简易数字存储示波器实验报告.doc

合集下载

简易数字存储示波器实验报告

简易数字存储示波器实验报告

目录一.数字存储示波器简介及设计思路 (3)2.实验设计原理 (5)三、系统各模块的简单说明 (5)四.最终实现功能说明 (8)五.实验设计实现功能模块具体分析 (9)六、实验硬件分配及总体仿真波形 (15)一、数字存储示波器简介及设计思路数字存储示波器是20世纪70年代初发展起来的一种新型示波器。

这种类型的示波器可以方便地实现对模拟信号波形进行长期存储并能利用机内微处理器系统对存储的信号做进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。

而我们此次要设计的便是一种简易的数字存储示波器。

数字存储示波器可实现以下功能。

通过对来自信号源的信号进行采集(可分为实时取样和等效时间取样),将获得的值存储在内置RAM内,后期操作有对波形的显示、波形的测量(如测量频率、幅值、上升下降时延等)和波形处理(如双踪两波形的相加、相减、X-Y显示等等)。

其工作示意图如下所示:而我们设计的简易数字存储示波器实现的功能有对单一信道信号进行采样存储显示(分实时显示和存储后期调用显示)、对信号进行频率测量并显示数值、对波形进行上移、下移、扩展、收缩操作、示例波形演示(包括正弦波、锯齿波、方波)。

我们所用的硬件有实验箱上的高速的模数转换器TLC5510、FPGA芯片、单片机、LCD显示屏、FPGA内置RAM、外围扩展的RAM和键盘。

以下框图为实验箱硬件使用说明图:下移、扩展、收缩和测频的处理。

二、实验设计原理设计总体逻辑思路如下:系统开始工作时,通过按键选择是否开始检测波形,若是,则首先由频率检测器检测频率,然后根据测得的频率选择适当的采样频率。

信号源产生的信号通过A/D采样,采样结果保存在FPGA内置的存储器中。

待存储完一帧数据时进行输出到LCD上显示。

待显示100ms后暂停100ms以消除视觉暂留效应,然后准备下一帧数据的存储和显示。

如若需要存储波形,则在当前显示的同时,将采样得到的数据送往片外的SDRAM存储,直至存储结束或者存储容量达到上限。

数字存储示波器 实验报告

数字存储示波器 实验报告

数字存储示波器实验报告数字存储示波器实验报告引言:数字存储示波器是现代电子测量领域中常见的一种仪器。

它通过将模拟信号转换为数字信号,并进行存储和处理,能够更准确地显示和分析电路中的信号波形。

本实验旨在通过使用数字存储示波器,对不同信号的波形进行观测和分析,并探究其在电子实验中的应用。

一、实验原理:数字存储示波器的工作原理主要包括信号采样、信号转换和信号显示三个过程。

首先,示波器通过采样装置对模拟信号进行采样,将其转换为离散的数字信号。

然后,通过模数转换器将离散的信号转换为数字信号,并将其存储在示波器的存储器中。

最后,示波器通过显示器将存储的数字信号转换为波形图形进行显示。

二、实验步骤:1. 连接电路:将待测的电路与示波器进行连接,确保信号源与示波器的输入端正确连接。

2. 设置示波器参数:根据待测信号的特点,设置示波器的采样频率、触发方式和时间基准等参数。

3. 开始测量:打开示波器电源,观察显示屏上的波形图形,并对波形进行分析和测量。

4. 调整参数:根据需要,调整示波器的参数,如水平和垂直灵敏度、触发电平等,以获得更清晰和准确的波形图形。

5. 结束实验:关闭示波器电源,断开电路连接,整理实验器材。

三、实验结果:通过实验,我们得到了多个不同信号的波形图形,并进行了分析和测量。

以下是实验中得到的一些典型结果:1. 正弦波信号:我们首先对一个正弦波信号进行观测。

通过示波器的显示,我们可以清晰地看到波形的周期、幅度和相位等特征。

通过测量,我们还可以得到波形的频率和峰峰值等具体数值。

2. 方波信号:接下来,我们对一个方波信号进行观测。

方波信号具有明显的上升沿和下降沿,通过示波器的显示,我们可以观察到方波的占空比和频率等信息。

同时,我们还可以通过示波器的测量功能,得到方波的上升时间和下降时间等参数。

3. 脉冲信号:最后,我们对一个脉冲信号进行观测。

脉冲信号具有较短的脉宽和较高的幅度,通过示波器的显示,我们可以观察到脉冲信号的上升时间、下降时间和脉宽等特征。

数字存储示波器实验报告

数字存储示波器实验报告

数字存储示波器实验报告实验目的:1. 学习数字存储示波器的基本原理和使用方法。

2. 掌握数字存储示波器测量和显示波形的方法。

3. 理解数字存储示波器与模拟示波器的区别。

实验原理:数字存储示波器可以将模拟信号转换为数字信号,并通过数字方式存储和显示波形。

数字存储示波器使用的是采样信号方式,即每隔一段时间采集一次波形信号,将其转换成数字信号后保存在存储器中。

用户可以通过控制数字存储示波器的触发条件,来实现对特定波形的捕获和显示。

数字存储示波器与模拟示波器相比,具有很多优点。

例如,数字存储示波器可以使用自动测量功能,快速测量各种参数(如频率、周期、峰值等),并提供精确的数值结果。

数字存储示波器还可以捕获稀疏信号和故障信号,以及存储和重放波形,方便分析和调试。

实验步骤:1.将数字存储示波器接通电源,并将信号源与示波器连接。

调整信号源输出电压,并选择示波器的输入通道和延时/触发模式。

2.触发示波器并捕获波形。

通过控制示波器的触发条件和触发电平,调整示波器的采样时间和位置,以捕获特定波形的全部信息。

在捕获到波形后,用户可以对其进行保存和重放,也可以对波形进行缩放和移动,以便于更好地观察和分析。

3.测量波形的主要参数。

示波器可以通过内置的自动测量功能,对波形的主要参数(如峰-峰值、频率、周期、占空比等)进行快速测量。

用户还可以手动测量波形的特定参数,获得更加准确和具体的结果。

实验结果:通过本次实验,我们学会了数字存储示波器的基本原理和使用方法,并掌握了数字存储示波器测量和显示波形的方法。

我们还理解了数字存储示波器与模拟示波器的区别,并比较了它们的优缺点。

同时,通过实验数据的处理和分析,我们得到了电路波形的主要参数,并可以据此对电路性能进行分析和优化。

这对我们日后的电路设计和调试都非常有帮助。

数字示波器的使用实验报告-数字示波器的使用实验

数字示波器的使用实验报告-数字示波器的使用实验

数字示波器的使用实验报告篇一:大物实验示波器的使用实验报告实验二十三示波器的使用班级姓名学号同组人日期实验目的1、了解示波器的基本结构和工作原理,学会正确使用示波器。

2、掌握用示波器观察各种电信号波形、测量电压和频率的方法。

3、掌握观察利萨如图形的方法,并能用利萨如图形测量未知正弦信号的频率。

实验仪器固纬GOS-620型双踪示波器一台,GFG-809型信号发生器两台,连线若干。

实验原理示波器是利用示波管内电子束在电场或磁场中的偏转,显示电压信号随时间变化波形的一种电子观测仪器。

在各行各业与各个研究领域都有着广泛的应用。

其基本结构与工作原理如下1、示波器的基本结构与显示波形的基本原理本次实验使用的是台湾固纬公司生产的通用双踪示波器。

基本结构大致可分为示波管(CRT)、扫描同步系统、放大与衰减系统、电源系统四个部分。

“示波管(CRT)”是示波器的核心部件如图1所示的。

可细分为电子枪,偏转系统和荧光屏三部分。

1)电子枪电子枪包括灯丝F,阴极K,控制栅极G,第一阳极A1,第二阳极A2等。

阴极被灯丝加热后,可沿轴向发射电子。

并在荧光屏上显现一个清晰的小圆点。

2)偏转系统偏转系统由两对互相垂直的金属偏转板x和y组成,分别控制电子束在水平方向和竖直方向的偏转。

从电子枪射出的电子束若不受横向电场的作用,将沿轴线前进并在荧光屏的中心呈现静止的光点。

若受到横向电场的作用,电子束的运动方向就会偏离轴线,F灯丝,K阴极,G控制栅极,A1、A2第一、第二阳极,Y、X竖直、水平偏转板图1示波管结构简图屏上光点的位置就会移动。

x偏转板之间的横向电场用来控制光点在水平方向的位移,y偏转板用来控制光点在竖直方向的位移。

如果两对偏转板都加上电场,则光点在二者的共同控制下,将在荧光屏平面二维方向上发生位移。

3)荧光屏荧光屏的作用是将电子束轰击点的轨迹显示出来以供观测。

4)显示波形的原理图2 图3 图4在竖直偏转板上加一交变正弦电压,可看到一条竖直的亮线,如图3所示。

简易数字存储示波器电子综合实验项目设计

简易数字存储示波器电子综合实验项目设计

2 实验要求
设 计 并 制 作 一 台 具 有 实 时 采 样 方 式和 等 效 采样方式的数字示 波器_示意 图如图1 示。 1 1 , 所
3 实验原理
3. 采 样 原 理 1
实 时 采 样 是 在 信 号 存 在 期 间 对 其 采
要 求 被 测 周 期 信 号 的 频 率 范 围 为 1 Iz l M Hz, 器 输 入 阻 抗 为 1 0 , 示 O ~ 0 I 仪 M 显 屏 的 刻 度 为 8 V× l d V, 直 分 辨 率 为 di i 垂 0

e in,ic i p o u to sse d b g i g nd r jc a c pa c tc n lg e c Th e tr p oe t e eo me p oe s n l d n p o a e h oo y t . e n ie rj c d v lp nt r cs i cu i g rgrm d sg cr u t r d cin, yt m e u g n a p oe t ce tn e,
ห้องสมุดไป่ตู้
计, 电路 制 作 、 到 最 后 的 调 试 验 收 整 个 项 目开 发 过 程 。 养 学 生 应 用 已 学 的 专 业 基 础 知 识 , 行 项 目设 计 和 开 发 的 能 力 。 直 培 进 关 键 词 : 合 实验 数 字 存 储 示 波 器 FP 等 效采 样 综 GA 中 图 分 类 号 : 20 TN 6 文 献 标 识 码 : A
he p Devel l opi s udent c ng t s ompr ehens ve app i at or abi i i s. i l i l c Ite
K y W o d I t g a e e p r me t Di t l s o a e o c lo c p FP e r s: n e r t d x e t n ; gia t r g s il s o e; GA ; u va e t Eq i l n

数字示波器的使用实验报告

数字示波器的使用实验报告

数字示波器的使用实验报告一、实验目的。

本实验旨在通过使用数字示波器,掌握数字示波器的基本使用方法,了解数字示波器的工作原理,以及数字示波器在电子测量中的应用。

二、实验仪器与设备。

1. 数字示波器。

2. 信号发生器。

3. 示波器探头。

4. 示波器连接线。

三、实验原理。

数字示波器是一种用于观察和测量电信号的仪器,它可以将电信号转换成数字信号进行处理和显示。

数字示波器通过采样、量化和存储等技术,可以准确地显示电信号的波形、频率、幅度等参数。

四、实验步骤。

1. 连接信号发生器,首先将信号发生器的输出端与数字示波器的输入端连接,确保连接正确无误。

2. 打开数字示波器,接通数字示波器的电源,并等待一段时间,直到数字示波器启动完毕。

3. 设置示波器参数,根据实际需要,设置数字示波器的触发方式、时间基准、垂直灵敏度等参数。

4. 调节信号发生器,调节信号发生器的频率、幅度等参数,以产生不同的测试信号。

5. 观察波形,通过数字示波器的屏幕,观察并记录不同信号的波形、频率、幅度等参数。

6. 分析实验数据,根据实验测得的数据,进行波形分析和参数计算,得出实验结论。

五、实验数据与分析。

在本次实验中,我们通过数字示波器对不同频率和幅度的信号进行了测试,得到了如下实验数据:1. 信号频率为1kHz时,波形呈现正弦波,峰峰值为2V。

2. 信号频率为5kHz时,波形呈现方波,峰峰值为4V。

3. 信号频率为10kHz时,波形呈现三角波,峰峰值为3V。

通过对实验数据的分析,我们可以得出以下结论:1. 随着信号频率的增加,波形呈现出不同的特征,正弦波、方波和三角波分别对应不同的频率范围。

2. 信号的幅度变化也会直接影响波形的峰峰值,不同幅度的信号在数字示波器上有明显的区别。

六、实验结论。

通过本次实验,我们深入了解了数字示波器的基本使用方法,掌握了数字示波器的工作原理,并且了解了数字示波器在电子测量中的应用。

同时,我们通过实验数据的分析,得出了信号频率和幅度对波形特征的影响规律,为今后的电子测量工作提供了重要的参考。

简易数字存储示波器设计报告[]

简易数字存储示波器设计报告[]

简易数字存储示波器设计报告摘要本设计分为四个模块,分别是:信号前向调整模块,数据采集模块,数据输出模块和控制模块。

信号前向调整模块采用高速低噪音模拟开关(MAX4545)和宽带运算放大器(MAX817)构成可编程运算放大器,对幅度不等的输入信号分别进行不同等级的放大处理.数据采集模块采用可编程器件(EPM7128SLC84—15)控制高速A/D(TLC5510)对不同频率的输入信号分别以相应的采样速度予以采样,并将采样数据存在双口RAM(IDT7132)中.数据输出模块采用另一片可编程器件(EPM7128SLC84—15)控制两片D/A(DAC0800)分别输出采样信号和锯齿波,在示波器上以X-Y的方式显示波形.控制模块以AT89C52单片机为控制核心,协调两片可编程器件的工作,并完成其它的测量,计算及控制功能.一.总体方案设计与论证:方案一:数字示波器采用数字电路,将输入信号先经过A/D变换器,把模拟波形变换成数字信息,暂存于存储器中。

显示时通过D/A变换器将存储器中的数字信息变换成模拟波形显示在模拟示波器的示波管上。

对于存储器的地址计数及数据存取可通过数字电路对时钟脉冲计数产生地址,并选通存储器来实现;对输入信号何时触发采集可通过模拟比较器及其它简单的模拟电路实现。

但是,这种方法的硬件电路过于复杂,调试起来也不方便,不利于系统的其它功能扩展,因而不可采取。

方案二:采用AT89C52单片机。

单片机软件编程灵活,自由度大。

可通过软件编程实现对模拟信号的采集,存储数据的输出以及各种测量,逻辑控制等功能。

但是,系统要求的频带上限为50KHZ,根据采样定理,采样速度的下限为100KHZ,需要用高速A/D进行采样.假设单片机系统用12M的晶体振荡器作为系统时钟,那麽一条指令就需要1us或2us,根本无法控制A/D高速工作.因此,单纯用软件是不可能实现该系统的。

方案三:采用AT89C52单片机作为控制核心,采用可编程器件(ALTERA公司的EPM7128SLC84—15)来实现对数字系统的控制。

简易数字存储示波器报告

简易数字存储示波器报告

号的的光迹要重叠。 3.4 控制器的设计
控制器的作用:控制、数据处理; 控制器的组成:控制器自身、人机接口。 1) 键盘 性质:矩阵扫描非编码键盘 组成:(8 个键)
对键盘的解释: (1)按下的键状态为“0”; (2)s/div 和 V/div 为+1 键 编码关系见表 6.1; (3)默认的仪器工作状态:0.2ms/div 、0.1V/div; (4)扩展移动键每按一次+5; (5)底层控制器(CPLD)扫描键盘,有键按下时向顶底层控制器 申请中断; (6)仪器的复位键(RESET)不属于键盘管理。
1
(2)总的不可调误差: ADC0808 为± 2 LSB,ADC 0809 为±1LSB。 (3)转换时间: 取决于芯片时钟频率,如 CLK=500kHz 时,TCONV=128 μs。 (4)单一电源: +5V。 (5)模拟输入电压范围: 单极性 0~5V;双极性±5V,±10V(需外 加一定电路)。 (6)具有可控三态输出缓存器。
INPUT3
R1
13k
+18v
C2
100pF
U1:A
8
R2
3
13k
1 2
4
C1
100pF
R4
50k
LF353
R3
50k
-18V
OUTPUT3
4)电平移位电路
为了适应 A/D 的要求,在进行模数转换之前必须将双极性信号 通过电平移位为单极性的,设计中将其移位为正极性信号。电路图及 仿真图如下:
-18V
3.1




作用:对被测信号进行调理、量化,并将量化结果写入存储器,
以备显示之用,它是核心部分。(初步构思)下图为前向通道的系统
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简易数字存储示波器实验报告
基于FPGA的简易数字存储示波器的设计ⅰ.数字存储示波器的介绍和设计思路ⅱ。

实验设计原则三。

系统模块四简述。

最终实施功能描述八。

实验设计实现功能模块具体分析9
六.实验硬件和整体仿真波形的分配15
数字存储示波器简介及设计思路数字存储示波器是XXXX早期开发的一种新型示波器。

这种示波器可以方便地实现模拟信号波形的长期存储,并且可以通过使用机内微处理器系统进一步处理存储的信号,例如自动测量参数,例如频率、幅度、前后沿时间、平均值等。

和各种复杂的过程。

这次我们将设计一个简单的数字存储示波器。

数字存储示波器可以实现以下功能。

通过从信号源收集信号(可分为实时采样和等效时间采样),获得的值存储在内置的随机存取存储器中。

后期操作包括波形显示、波形测量(如测量频率、幅度、上升和下降时间延迟等)。

)和波形处理(例如两个波形的加法、减法、X- 3,以及系统的每个模块的简要描述...............
六.实验硬件和整体仿真波形的分配15
数字存储示波器简介及设计思路数字存储示波器是XXXX早期开发的一种新型示波器。

这种示波器可以方便地实现模拟信号波形的长期存储,并且可以通过使用机内微处理器系统进一步处理存储的信号,例如自动测量
参数,例如频率、幅度、前后沿时间、平均值等。

和各种复杂的过程。

这次我们将设计一个简单的数字存储示波器。

数字存储示波器可以实现以下功能。

通过从信号源收集信号(可分为实时采样和等效时间采样),获得的值存储在内置的随机存取存储器中。

后期操作包括波形显示、波形测量(如测量频率、幅度、上升和下降时间延迟等)。

)和波形处理(如加法、减法和双迹X两种波形)。

我们设计的简易数字存储示波器具有单通道信号的采样、存储和显示(包括实时显示、存储和后期调用显示)、信号的频率测量和数值显示、波形的向上、向下、扩展和收缩以及采样波形的演示(包括正弦波、锯齿波和方波)等功能。

我们使用的硬件包括实验箱上的高速模数转换器TLC55。

10.FPGA芯片、单片机、液晶显示屏、FPGA内部RAM、外围扩展RAM和键盘。

以下框图是实验箱硬件的说明图:
键盘模块信号源模数采样FPGA处理模块液晶显示外围存储器MCU,所以我们需要设计的部分有模数采样控制接口模块、键盘控制接口模块、存储器读写控制模块、液晶控制接口模块和液晶显示模块。

系统工作流程图如下:
通过复位按钮初始化,该按钮选择是采样还是执行其他操作(例如演示采样波形和调用查看先前存储的波形)。

if采样
如果进行实时数据处理,可以在液晶显示屏上观察到相应的波形,可以进行上移、下移、扩展、收缩和测量频率的处理。

二、实验设计原则设计的总体逻辑如下:
当系统开始工作时,按键选择是否开始检测波形。

如果是,频率检测器将首先检测频率,然后根据检测到的频率选择适当的采样频率。

信号源产生的信号通过模数转换器进行采样,采样结果存储在FPGA内置的存储器中。

当存储一帧数据时,输出到液晶显示器进行显示。

显示100毫秒后,暂停100毫秒以消除视觉暂留效应,然后准备下一帧数据的存储和显示。

如果需要存储波形,采样数据将在当前显示的同时发送到芯片外的软件无线电存储器进行存储,直到存储完成或存储容量达到上限。

当需要显示存储的波形时,外部软件无线电存储器的数据被读入并发送到液晶显示器进行显示。

其原理与实时显示基本相同。

在显示暂停期间,有必要读取关键条件并进行整体控制,如控制波形是否显示在液晶屏上、是否存储、是否实时显示或存储、上下移动、时域扩展等。

在验收实验中,由于信号源调试不足,未对A/D采样存储模块进行验证。

为了显示对液晶显示器的控制,我们使用了现场可编程门阵列中的只读存储器来预存储波形数据,并读取只读存储器来模拟外部的模数采样存储——我们使用的硬件包括实验箱上的高速模数转换器TLC55。

10.FPGA芯片、单片机、液晶显示屏、FPGA内部RAM、外围扩展RAM和键盘。

以下框图是实验箱硬件的说明图:
键盘模块信号源模数采样FPGA处理模块液晶显示外围存储器MCU,所以我们需要设计的部分有模数采样控制接口模块、键盘控制接口模块、存储器读写控制模块、液晶控制接口模块和液晶显示模块。

系统工作流程图如下:
通过复位按钮初始化,该按钮选择是采样还是执行其他操作(例如演示采样波形和调用查看先前存储的波形)。

如果进行了采样,采集的数据将存储在FPGA内置的RAM中,并决定是否存储或执行下一步的实时数据处理。

如果进行实时数据处理,可以在液晶显示屏上观察到相应的波形,可以进行上移、下移、扩展、收缩和测量频率的处理。

二、实验设计原则设计的总体逻辑如下:
当系统开始工作时,按键选择是否开始检测波形。

如果是,频率检测器将首先检测频率,然后根据检测到的频率选择适当的采样频率。

信号源产生的信号通过模数转换器进行采样,采样结果存储在FPGA内置的存储器中。

当存储一帧数据时,输出到液晶显示器进行显示。

显示100毫秒后,暂停100毫秒以消除视觉暂留效应,然后准备下一帧数据的存储和显示。

如果需要存储波形,采样数据将在当前显示的同时发送到芯片外的软件无线电存储器进行存储,直到存储完成或存储容量达到上限。

当需要显示存储的波形时,外部软件无线电存储器的数据被读入并发送到液晶显示器进行显示。

其原理与实时显
示基本相同。

在显示暂停期间,有必要读取关键条件并进行整体控制,如控制波形是否显示在液晶屏上、是否存储、是否实时显示或存储、上下移动、时域扩展等。

在验收实验中,由于信号源调试不足,未对A/D采样存储模块进行验证。

为了显示对液晶显示器的控制,我们在现场可编程门阵列中使用只读存储器预先存储波形数据,并通过读取只读存储器来模拟外部模数采样存储:由于液晶显示器的尺寸有限,一次只能显示200个点,所以当没有进行选择时,我们只显示当前的200个点,这是基于参考读取地址。

仅当按下左或右按钮时,才会显示下一帧或前一帧。

相应的处理方法是将参考读地址加或减600(200点)。

同样,范围问题也要注意。

参数MAX_ADDR是为了防止所有的路向右,直到没有数据可读。

每次显示完成后(即显示完成100毫秒后),不仅需要计时100毫秒然后读取新数据,还需要处理键值以便做出相应的响应。

这可以在KEY_DEAL中看到,因为处理是在READ_DONE的上升沿执行的。

这样做的优点是可以稳定地显示波形,并且可以通过控制尽快改变波形(大约200毫秒的延迟几乎是察觉不到的,并且在正常情况下,两次连续击键之间的间隔大于200毫秒)。

七、实验硬件配置和整体仿真波形。

由于验收时未能拍照保存和显示,只能通过SignatApⅱII读取和模拟只读存储器中的数据,其中正弦波波形图如下:
对于测试盒的硬件描述和引脚分配描述,测试盒内部提供的CLK0用作20M系统时钟。

待测信号的时钟为CLK5。

八种数码管工
作模式。

数码管的前四位数字用于显示测量的频率值,前三位数字显示信号频率的三位有效数字,第四位数字显示档位。

应当注意,这里涉及频率计数器的细节(见上文分析)。

按键从数码管下的八个开关中选择(键盘模块被放弃,因为单片机和现场可编程门阵列的引脚被多路复用)。

实验箱各控制销的描述:
正负15V电源开启,液晶显示器和现场可编程门阵列接口引脚均开启(即连接状态),工作模式选择模式5。

18。

相关文档
最新文档