机械优化设计题目答案
机械优化设计试题及答案

机械优化设计试题及答案### 机械优化设计试题及答案#### 一、选择题(每题2分,共10分)1. 机械优化设计的最基本目标是什么?- A. 最小化成本- B. 最大化效率- C. 确保安全性- D. 以上都是2. 以下哪个是优化设计中常用的数学方法?- A. 线性代数- B. 微积分- C. 概率论- D. 几何学3. 在进行机械优化设计时,以下哪个因素通常不是设计变量? - A. 材料选择- B. 尺寸参数- C. 工作温度- D. 制造工艺4. 机械优化设计中,约束条件通常包括哪些类型?- A. 应力约束- B. 位移约束- C. 速度约束- D. 所有上述5. 以下哪个软件不是用于机械优化设计的?- A. ANSYS- B. MATLAB- C. AutoCAD- D. SolidWorks#### 二、简答题(每题10分,共20分)1. 简述机械优化设计的基本步骤。
2. 解释什么是多目标优化,并举例说明其在机械设计中的应用。
#### 三、计算题(每题15分,共30分)1. 假设有一个机械臂设计问题,需要优化其长度以获得最大的工作范围。
如果机械臂的长度 \( L \) 与工作范围 \( R \) 的关系为 \( R = L \times \sin(\theta) \),其中 \( \theta \) 是机械臂与水平面的夹角,\( 0 \leq \theta \leq 90^\circ \),求当 \( \theta = 45^\circ \) 时,机械臂的最佳长度 \( L \)。
2. 考虑一个简单的梁结构,其长度为 \( 10 \) 米,承受均布载荷\( q = 10 \) kN/m。
若梁的弯曲刚度 \( EI \) 为 \( 1 \times10^7 \) Nm²,求梁的最大挠度 \( \delta \)。
#### 四、论述题(每题15分,共30分)1. 论述机械优化设计在现代制造业中的重要性。
《机械优化设计》复习题答案

《机械优化设计》复习题解答、填空题1、 用最速下降法求 f(X)=100(x 2- X 12) 2+(1- x i ) 2 的最优解时,设 X (°)=[-0.5,0.5]T ,第一 步迭代的搜索方向为 [-47,-50]T 。
2、 机械优化设计采用数学规划法,其核心一是 寻找搜索方向,二是计算最优步长。
3、 当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。
4、 应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和 终点,它们的函数值形成—高一低一高 _________ 趋势。
5、 包含n 个设计变量的优化问题,称为 ___ n _____ 维优化问题。
16、 函数 —X T HX B T X C 的梯度为B 。
2 _7、 设G 为n>n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 3 4,满足(d 0)T Gd 1=0, 则d 0、d 1之间存在共轭关系。
& ___ 设计变量 ____________ 、 __ 目标函数 ___ 、 __ 约束条件 是优化设计问题数学 模型的基本要素。
9、 对于无约束二元函数 f (X 1,X 2),若在X 0(X 10,X 20)点处取得极小值,其必要条件是15、 存在矩阵H ,向量d 1,向量d 2,当满足d 1T Hd 2=0,向量d 1和向量d 2是关于H 共 轭。
16、 采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因 子r 数列,具有单调递增特点。
17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求 最优步长。
二、选择题13、 牛顿法的搜索方向d k =—H k g k ,其计算量大且要求初始点在极小点 附近—位,充分条件是 • (—一一L 正定 ______ 。
10、 _ K-T ____________ 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
机械优化设计习题参考答案

第六章习题解答.已知约束优化问题:122)(x?(x?2)1?xminf()?2120??xtg(x)?xs???T)(k2?1x?-0.254)区间的随机数0.562和出发,沿由(-1 1 试从第k次的2110?2?x)?x?xg(212迭代点)k?1(x。
并作图画出目标函数所确定的方向进行搜索,完成一次迭代,获取一个新的迭代点的等值线、可行域和本次迭代的搜索路线。
解] 1)确定本次迭代的随机方向:[T??0.2540.562??T0.412S???0.911??R2222??0.254?0.254?0.5620.562??(1)k)?(k?Sx?x?计算新的迭代点。
步长α用公式:2)取为搜索到约束边界R上的最大步长。
到第二个约束边界上的步长可取为2,则:k?1k?S??1?2?0?x.?911?0.x82211R1k?k?x)?1.176412(2?x?S??2??0.222R0.822??1?k?X即:??1.176??该约束优化问题的目标函数的等值线、可行域和本次迭代的搜索路线如下图所示。
2.已知约束优化问题:2minf(x)?4x?x?122122?x?25?0sg(x)?x?t2110??x?g(x)120??x?g(x)23??????TTT000312x,x?13?4,x?为复合形的初始顶点,用复合形法进行试以213两次迭代计算。
[解] 1)计算初始复合形顶点的目标函数值,并判断各顶点是否为可行点:??00??5x??f2111??00?f13x??422??00????xf3393300为最坏点。
x为最好点,x经判断,各顶点均为可行点,其中,230x后的复合形的中心点:2)计算去掉最坏点?00????xx?????????????ic32132L??????????1i?2?i1?x3.?1(取反233532.2??????????11射系数3)计算反射点)R2.540.552.5??????????1000?????)???(x1.3?x?xx??????????2cRc2213.3??????????11经判断x为可行点,其目标函数值f??20.69RR0010,xx和xx,由)去掉最坏点构成新的复合形,在新的复合形中4R12310x为最好点,x为最坏点,进行新的一轮迭代。
机械优化设计课后习题答案

2、 3、 4 时的四条等值线,并在图上 (1) 以一定的比例尺画出当目标函数依次为 f ( X) 1、
画出可行区的范围。 (2) 找出图上的无约束最优解 X1 和对应的函数值 f ( X1 ) , 约束最优解 X 2 和 f ( X2 ) ; (3) 若加入一个等式约束条件:
h(X) x1 x2 0
1-3 某厂生产一个容积为 8000 cm 的平底、无盖的圆柱形容器,要求设计此容器消耗 原材料最少,试写出这一优化问题的数学模型。 解:根据该优化问题给定的条件与要求,取设计变量为 X = 表面积为目标函数,即: minf(X) =
3
x1 底面半径r , h x2 高
求此时的最优解 X3 , f ( X3 ) 。
解:下图为目标函数与约束函数(条件) 设计平面 X1OX2 。其中的同心圆是目标 函数依次为 f(X)=1、2、3、4 时的四条等 值线;阴影的所围的部分为可行域。 由于目标函数的等值线为一同心圆,所以 无约束最优解为该圆圆心即: X1*=[3,4]T 函数值 f(X1*)= 0 。
3·
g1(X) =1800-8*25x1+8*15x2≤0 g2(X) =x1 -8≤0 g3(X) =x2-10≤0 g4(X) = -x1 ≤0 g5(X) = -x2 ≤0
1-2
已知一拉伸弹簧受拉力 F ,剪切弹性模量 G ,材料重度 r ,许用剪切应力 [ ] ,
许用最大变形量 [ ] 。欲选择一组设计变量 X [ x1
6
a 各阶主子式: a11 2 0,11 a 21
a12 a 22
2 1 0 1 2
H(X)是正定的, 所以, f (X) 为凸函数。
机械优化设计试卷与答案

《机械优化设计》复习问答1. 填空1.使用最速下降法求f(X)=100(x 2 - x 1 2 ) 2 +(1- x 1 ) 2的最优解时,设X (0) = [-0.5, 0.5] T ,第一次迭代的搜索方向是[-47;-50] 。
2.机械优化设计采用数学规划方法,其核心是确定搜索方向,其次是计算最优步长因子。
3.当优化问题是__凸规划__时,任何局部最优解都是全局最优解。
4 、应用进退法确定搜索区间时,最终得到的三个点分别为搜索区间的起点、中点和终点,其函数值形成高-低-高趋势。
5. 涉及 n 个设计变量的优化问题称为n 维优化问题。
6.C X B HX X T T ++21函数的梯度是HX+B 。
n 维空间中存在两个非零向量d 0和d 1 ,满足(d 0 ) T Gd 1 =0,则有_之间d 0和 d 1共轭_____ 关系。
8.设计变量、约束和目标函数是优化设计问题数学模型的基本要素。
9.对于一个无约束的二元函数),(21x x f ,如果),(x 20100x x 在某一点处得到最小值,则必要条件是梯度为零,充分条件是Hessian 矩阵是正定的。
10. Kuhn-Tucker 条件可以描述为目标函数在极值点的梯度是每个起作用的约束函数的梯度的非负线性组合。
1 1.用黄金分割法求一元函数的最小点]10,10[],[-=b a ,初始搜索区间3610)(2+-=x x x f ,第一次区间消去后得到的新区间为[-2.36,2.36] 。
的基本要素是设计变量、约束的目标函数、牛顿法的搜索方向为d k =,计算量大,需要初始点逼近最小值点的位置。
14、函数f(X)=x 1 2 + x 22 -x 1 x 2 -10x 1 -4x 2 +60 表示C X B HX X T T ++21为形式。
15.有一个矩阵 H 、一个向量 d 1 和一个向量 d 2 。
当满足(d 1 )TGd 2 =0时,向量d 1和向量d 2关于H 是共轭的。
《机械优化设计》试题及答案解析

《机械优化设计》复习题及答案一、填空题1、用最速下降法求f(X)=100(X2- X12) 2+(1- x i) 2的最优解时,设X(°)=[-0.5,0.5]T,第一步迭代的搜索方向为卜47;-50] ______________ 。
2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因子 ________ 。
3、当优化问题是—凸规划______ 的情况下,任何局部最优解就是全域最优解。
4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成高-低-高___________ 趋势。
5、包含n个设计变量的优化问题,称为__n _______ 维优化问题。
16、函数—X T HX B T X C的梯度为HX+B 。
27、设G为n>n对称正定矩阵,若n维空间中有两个非零向量d°, d1,满足(d°)T Gd—=0, 则d0、d1之间存在—共轭 ______ ■关系。
8、设计变量、约束条件______________ 、目标函数________________ 是优化设计问题数学模型的基本要素。
9、对于无约束二元函数f(X1,X2),若在X°(X10,X20)点处取得极小值,其必要条件是_梯度为零,充分条件是海塞矩阵正定 ______________ 。
10、 ________________ 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。
11、用黄金分割法求一元函数f (xHx2 -10x 36的极小点,初始搜索区间[a,b] =[-10,10],经第一次区间消去后得到的新区间为[-2.36236] 。
12、优化设计问题的数学模型的基本要素有设_________ 、13、牛顿法的搜索方向d k= ______ ,其计算量大,且要求初始点在极小点逼近位置。
14、将函数f(X)=x 12+X22-X1X2-10X1-4X2+60表示成-X T HX - B T X C 的形2式 ________________________ 。
机械优化设计试题及答案

计算题1.试用牛顿法求()221285f X x x =+的最优解,设()[]01010TX =。
初始点为()[]01010TX =,则初始点处的函数值和梯度分别为()()0120121700164200410140f X x x f X x x =+⎡⎤⎡⎤∇==⎢⎥⎢⎥+⎣⎦⎣⎦,沿梯度方向进行一维搜索,有()010000010200102001014010140X X f X αααα-⎡⎤⎡⎤⎡⎤=-∇=-=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦0α为一维搜索最佳步长,应满足极值必要条件()()[]()()()(){}()αϕααααααααm i n 14010514010200104200108min min 200020001=-⨯+-⨯-⨯+-⨯=∇-=X f X f X f()001060000596000ϕαα'=-=, 从而算出一维搜索最佳步长 0596000.05622641060000α==则第一次迭代设计点位置和函数值01010200 1.245283010140 2.1283019X αα--⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦ ()124.4528302f X =,从而完成第一次迭代。
按上面的过程依次进行下去,便可求得最优解。
2、试用黄金分割法求函数()20f ααα=+的极小点和极小值,设搜索区间[][],0.2,1a b =(迭代一次即可)解:显然此时,搜索区间[][],0.2,1a b =,首先插入两点12αα和,由式 ()1()10.61810.20.5056b b a αλ=--=--= ()2()0.20.6181.20.6944a b a αλ=+-=+⨯-=计算相应插入点的函数值()()4962.29,0626.4021==ααf f 。
因为()()12f f αα>。
所以消去区间[]1,a α,得到新的搜索区间[]1,b α, 即[][][]1,,0.5056,1b a b α==。
机械优化设计课后习题答案word版本

第一章习题答案1-1 某厂每日(8h 制)产量不低于1800件。
计划聘请两种不同的检验员,一级检验员的标准为:速度为25件/h,正确率为98%,计时工资为4元/ h;二级检验员标准为:速度为15件/h,正确率为95%,计时工资 3 元/h。
检验员每错检一件,工厂损失2元。
现有可供聘请检验人数为:一级8人和二级10人。
为使总检验费用最省,该厂应聘请一级、二级检验员各多少人?解:(1 )确定设计变量;X-j 一级检验员根据该优化问题给定的条件与要求,取设计变量为X = 1;x2二级检验员(2)建立数学模型的目标函数;取检验费用为目标函数,即:f(X) = 8*4* X1+ 8*3* X2 + 2 ( 8*25*0.02 X1 +8*15*0.05 X2 )=40x1+ 36x2(3)本问题的最优化设计数学模型:3 •min f (X) = 40X1+ 36X2 X€ Rs.t. g1(X) =1800-8*25 X1+8*15X2W 0g2( X) = x1 -8 < 0g3(X) = x2-10 w 0g4( X) = - X1 w 0 g5( X) = - x2w 01-2已知一拉伸弹簧受拉力F,剪切弹性模量G,材料重度r,许用剪切应力[],许用最大变形量[]。
欲选择一组设计变量X [X1 X2 X3]T [d D2 n]T使弹簧重量最轻,同时满足下列限制条件:弹簧圈数n 3, 簧丝直径d 0.5,弹簧中径10 D2 50。
试建立该优化问题的数学模型。
注:弹簧的应力与变形计算公式如下k s 8FD32 , k s 1 1, c D2 (旋绕比),s d3 s 2c d解:(1)确定设计变量;x-i d 根据该优化问题给定的条件与要求,取设计变量为X= x2D2;X3 n(2)建立数学模型的目标函数;取弹簧重量为目标函数,即:22f(X) = rx1 x2x343 本问题的最优化设计数学模型:8F n D;Gd423 •min f (X) = rx 1 x 2x 3 X € R4s.t.g i (X) =0.5- x i w 0 g 2( X) =10- x 2 w 0 g 3( X) = X 2-50 w 0 g 4( X) =3- X 3 w 0 g 5(X) =(1 丄)辱 w 02x 2 x 1w 0g 6(X)=38FX 2 x 3Gx 141-3某厂生产一个容积为 一优化问题的数学模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-1.简述优化设计问题数学模型的表达形式。
答:优化问题的数学模型是实际优化设计问题的数学抽象。
在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。
求设计变量向量[]12Tn x x x x =使()min f x →且满足约束条件()0(1,2,)k h x k l ==()0(1,2,)j g x j m ≤=利用可行域概念,可将数学模型的表达进一步简练。
设同时满足()0(1,2,)j g x j m ≤=和()0(1,2,)k h x k l ==的设计点集合为R ,即R为优化问题的可行域,则优化问题的数学模型可简练地写成求x 使 min()x Rf x ∈符号“∈”表示“从属于”。
在实际优化问题中,对目标函数一般有两种要求形式:目标函数极小化()minf x →或目标函数极大化()max f x →。
由于求()f x 的极大化与求()f x -的极小化等价,所以今后优化问题的数学表达一律采用目标函数极小化形式。
1-2.简述优化设计问题的基本解法。
(不要抄书,要归纳) 答:求解优化问题可以用解析解法,也可以用数值的近似解法。
解析解法就是把所研究的对象用数学方程(数学模型)描述出来,然后再用数学解析方法(如微分、变分方法等)求出有化解。
但是,在很多情况下,优化设计的数学描述比较复杂,因而不便于甚至不可能用解析方法求解;另外,有时对象本身的机理无法用数学方程描述,而只能通过大量试验数据用插值或拟合方法构造一个近似函数式,再来求其优化解,并通过试验来验证;或直接以数学原理为指导,从任取一点出发通过少量试验(探索性的计算),并根据试验计算结果的比较,逐步改进而求得优化解。
这种方法是属于近似的、迭代性质的数值解法。
数值解法不仅可用于求复杂函数的优化解,也可以用于处理没有数学解析表达式的优化问题。
因此,它是实际问题中常用的方法,很受重视。
其中具体方法较多,并且目前还在发展。
但是,应当指出,对于复杂问题,由于不能把所有参数都完全考虑并表达出来,只能是一个近似的最后的数学描述。
由于它本来就是一种近似,那么,采用近似性质的数值方法对它们进行解算,也就谈不到对问题的精确性有什么影响了。
不管是解析解法,还是数值解法,都分别具有针对无约束条件和有约束条件的具体方法。
可以按照对函数倒数计算的要求,把数值方法分为需要计算函数的二阶导数、一阶导数和零阶导数(即只要计算函数值而不需计算其导数)的方法。
2-1.何谓函数的梯度?梯度对优化设计有何意义?答:二元函数f(x 1,x2)在x0点处的方向导数的表达式可以改写成下面的形式⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂+∂∂=∂∂2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d f 令xo T x f x f x f x fx f ⎥⎦⎤⎢⎣⎡∂∂∂∂=∂∂∂∂=∇21]21[)0(并称它为函数f (x1,x2)在x0点处的梯度。
假设⎥⎦⎤⎢⎣⎡=2cos 1cos θθd为D 方向上的单位向量,则有d T x f xo d f)0(∇=∂∂ 即函数f (x1,x2)在x 0点处沿某一方向d 的方向导数xo df∂∂等于函数在该点处的梯度)0(x f ∇与d 方向单位向量的内积。
梯度方向是函数值变化最快的方向,而梯度的模就是函数变化率的最大值。
梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。
梯度)0(x f ∇方向为函数变化率最大方向,也就是最速上升方向。
负梯度-)0(x f ∇方向为函数变化率最小方向,即最速下降方向。
2-2.求二元函数2122212122),(x x x x x x f +-+=在T x ]0,0[0=处函数变化率最大的方向和数值。
解;由于函数变化率最大的方向就是梯度的方向,这里用单位向量p 表示,函数变化率最大和数值时梯度的模)0(x f ∇。
求f (x1,x 2)在x0点处的梯度方向和数值,计算如下:()⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∂∂∂∂=∇120122214210x x x x fx f x f2221)0(⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∇x f x f x f =5⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=∇∇=5152512)0()0(x f x f p 2-3.试求目标函数()2221212143,x x x x x x f +-=在点X 0=[1,0]T处的最速下降方向,并求沿着该方向移动一个单位长度后新点的目标函数值。
解:求目标函数的偏导数21221124,46x x x f x x x f +-=∂∂-=∂∂则函数在X 0=[1,0]T处的最速下降方向是⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂∂∂-=-∇=====462446)(012121012102121x x x xx x x x x f x f X f P 这个方向上的单位向量是:13]2,3[4)6(]4,6[T 22T -=+--==P P e 新点是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=+=132133101e X X 新点的目标函数值1321394)(1-=X f2-4.何谓凸集、凸函数、凸规划?(要求配图)一个点集(或区域),如果连接其中任意两点x 1、x2的线段都全部包含在该集合内,就称该点集为凸集,否则为非凸集。
函数f (x)为凸集定义域内的函数,若对任何的01α≤≤及凸集域内的任意两点x 1、x2,存在如下不等式:称f (x )是定义在图集上的一个凸函数。
()()()121211fx x f x x αααα+-≤+-⎡⎤⎣⎦对于约束优化问题min ()s.t. ()0 (1,2,,)j f x g x j m ≤=若()j=j f x g x 、() 1,2,...,m都是凸函数,则称此问题为凸规划。
3-1.简述一维搜索区间消去法原理。
(要配图)答:搜索区间(a,b)确定之后,采用区间逐步缩短搜索区间,从而找到极小点的数值近似解。
假设搜索区间(a ,b)内任取两点a1,b1 ,a 1《b1,并计算函数值f (a1),f(b1)。
将有下列三种可能情形; 1)f (a1)《f(b1)由于函数为单谷,所以极小点必在区间(a,b 1)内 2)f (a1)》f(b1),同理,极小点应在区间(a1,b)内 3)f (a1)=f(b 1),这是极小点应在(a1,b1)内3-2.简述黄金分割法中0.618的来由,搜索过程及程序框图。
黄金分割法适用于[],a b 区间上的任何单谷函数求极小值问题。
对函数除要求“单谷”外不作其他要求,甚至可以不连续。
因此,这种方法的适应面相当广。
黄金分割法也是建立在区间消去法原理基础上的试探方法,即在搜索区间[],a b 内适当插入两点1α、2α,并计算其函数值。
1α、2α将区间分成三段。
应用函数的单谷性质,通过函数值大小的比较,删去其中一段,使搜索区间得以缩短。
然后再在保留下来的区间上作同样的处置,如此迭代下去,使搜索区间无限缩小,从而得到极小点的数值近似解。
黄金分割法要求插入点1α、2α的位置相对于区间[],a b 两端点具有对称性,即1()b b a αλ=--2()a b a αλ=+-其中,λ为待定常数。
图a除对称要求外,黄金分割法还要求在保留下来的区间内再插入一点所形成的区间新三段,与原来区间的三段具有相同的比例分布。
设原区间[],a b 长度为1,如图a 所示,保留下来的区间[]2,a α长度为,区间缩短率为λ。
为了保持相同的比例分布,新插入点3α应在(1)λλ-位置上,1α在原区间的1λ-位置应相当于在保留区间的2λ位置。
故有21λλ-= 210λλ+-=取方程正数解,得510.618λ-=≈若保留下来的区间为[]1,b α,根据插入点的对称性,也能推得同样的λ值。
所谓“黄金分割”是指将一线段分成两段的方法,使整段长与较长段的长度比值等于较长段与较短段长度的比值,即 1::(1)λλλ=-同样算得0.618λ≈。
可见黄金分割法能使相邻两次搜索区间都具有相同的缩短率0.618,所以黄金分割法又被称作0.618法。
图 b黄金分割法的搜索过程是: (1) 给出初始搜索区间[],a b 及收敛精度ε,将λ赋以0.618。
(2)按坐标点计算公式1()b b a αλ=--、2()a b a αλ=+-计算1α和2α,并计算其对应的函数值1()f α,2()f α。
(3)根据区间消去法原理缩短搜索区间。
为了能用原来的坐标点计算公式,需进行区间名称的代换,并在保留区间中计算一个新的试验点及其函数值。
(4) 检查区间是否缩短到足够小和函数值收敛到足够近,如果条件不满足则返回到步骤(2)。
(5) 如果条件满足,则取最后两试验点的平均值作为极小点的数值近似解。
(6)黄金分割法的程序框图如图b所示。
3-3.对函数ααα2)(2+=f ,当给定搜索区间55≤≤-α时,写出用黄金分割法求极小点*α的前三次搜索过程。
(要列表)解;此时的a=-5,b=5。
首先插入两点a 1和a2。
可得a1=b -)(a b -λ=-1.18 , a2=a+)(a b -λ=1.18再计算相应插入点的函数值,得y 1=f(a1)=-0.9676,y2=f(a2)=3.7524因为y 2>y 1,所以消去区间[a2,b],则新的搜索区间[a ,b]的端点a=-5不变,而端点b=a 2=1.18第一次迭代;此时插入点a1=b-)(a b -λ=-2.639,a 2=-1.181。
相应插入点的函数值y1=f (a1)=1.686,y2=f(a2)=-0.967,由于y1>y2,故消去区间[a,a 1],新的搜索区间为[-2.639,1.18],如此继续迭代下去 列出前三次迭代结果迭代序号 a a1 a 2 b Y1 比较 Y20 -5 -1.18 1.18 5 -0.9676 < 3.7524 1 -5 -2.639 -1.181 1.18 1.686 > -0.967 2 -2.639 -1.18 -0.279 1.18 -0.9676 < -0.48 3 -2.639 -1.737 -1.181 -0.279 -0.457 > -0.482 3-4.使用二次插值法求f (x )=sin(x )在区间[2,6]的极小点,写出计算步骤和迭代公式,给定初始点x 1=2,x 2=4,x 3=6, ε=10-4。
1 2 3 4 x 1 2 4 4.55457 4.55457迭代次数K= 4 ,极小点为 4.71236 ,最小值为 -113131x x y y c --=,12122x x y y c --=,32123x x c c c --=)(213131c cx x x p -+=收敛的条件:ε<-22y y y p4-1.简述无约束优化方法中梯度法、共轭梯度法、鲍威尔法的主要区别。