擦力f(A )恒为零 (B )不为零,但保持不变(C )随成F 正比增大 (D )开始随F 增大,达到某一值后,就保持不变 2-3如图,物体A 、B 的质量分别为M 、m ,两物体间摩擦系数为μ,接触面为竖直面,为使B 不下滑,则需要A 的加速度为(A )a g μ≥ (B )a g μ≥ (C )a g ≥ (D )M ma g M +≥2-4质量分别为m 和M 的滑块A 和B ,叠放在光滑的水平面上,如图,A 、B 间的静摩擦系数为μs ,滑动摩擦系数为μk ,系统原先处于静止状态,今将水平力F 作用于B 上,要使A 、B 间不轰生相对滑动,应有(A )s F mgμ≤ (B )(1)s F m M mgμ≤+(C )()s F m M mg μ≤+(D )s m MF mgM μ+≤AmBBm A 思考题2-1图思考题2-3图 思考题2-4图m(a )(b )Bm mm 21m 21思考题2-7图2-5 在光滑的水平面上,放有两个相互接触的物体A 和B ,质量分别为m 1和m 2,且m 1> m 2。
设有一水平恒力F ,第一次作用在A 上如图(a )所示,第二次作用在B 上如图(b )所示,问在这两次作用中A 与B 之间的作用力哪次大?2-6 图(a )中小球用轻弹簧o 1A 与o 2A 轻绳系住,图(b )中小球用轻绳o'1B 与o'2B 系住,今剪断o 2A 绳和o'2B 绳;试求在刚剪断的瞬时,A 球与B 球的加速度量值和方向。
大学物理I练习册参考答案

大学物理I练习册参考答案第一篇:大学物理I练习册参考答案大学物理I练习册参考答案力学部分:010004:(1)010011:(2)010014:(2)010016:(3)010044: B010057: D010095: B010098: C011002: 3t011009:011030:011039: 5m/s;17m/s011061: 4.8m/s;3.15rad22011012:ϖϖϖdv=ωRcosωtj-ωRsinωti;o011067: dt020003:(1)020012: C020015: B, D021002: 2g,0021016:(μcosθ-sinθ)g030023: B030028: D030038: D030061: D030069:(3)031005:031054: k/(mr);-k/(2r)2v0031062: 12J032046: h==4.25m;v=[2gh(1-μctgα)]1/2=8.16m/s 2g(1+μctgα)040001: A040011: B040020: C040030: B040032: C040054: A040064: D040070: C040076: C040090: C222040097: D040099: D041019: R1v1/R2;mvR/R112-1/2041043: Ma/2 ()041078: M/9042031: 156N;118N042005:电磁学部分1.B2.A3.C4.C5.2ε0A6.–2Ax,-2Byqd7.rλλ,ln02πε0r2πε0rUR1lnR2R1(2)Ek=4.8⨯10J , v=1.03⨯10m/s -778.(1)F=9.EP=0;UPC=⎰CPEdr=⎰rCRrλλdr=lnC 2πε0r2πε0R10.B11.B12.B13.C14.A15.D16.D17.q4πε0r2, 水平向左18.A19.εrC0,σ0,U0E0W0,εrεrεr20.看书P6721.看书P6722.C23.A24.D25.C27.μ0Iμ0IμI+=1.08⨯10-3T,垂直纸面向外28,0,垂直纸面向里2πR4R4πa29.μ0I, -2μ0I, ±2μ0I, ±2μ0I30, 2BIR,π/42;水平向右IaB,Ia2B34.πmga+b2μ0Ilna-b31,35.I1的磁场B=μ0I1,方向垂直向里,因此由安培定律(1)AD受I1的磁力FAD=I2aB 2πr=μ0I1I2a,方向向左。
大学物理练习册(上册)答案

练习一 (第一章 质点运动学) 一、选择题 1、(D )2、(C )3、(D )4、(B )5、(D ) 二、填空题1、(1)A (2)1.186s(或4133-s) (3)0.67s (或32s ) 2、8m 10m3、(1)t e t t A βωβωωωβ-+-]sin 2cos )[(22 (2)ωπωπk +2( ,2,1,0=k ) 4、3/30Ct v + 400121Ct t v x ++ 5、(1)5m/s (2) 17m/s 三、计算题1、解:dxdvv dt dx dx dv x dt dv a ==+==262分离变数积分⎰⎰+=xvdx x vdv 020)62(得 )1(422x x v +=质点在任意位置处的速度为 )1(22x x v +=(由初始时刻的加速度大于零,可知速度的大小为非负)。
2、解:(1)第二秒内的位移为 m x x x 5.0)1()2(-=-=∆ 第二秒内的平均速度为s m txv /5.0-=∆∆= (2)t 时刻的速度为 269t t dtdxv -==第二秒末的瞬时速度为 s m s m s m v /6/26/292-=⨯-⨯=(3)令0692=-==t t dtdxv ,解得s t 5.1= 第二秒内的路程为 m x x x x s 25.2)5.1()2()1()5.1(=-+-=。
3、解:(1)由几何关系θθsin cos r y r x ==质点作匀速率圆周运动故dtd θω=,代入初始条件0=t 时0=θ,得 t 时刻t ωθ=,所以j y i x r+=)sin (cos j t i t rωω+=(2)速度为)cos sin (j t i t r dtrd v ωωω+-==加速度为)sin (cos 2j t i t r dt vd a ωωω+-==(3)r j t i t r dtv d a 22)sin (cos ωωωω-=+-==由此知加速度的方向与径矢的方向相反,即加速度的方向指向圆心。
大学物理学上册习题解答完整版

大学物理学上册习题解答HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1)位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等(2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么(4)质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) (6)r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv dt =和0d v dt=各代表什么运动? (7)设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =dr v dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a = 你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9)(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
大学物理练习册习题解答(1-22上)

练习一 运动的描述 (一)1.(D )2.(D ) 3.217,5s m sm 4.mmπ5,105.(1)s m t x V 5.0-=∆∆= (2)()s m v t t dt dx v 62,692-=-==(3)()()()()质点反向运动时,,05.125.25.1215.1===⨯-⨯+⨯-⨯=v s t m S6.答:矢径是从坐标原点至质点所在位置的有向线段。
位移是由前一时刻质点所在位置引向后一时刻质点所在位置的有向线段,它们的一般关系为0r r r -=∆ 若把坐标原点选在质点的初始位置,则00=r,任意时刻质点对此位置的位移为r r =∆,即此时r既是矢径也是位移。
练习二 运动的描述 (一)1.()()s m t t s radtt 612,34223-- 2.(c ) 3.三 , 三至六 4.s m s m s m 20,3103.17=5.1032,224,432102+===∴===⎰⎰⎰⎰t x dt t dx tv tdt dv t dt dv a txvt6.根据已知条件确定常量K 222224,4,4RtR v t s d ra Rtv tk ======ωωω22222228.3532168841sm a a a sm R v a s m Rt dt v d a sm Rtv s t n n =+=========ττ时,练习三 运动定律与力学中的守恒定律(一)1.(D ) 2. (C )3.4.5.因绳子质量不计,所以环受到的摩擦力在数值上等于张力T ,设2m 对地加速度为/2a ,取向上为正;1m 对地加速度为1a (亦即绳子的加速度)向下为正,⎪⎩⎪⎨⎧-==-=-21/2/222111aa a a m g m T a m T g m()()()212121/22121221222112m m a m g m m a m m m m a g T m m a m g m m a +--=+-=++-=解得:6.(1)子弹进入沙土后受力为-kv,由牛顿定律有mt k vv tev v v dv dt mk vdv dt mk dtdv mkv -=∴=-=-∴=-⎰⎰00,,(2)求最大深度()()kv mv x ev k m x dtev dx dt dx v mkt mkt 00max 00,1,=-=∴=∴=--练习四 运动定律与力学中的守恒定律(二)1.(C )2.(B ) 3.s m S N 24,140⋅()()sm m mv I v mv mv I sN dtt dt F I t t 24,14040301212221=+=∴-=⋅=+==⎰⎰4.2221221,m t F m m t F m m t F ∆++∆+∆5.(1)系统在水平方向动量守恒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
已(知2)在由t (=1)0导时出,速y =度0,v?x =与r,加角速速度度wa如? 图的所矢示量;表示式;
(3)试证加速度指向圆心.
y
解:(1)
r? ?
? xi ?
y
? j?
r coswt
? i?
r sinwt
? j
(2)
v?
?
d r?
?
?rw sinw t
? i?
rw cosw t
? j
w?
? j
[ C]
2.某质点作直线运动的运动学方程为x=3t-5t3 + 6 (SI),则该质点作
(A)匀加速直线运动,加速度沿 x轴正方向.
(B)匀加速直线运动,加速度沿 x轴负方向.
(C) 变加速直线运动,加速度沿 x轴正方向.
(D)变加速直线运动,加速度沿 x轴负方向.
[ D]
经二 3一一、长物填度体空为在题S某的瞬曲时线,路以径初后速,度又v回?从0到某出点发开点始,运此动时,速在度?为t时间-v内?0 ,
解:用动能定理,对物体
? ? 1 mv 2 ? 0 ?
4
Fdx ?
4
( 10
?
6x2
) dx
2
0
0
?
10x ?
2 x3
4 0
=168
解出
v=13 m/s
6.一人在平地上拉一个质量为 M的木箱匀速前进,
如图. 木箱与地面间的摩擦系数μ=0.6.设此人前
l
进时,肩上绳的支撑点距地面高度为h=1.5 m, ?? M
一、选择题
标准化作业(2)
? 1. 在相对地面静止的坐标系内,A、B二船都以2 m/s速率匀速行驶,
A船沿x轴正向,B船沿y轴正向.今在A?船上设置与静止坐标系方向
i 相同的坐标系(x、y方向单位矢用
j 表示),
那么在A船上的坐标系中,B船的速度(以m/s 为单位)为
?? (A) 2 i +2 j
2
运动的切向加速度at=_____-_c___ ;法向加速度an=____(_b_-_c_t_)_2/R
4.点沿半径为R的圆周运动,运动学方程为 ? ? 3? 2t 2
(SI) ,则t时刻质点的法向加速度大小为an= 16 R t2 ; 角加速度 ? = 4 rad /s 2
三质点、,计试算用题半:对径于r在、x角y平速面度内w和,单以、位原i? 矢点?j 量O为表圆示心其作t时匀刻速的圆位周置运矢动量的.
质量以及滑轮与其轴之间的摩擦都可忽略不
计,绳子不可伸长,m1与平面之间的摩擦也
可不计,在水平外力F的作用下,物体m1与
? F
m1
? T
F ? m2g
m2
m2的加速度a=___m__1__?__m__2___,
绳中的张力T=_m__1m_?_2m__2_(_F__?__m_1_g_)_.
4.质量相等的两物体A和B,分别固定在弹簧的两端, A
,则在这段时间内: 物体的平均速率是
物体的平均加速度是
S
?
?
t2v?0;
?t .
4一质点沿x方向运动,其加速度随时间变化关系为a = 3+2 t (SI) ,
如果初始时质点的速度v 0为5 m/s,则当t为3s时,质点的速
度 v = 23m/s .
三、计算题 5.质点沿x轴作直线运动,t时刻的坐标为x = 4.5 t2 – 2 t3 (SI) .
(A)
mg
.
k
(C) gk
g (B)
2k
(D) gk.
[A]
2. 一质量为M的斜面原来静止于水平光滑平面上,
m
将一质量为m的木块轻轻放于斜面上,如图.如
果此后木块能静止于斜面上,则斜面将
M
(A) 保持静止. (B) 向右加速运动.
(C) 向右匀速运动. (D) 向左加速运动.
[A ]
3.在如图所示的装置中,两个定滑轮与绳的
? ? cos? ) sin? )2
?
0
,
∴ tg? ? ? ? 0.6
r
(x,y)
x
?
Oi
dt
a?
?
d v?
?
? rw 2
cosw t
? i?
rw 2 sin w t
? j
dt
? (3)
a?
?
?w2 ?r
cosw t
? i
?
r
sin w t
?j ??
?w2
r?
?
?
r a a 这说明 与 方向相反,即
指向圆心
标准化作业(3)
一、选择题 1. 质量为m的物体自空中落下,它除受重力外,还受到一个与 速度平方成正比的阻力的作用,比例系数为 k,k为正值常量. 该下落物体的收尾速度 (即最后物体作匀速运动时的速度 )将是
试求: (1)第2秒内的平均速度; (2)第2秒末的瞬时速度; 第2秒内的路程.
解:(1) v ? ? x / ? t ? ?0.5 m/s
(2)
v = d x/d t = 9t - 6t2
v (2) =-6 m/s
(3)
S = |x(1.5)-x(1)| + |x(2)-x(1.5)| = 2.25 m
竖直放在光滑水平面C上,如图所示.弹簧的质量
与物体A、B的质量相比,可以忽略不计.若把支持
面C迅速移走,则在移开的一瞬间,
B
A的加速度大小aA=___0___,
B的加速度的大小aB=__2__g___.
三、计算题
5.质量m=2 kg的物体沿x轴作直线运动,所受合外力F =10 +6x2 (SI).如果在x=0处时速度v0=0;试求该物体运动到x=4 m处时速度的大小.
h
不计箱高,问绳长l为多长时最省力?
解:设绳子与水平方向的夹角为θ,则 sin? ? h / l
? N
木箱受力如图所示,匀速前进时, 拉力为F, 有
? F
F cosθ-f =0
?
f
??
F sinθ+N-Mg=0
f=μN
得
F
?
? Mg cos? ? ? sin?
? P
?
Mg?
令
dF
d?
?
?
?
Mg(? sin? (cos? ? ?
?? (B) ?2 i +2 j
(2C.)以-下2五i?-种2运?j动形(D式)中2 ,i? -a? 2
? j
保持不变的运动是
[ B]
(A) 单摆的运动. (B) 匀速率圆周运动. (C) 行星的椭圆轨道运动. (D) 抛体运动. (E) 圆锥摆运动.
[D ]
二、填空题 3.质点沿半径为R的圆周运动,其路程S随时间t变化的规律为 S ? bt? 1ct2 (SI) , 式中b、c为大于零的常量,且b2>Rc. v /dt ? ?kv 2t ,式中的k为大于零的常量.
当 t ? 0 时,初速为v0,则速度 v 与时间t的函数关系是
(A)
v
?
1 kt2 2
?
v0
,(B)
v
?
? 1 kt 2 2
?v0
(C)
1 v
?
kt 2 2
?1 v0
1
(D) v
?
?
kt 2 2
?
1 v0