初中数学圆专题训练一)

合集下载

初中数学圆形专题训练50题含答案

初中数学圆形专题训练50题含答案

初中数学圆形专题训练50题含参考答案一、单选题1.如图,A 、B 、C 是⊙O 上的三个点,若⊙C =35°,则⊙OAB 的度数是( )A .35°B .55°C .65°D .70° 2.若圆锥的侧面展开图是一个半圆,该半圆的直径是4cm ,则圆锥底面的半径是( )A .0.5cmB .1cmC .2cmD .4cm 3.如图,AB 是半圆的直径,D 是弧AC 的中点,70ABC ∠=︒,则BAD ∠的度数是( ).A .55°B .60°C .65°D .70° 4.如图,点A 、B 、C 都在⊙O 上,⊙O 的半径为2,⊙ACB =30°,则AB 的长是( )A .2πB .πC .2π3 D .1π35.如图,ABCD 为⊙O 的内接四边形,若⊙D=65°,则⊙B=( )A .65°B .115°C .125°D .135° 6.如图,AB 、AC 是O 的两条切线,切点为B 、C , ∠BAC =30°,则∠BAO 度数为( )A .60B .45C .30D .15 7.如图,已知⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊙AC 于点D ,OM ⊙AB 于点M ,OM =13,则sin⊙CBD 的值等于( )A B .13 C D .128.如图,在Rt⊙ABC 中,⊙C =90°,AC =8,BC =6,两等圆⊙A ,⊙B 外切,图中阴影部分面积为( )A .25244π-B .25248π-C .252416π-D .252432π- 9.如图,AB 为⊙O 的切线,A 为切点,OB 交⊙O 于点D ,C 为⊙O 上一点,若42ABO ∠=︒,则ACD ∠的度数为( )A .48°B .24°C .36°D .72° 10.如图,点A ,B ,C 在O 上,//BC OA ,20A ∠=︒,则B ∠的度数为( )A .10︒B .20︒C .40︒D .50︒ 11.如图,⊙O 是⊙ABC 的外接圆,已知AD 平分⊙BAC 交⊙O 于点D ,连结CD ,延长AC ,BD ,相交于点F.现给出下列结论:⊙若AD=5,BD=2,则DE=25; ⊙ACB DCF ∠=∠;⊙FDA ∆⊙FCB ∆;⊙若直径AG⊙BD 交BD 于点H ,AC=FC=4,DF=3,则cosF=4148; 则正确的结论是( )A .⊙⊙B .⊙⊙⊙C .⊙⊙D .⊙⊙⊙ 12.下列说法中,正确的是( )A .垂直于半径的直线一定是这个圆的切线B .任何三角形有且只有一个内切圆C .所有的正多边形既是轴对称图形也是中心对称图形D .三角形的内心到三角形的三个顶点的距离相等13.如图,ABC 中,30C ∠=,90B ∠=,8AC =,以点A 为圆心,半径为4的圆与BC 的位置关系是( )A .相交B .相离C .相切D .不能确定 14.如图,⊙O 的半径长6cm ,点C 在⊙O 上,弦AB 垂直平分OC 于点D ,则弦AB 的长为( )A .9 cmB .cmC .92 cmD .cm 15.如图,正ABC 的边长为3cm ,边长为1cm 的正RPQ 的顶点R 与点A 重合,点P ,Q 分别在AC ,AB 上,将RPQ 沿着边AB ,BC ,CA 连续翻转(如图所示),直至点P 第一次回到原来的位置,则点P 运动路径的长为( )A .cm πB .2cm πC .3cm πD .6cm π 16.如图,两个半径都为1的圆形纸片,固定⊙O 1,使⊙O 2沿着其边缘滚动回到原来位置后运动终止,则⊙O 2上的点P 运动的路径长为( )A .2πB .4πC .6πD .无法确定 17.下列五个说法:⊙近似数3.60万精确到百分位;⊙三角形的外心一定在三角形的外部;⊙内错角相等;⊙90°的角所对的弦是直径;⊙函数y =x 的取值范围是2x ≥-且1x ≠.其中正确的个数有( )A .0个B .1个C .2个D .3个 18.下列命题正确的有( )A .在同圆或等圆中,等弦所对的弧相等B .圆的两条不是直径的相交弦,不能互相平分C .正多边形的中心是它的对称中心D .各边相等的圆外切多边形是正多边形 19.若扇形的面积是56cm 2,周长是30cm ,则它的半径是( )A .7cmB .8cmC .7cm 或8cmD .15cm 20.如图,在ABC 中,3AB =,6BC =,60ABC ∠=︒,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( )A .3πB 2π-C πD 32π二、填空题21.在圆O 中,弦AB 的长为6,它所对应的弦心距为4,那么半径OA =___. 22.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,如图1,点P 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O 为圆心,5m 为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB 长为8m ,则筒车工作时,盛水桶在水面以下的最大深度为_____m .23.用一个圆心角为90°半径为32cm 的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为___cm .24.如图,一块三角形透明胶片刚好在量角器上的位置,点A 、B 的读数分别是80︒、30︒,则ACB =∠________.25.如图,点I 为ABC 的三个内角的角平分线的交点,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为______.26.已知⊙O 1和⊙O 2的半径长分别为3和4,若⊙O 1和⊙O 2内切,那么圆心距O 1O 2的长等于_____.27.已知一个圆锥的底面半径为5cm ,则这个圆锥的表面积为___________28.如图,在⊙O 中,AB 为直径,CD 为弦,已知⊙BAD=60°,则⊙ACD=______度.29.正十二边形的中心角是_____度.30.如图,A 、D 是半圆O 上的两点,BC 是直径,若⊙D =35°,则⊙AOB =_____°.31.如图,四边形ABCD 内接于O ,1079,,BD CD AB AC ====,则AD 的长为 ___________.32.如图,已知⊙P的半径为1,圆心P在抛物线22=-上运动,当⊙P与x轴相切y x时,圆心P的坐标是___________________.33.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是_____34.如图,AB为⊙O的直径,弦CD⊙AB于点E,若AE=8,BE=2,则CD=_______________.35.如图,已知AB是半圆的直径,且AB=10,弦AC=6,将半圆沿过点A的直线折叠,使点C落在直径AB上的点C′,则折痕AD的长为________.36.一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上.木工师傅想到了一个巧妙的办法,他测量了PQ 与圆洞的切点K 到点B 的距离及相关数据(单位:cm )后,从点N 沿折线NF FM NF BC FM AB -(∥,∥)切割,如图1所示.图2中的矩形EFGH 是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠、无缝隙、不计损耗),则CN AM ,的长分别是_______.37.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,分别以点A 、C 为圆心,OA 长为半径作OE 、OF 交AD 于点E 、BC 于点F .若6AC =,50∠=°ACB ,则阴影部分图形的面积为__________.(结果保留π)38.如图,在直角坐标系中,点A 坐标为(2,0),点B 的坐标为(6,0),以B 点为圆心,2长为半径的圆交x 轴于C 、D 两点,若P 是⊙B 上一动点,连接P A ,以P A 为一直角边作Rt ⊙P AQ ,使得1tan 2APQ ∠=,连接DQ ,则DQ 的最小值为_____39.如图,点O 为以AB 为直径的半圆的圆心,点M ,N 在直径AB 上,点P ,Q 在AB 上,四边形MNPQ 为正方形,点C 在QP 上运动(点C 与点P ,Q 不重合),连接BC 并延长交MQ 的延长P 线于点D ,连接AC 交MQ 于点E ,连接OQ ,则sin⊙AOQ =__________,若圆半径为R ,则DM ·EM =_______.40.已知Rt △ABC 中,⊙A =90°,M 是BC 的中点.如图,(1)以M 为圆心,MB 为半径,作半圆M ;(2)分别B ,C 为圆心,BA ,CA 为半径作弧,两弧交于D 点;(3)连接AM ,AD ,CD ;(4)作线段CD 的中垂线,分别交线段CD 于点F ,半圆M 于点G ,连接GC ;(5)以点..G 为圆心...,线段GC 为半径,作弧.CD .根据以上作图过程及所作图形,下列结论中:⊙点A 在半圆M 上;⊙AC =CD ;⊙弧AC =弧CD ;⊙△ABM ⊙△ACD ;⊙BC =GC ;⊙⊙BAM =⊙CGF .一定正确的是_______.三、解答题41.如图,⊙O 的半径OA 、OB 分别交弦CD 于点E 、F ,且CE =DF .求证:⊙OEF 是等腰三角形.42.如图,Rt ABC 中90BAC ∠=︒,2AE AD AC =⋅,点D 在AC 边上,以CD 为直径画O 与AB 交于点E .(1)求证:AB 是O 的切线;(2)若1==,求BE的长度.AD DO43.如图,AC是⊙O的直径,AD是⊙O的切线.点E在直径AC上,连接ED交⊙O于点B,连接AB,且AB=BD.(1)求证:AB=BE;(2)若⊙O的半径长为5,AB=6,求线段AE的长.44.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4 cm,求球的半径长.45.如图,⊙ABC内接于⊙O,AB=AC,P为⊙O上一动点(P,A分别在直线BC的两侧),连接PC.(1)求证:⊙P=2⊙ABC;(2)若⊙O的半径为2,BC=3,求四边形ABPC面积的最大值.46.如图,AB是⊙O的直径,过点A作⊙O切线AP,点C是射线AP上的动点,连接CO交⊙O于点E,过点B作BD//CO,交⊙O于点D,连接DE、OD、CD.(1)求证:CA=CD;(2)填空:⊙当⊙ACO的度数为时,四边形EOBD是菱形.⊙若BD=m,则当AC=(用含m的式子表示)时,四边形ACDO是正方形.47.如图,已知△ABC为直角三角形,⊙C=90°,边BC是⊙O的切线,切点为D,AB 经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分⊙BAC;(2)若AC=8,tan⊙DAC=34,求⊙O的半径.48.已知A,B,C是⊙O上的三个点,四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(⊙)如图⊙,求⊙ADC的大小;(⊙)如图⊙,经过点O作CD的平行线,与AB交于点E,与AB交于点F,连接AF,求⊙F AB的大小.49.(1)小迪同学在学习圆的内接正多边形时,发现:如图1,若P是圆内接正三角形ABC的外接圆的BC上任一点,则60APB∠=︒,在PA上截取PM PC=,连接MC,可证明MCP∆是_______(填“等腰”、“等边”或“直角”)三角形,从而得到=PC MC,再进一步证明PBC≅_______,得到=PB MA,可证得:.(2)小迪同学对以上推理进行类比研究,发现:如图2,若P是圆内接正四边形ABCD的外接圆的BC上任一点,则APB APD∠=∠=°,分别过点,B D作BM AP⊥于M、⊥DN AP于N.(3)写出,PB PD与PA之间的数量关系,并说明理由.50.某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别切于点A、B,已知⊙CO2D=60°,E、F是直线O1O2与⊙O1、扇形O2CD的两个交点,且EF=24cm,设⊙O1的半径为xcm,(1)用含x的代数式表示扇形O2CD的半径;(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06元/cm2,当⊙O1的半径为多少时,该玩具的制作成本最小?参考答案:1.B【分析】根据“同一条弧所对的圆周角等于它所对的圆心角的一半”求出⊙AOB 的度数,再根据等腰三角形的性质求解即可.【详解】⊙⊙AOB 与⊙C 是同弧所对的圆心角与圆周角,⊙⊙AOB =2⊙C =2×35°=70°,⊙OA =OB ,⊙⊙OAB =⊙OBA =180AOB 2︒-∠=180702︒︒-=55°. 故选:B .【点睛】本题考查的是圆周角定理,掌握圆周角定理及等腰三角形的性质是关键. 2.B【分析】根据圆锥侧面展开图的半圆的周长等于圆锥底面的周长,从而求出底面半径; 【详解】解:由题意,底面圆的周长为:1422ππ⨯⨯=, ⊙底面圆的半径为:212ππ=(cm ), 故选:B【点睛】此题考查立体图形的侧面展开;圆锥的侧面展开图为扇形,扇形的半径为圆锥的母线,扇形的弧长为圆锥的底面周长.3.A【分析】连接BD ,由于点D 是AC 的中点,即CD AD =,根据圆周角定理得ABD CBD ∠=∠,则35ABD ∠=︒,再根据直径所对的圆周角为直角得到90ADB ∠=︒,然后利用三角形内角和定理可计算出BAD ∠的度数.【详解】解:连接BD ,如图,⊙点D 是AC 的中点,即CD AD =,⊙ABD CBD ∠=∠,而70ABC ∠=︒,⊙170352ABD ∠=⨯︒=︒, ⊙AB 是半圆的直径,⊙90ADB ∠=︒,⊙903555BAD ∠=︒-︒=︒.故选:A .【点睛】本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.4.C【详解】⊙点A 、B 、C 都在⊙O 上,⊙ACB =30°,⊙⊙AOB =60°,⊙OA =2,⊙AB =6022=1801803n r πππ⨯=︒ 故选:C .5.B【分析】根据圆内接四边形的对角互补可得答案.【详解】⊙⊙B +⊙D =180°,⊙⊙B =180°﹣65°=115°.故选B .【点睛】本题主要考查了圆内接四边形的性质,关键是掌握圆内接四边形的对角互补. 6.D【分析】根据切线长定理即可求解.【详解】⊙AB 、AC 是O 的两条切线,切点为B 、C ,⊙AO 平分⊙BAC ,⊙∠BAO =12⊙BAC=15°, 故选D.【点睛】此题主要考查圆内角度求解,解题的关键是熟知切线长定理的性质.7.B【分析】根据锐角⊙ABC 内接于⊙O ,BD ⊙AC 于点D ,OM ⊙AB 于点M ,得出sin ⊙CBD =sin ⊙OBM 即可得出答案.【详解】连接AO ,⊙OM⊙AB于点M,AO=BO,⊙⊙AOM=⊙BOM,⊙⊙AOB=2⊙C⊙⊙MOB=⊙C,⊙⊙O的半径为1,锐角⊙ABC内接于⊙O,BD⊙AC于点D,OM=13,⊙sin⊙CBD=sin⊙OBM=13113 MOOB==则sin⊙CBD的值等于13.故选B.【点睛】此题主要考查了垂径定理以及锐角三角函数值和圆周角定理等知识,根据题意得出sin⊙CBD=sin⊙OBM是解决问题的关键.8.A【分析】设等圆⊙A,⊙B外切于O点,如图,利用两圆相切的性质得到O点在AB上,再利用勾股定理计算出AB,则OA=OB=5,然后根据扇形的面积公式,利用S阴影=S△ABC一2S扇形进行计算,即可求解.【详解】解:设两等圆⊙A,⊙B外切于点O,则点O在AB上,⊙⊙C=90°,AC=8,BC=6,⊙10AB,⊙A+⊙B=90°,⊙OA =OB =5,⊙S 阴影=S △ABC -2S 扇形2190525682423604ππ⨯⨯=⨯⨯-=-. 故选:A .【点睛】本题考查了相切两圆的性质:如果两圆相切,那么连心线必经过切点.也考查了勾股定理和扇形面积的计算.9.B【分析】连结OA ,由切线定理和直角三角形性质可得⊙AOB=48°,再由圆周角定理可得⊙ACD=24°.【详解】解:如图,连结OA ,则由切线定义可得:⊙OAB=90°,⊙⊙AOB=90°-⊙ABO=90°-42° =48°,⊙根据圆周角定理可得:⊙ACD=12⊙AOB=24°, 故选B .【点睛】本题考查圆的应用,综合运用圆周角定理、切线的性质定理和直角三角形的性质求解是解题关键.10.C【分析】由//BC OA 得20C A ∠=∠=︒,由圆心角和圆周角的关系得40O ∠=︒,再利用平行线的性质可得结论.【详解】解:如图,⊙//BC OA ,20A ∠=︒⊙20C A ∠=∠=︒⊙240O C ∠=∠=︒//,BC OA⊙40B O ∠=∠=︒故选:C【点睛】此题考查了圆周角定理与平行线的性质.此题难度不大,注意掌握数形结合思想的应用.11.C【详解】试题分析:此题主要考查圆的综合问题,熟悉圆的相关性质,会证明三角形相似并解决相关问题,能灵活运用垂径定理和三角函数是解题的关键.⊙只需证明⊙BDE⊙⊙ADB ,运用对应线段成比例求解即可; ⊙连接CD ,假设⊙ACB=⊙DCF ,推出与题意不符即可判断; ⊙由公共角和同弧所对的圆周角相等即可判断; ⊙先证明⊙FCD⊙⊙FBA ,求出BD 的长度,根据垂径定理求出DH ,结合三角函数即可求解.⊙如图1,⊙AD 平分⊙BAC ,⊙⊙BAD=⊙CAD ,⊙⊙CAD=⊙CBD ,⊙⊙BAD=⊙CBD ,⊙⊙BDE=⊙BDE ,⊙⊙BDE⊙⊙ADB , ⊙BD DE AD BD=, 由AD=5,BD=2,可求DE=45, ⊙不正确;⊙如图2,连接CD ,⊙FCD+⊙ACD=180°,⊙ACD+⊙ABD=180°,⊙⊙FCD=⊙ABD ,若⊙ACB=⊙DCF ,因为⊙ACB=⊙ADB ,则有:⊙ABD=⊙ADB ,与已知不符,故⊙不正确;⊙如图3,⊙⊙F=⊙F,⊙FAD=⊙FBC,⊙⊙FDA⊙⊙FCB;故⊙正确;⊙如图4,连接CD,由⊙知:⊙FCD=⊙ABD,又⊙⊙F=⊙F,⊙⊙FCD⊙⊙FBA,⊙FC FD FB FA=,由AC=FC=4,DF=3,可求:AF=8,FB=323,⊙BD=BF-DF=233,⊙直径AG⊙BD,⊙DH=233,⊙FG=416,⊙cosF=FGAF=4148,故⊙正确.故选C.考点:圆的综合题.12.B【分析】经过半径的外端并且垂直于这条半径的直线是圆的切线,所以A不正确;三角形的内切圆的圆心是三个内角平分线的交点,而交点只有一个,所以B是对的;一个图形绕中心旋转180度能与自身重合则称此图形为中心对称图形,正五边形不是,所以C不正确;三角形的内心是三个内角平分线的交点,根据角平分线上的点的特点,D是错误的.【详解】解:A.经过半径的外端并且垂直于这条半径的直线是圆的切线,故A错误;B.三角形的内切圆的圆心是三个内角平分线的交点,而交点只有一个,故B正确;C.一个图形绕中心旋转180度能与自身重合则称此图形为中心对称图形,正五边形不是,故C错误;D.三角形的内心是三个内角平分线的交点,到三边的距离相等,故D错误.故选B.【点睛】本题考查了圆的切线的判定,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.13.C【分析】由已知条件易求AB的长,和圆的半径4比较大小即可得知与BC的位置关系.【详解】⊙⊙C =30°,⊙B =90°,AC =8,⊙AB =12AC =4. ⊙以点A 为圆心,半径为4画圆,⊙d =r ,即以点A 为圆心,半径为4的圆与BC 的位置关系是相切.故选C .【点睛】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.14.B【分析】弦AB 垂直平分OC 于点D ,得OD=3,由勾股定理得AD ,由垂径定理得AB=2AD ,可得答案.【详解】⊙⊙O 的半径长6cm ,弦AB 垂直平分OC ,⊙OD=3,由勾股定理得:,⊙OC 过O ,OC⊙AB ,⊙AB=2AD=,故选B .【点睛】本题主要考查了垂径定理,勾股定理,利用弦AB 垂直平分OC 得OD 是解答此题的关键.15.B【分析】从图中可以看出在AB 边,翻转的第一次是一个120度的圆心角,半径是1,第二次是以点P 为圆心,所以没有路程,同理在AC 和BC 上也是相同的情况,由此求解即可.【详解】解:从图中可以看出在AB 边,翻转的第一次是一个120度的圆心角,半径是1,所以弧长=1201180⨯π,第二次是以点P 为圆心,所以没有路程,在BC 边上,第一次1201180⨯π,第二次同样没有路程,AC 边上也是如此,点P 运动路径的长为1201180⨯π×3=2π. 故选:B .【点睛】本题主要考查了等边三角形的性质,求弧长,解题的关键在于能够根据题意得到P 点的运动轨迹.16.B【分析】由⊙O 2上的点P 运动的路径长=点O 2运动的路径长可求解.【详解】解:⊙⊙O 2沿着其边缘滚动回到原来位置后运动终止,⊙⊙O 2上的点P 运动的路径长=点O 2运动的路径长,⊙⊙O 2上的点P 运动的路径长=2π(1+1)=4π故选:B .【点睛】本题考查了轨迹问题,掌握⊙O 2上的点P 运动的路径长=点O 2运动的路径长是本题的关键.17.B【分析】根据近似数3.60万精确到百位可判断⊙,根据三角形的外心是三角形外接圆的圆心,是三角形三边中垂线的交点,锐角三角形在形内,直角三角形在斜边中点上,钝角三角形在形外可判断⊙,根据两直线平行,内错角相等可判断⊙; 90°的圆周角性质可判断⊙,函数y =0,可判断⊙即可得出答案.【详解】解:⊙近似数3.60万精确到百位,故⊙近似数3.60万精确到百分位错误; ⊙三角形的外心是三角形外接圆的圆心,是三角形三边中垂线的交点,锐角三角形在形内,直角三角形在斜边中点上,钝角三角形在形外,故⊙三角形的外心一定在三角形的外部错误;⊙两直线平行,内错角相等;故⊙内错角相等错误;⊙90°的圆周角性质是90°的圆周角所对的弦是直径,故⊙90°的角所对的弦是直径不正确;;⊙函数y = 2010x x +≥⎧⎨-≠⎩, 解得2x ≥-且1x ≠,⊙函数y =x 的取值范围是2x ≥-且1x ≠正确. 正确的个数有一个⊙.故选择:B .【点睛】本题考查基本技能,精确度,三角形外心,内错角,90°圆周角的性质,函数的自变量取值范围,熟练掌握精确度,三角形外心,内错角,90°圆周角的性质,函数的自变量取值范围是解题关键.18.B【分析】根据垂径定理和正多边形的相关知识判断.【详解】解:A 、错误.因为一条弦对应着两条弧;B 、正确.只有垂直于弦的直径才能平分弦;C 、错误.正多边形的中心是它的外接圆的圆心;D 、错误.各边相等的圆外切多边形不一定是正多边形,因为角不一定相等.故选:B.【点睛】本题比较复杂,涉及到垂径定理,圆心角、弧、弦的关系,正多边形和圆的关系,是中学阶段的难点.19.C【分析】设扇形的半径为Rcm ,求出扇形的弧长为(30-2R )cm ,根据扇形的面积是56cm 2得出12R (30-2R )=56,求出即可. 【详解】解:设扇形的半径为R ,⊙扇形周长是30cm ,⊙扇形的弧长为(30-2R )cm ,⊙扇形的面积是56cm 2, ⊙12R (30-2R )=56,解得:R=7或8,故答案为C .【点睛】本题考查了扇形的面积的有关应用,注意:扇形的面积等于弧和半径积的一半. 20.D【分析】连接AD ,根据等边三角形的性质得到3AD AB ==,60ADB ∠=︒,根据勾股定理得到AC =【详解】解:连接AD ,3AB BD ==,60ABC ∠=︒,ABD ∴是等边三角形,3AD AB ∴==,60ADB ∠=︒,6BC =,3CD ∴=,AD CD ∴=,C CAD ∴∠=∠,60C CAD ADB ∠+∠=∠=︒,30C ∴∠=︒,90BAC ∴∠=︒,AC ∴=∴图中阴影部分的面积2160313332360222AB AC πππ⋅⨯=⋅-=⨯⨯=, 故选:D .【点睛】本题考查了扇形面积公式,等边三角形的判定和性质,直角三角形的性质,勾股定理,推出ABD △是等边三角形是解题的关键.21.5【详解】如图,OC 是弦AB 的弦心距,⊙AC =116322AB =⨯=,⊙5OA =.22.2【分析】过O 点作半径OD⊙AB 于E ,如图,由垂径定理得到AE =BE =4,再利用勾股定理计算出OE ,然后即可计算出DE 的长.【详解】解:过O 点作半径OD⊙AB 于E ,如图,⊙AE =BE =12AB =12×8=4,在Rt⊙AEO 中,OE 3,⊙ED =OD ﹣OE =5﹣3=2(m ),答:筒车工作时,盛水桶在水面以下的最大深度为2m .故答案为:2.【点睛】本题考查了垂径定理,垂直于弦的直径平分弦,并且平分弦所对的两条弧,能熟练运用垂径定理是解题的关键.23.8【详解】试题分析:⊙扇形的圆心角为90°半径为32cm ,⊙根据扇形的弧长公式,扇形的弧长为()9032=16cm 180ππ⋅⋅. ⊙圆锥的底面周长等于它的侧面展开图的弧长,⊙根据圆的周长公式,得2r=16ππ,解得()r=8cm .24.25°【分析】首先设半圆的圆心为O ,连接OA ,OB ,由A 点的读数为80°,B 点的读数为30°,即可求得圆心角⊙AOB 的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得⊙ACB 的大小.【详解】解:设半圆的圆心为O ,连接OA ,OB ,⊙A 点的读数为80°,B 点的读数为30°,⊙⊙AOB=80°-30°=50°, ⊙⊙ACB=12⊙AOB=25°.故答案为:25°.【点睛】此题考查了圆周角定理.此题难度不大,正确的作出辅助线是解题的关键.25.4【分析】连接AI,BI,由点I为⊙ABC的内心,得到AI平分⊙CAB,根据角平分线的定义得到⊙CAI=⊙BAI.根据平移的性质得到AC⊙DI,由平行线的性质和等角对等边得到AD=DI,BE=EI,根据三角形的周长公式进行计算即可得到答案.【详解】解:连接AI,BI,⊙点I为⊙ABC的内心,⊙AI平分⊙CAB,⊙⊙CAI=⊙BAI.由平移得:AC⊙DI,⊙⊙CAI=⊙AID.⊙⊙BAI=⊙AID,⊙AD=DI.同理可得:BE=EI,⊙⊙DIE的周长=DE+DI+EI=DE+AD+BE=AB,因为4AB ,即图中阴影部分的周长为4.故答案为:4.【点睛】本题考查角平分线的定义、平移的性质、等腰三角形的判定和平行线的性质,解题的关键是掌握角平分线的定义、平移的性质和平行线的性质和等角对等边.26.1【分析】根据两圆内切,圆心距等于半径之差.【详解】解:⊙⊙O1和⊙O2的半径长分别为3和4,⊙O1和⊙O2内切,⊙圆心距O1O2的长=4﹣3=1,故答案为:1.【点睛】本题考查了圆与圆的位置关系,掌握圆与圆之间的位置关系是解题的关键.27.255cmπ【分析】首先求得底面的周长、面积,利用勾股定理求得圆锥的母线长,然后利用扇形的面积公式即可求得圆锥的侧面积,加上底面面积就是表面积.【详解】解:底面周长是2×5π=10πcm,底面积是:5²π=25πcm².(cm),则圆锥的侧面积是:12×10π×6=30π(cm²),则圆锥的表面积为25π+30π=55π(cm²).故答案为:255cmπ.【点睛】本题考查了圆锥的计算,勾股定理,圆的面积公式,圆的周长公式和扇形面积公式求解.注意圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2的应用.28.30【分析】由在⊙O中,AB为直径,根据直径所对的圆周角是直角,可求得⊙ADB=90°,又由圆周角定理,可求得⊙ACD=⊙B=90°-⊙BAD,继而求得答案.【详解】⊙在⊙O中,AB为直径,⊙⊙ADB=90°,⊙⊙ACD=⊙B=90°-⊙BAD=30°,故答案为:30.【点睛】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角.29.30【分析】根据正多边形的中心角公式:360n计算即可【详解】正十二边形的中心角是:360°÷12=30°.故答案为30.【点睛】本题的关键是掌握正多边形中心角的计算公式30.70【分析】根据圆周角定理即可求出.【详解】⊙⊙D =35°,⊙⊙AOB =2⊙D =70°,故答案为70【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧所对的圆心角是圆周角的2倍.31【分析】过点A 作AF BD ⊥,垂足为F ,过点A 作AE CD ⊥,交CD 的延长线于点E ,根据已知易证ADB ADE ∠=∠,从而证明证明AFD AED △≌△,可得,DF DE AF AE ==,然后再证明Rt Rt BAF CAE ≌,可得BF CE =,最后进行计算即可求出DF ,从而求出,,BF AF AD ,即可解答.【详解】解:过点A 作.AF BD ⊥,垂足为F ,过点A 作AE CD ⊥,交CD 的延长线于点E ,⊙AB AC =,⊙ABC ACB ∠=,⊙四边形ABCD 是圆内接四边形,⊙180ABC ADC ∠+∠=︒,⊙180ADC ADE ∠+∠=︒,⊙ABC ADE ∠=∠,⊙ADB ACB ∠=∠,⊙ADB ADE ∠=∠,⊙90,AFD AED AD AD ∠=∠=︒=,⊙(AAS)AFD AED ≌,⊙.,DF DE AF AE ==,⊙90AFB AEC ∠=∠=︒,⊙Rt Rt (HL)BAF CAE ≌,⊙.BF CE =,⊙BD DF CD DE -=+,⊙107DF DE -=+, ⊙32DF DE ==, ⊙3171022BF BD DF =-=-=,⊙AF ===⊙AD = ⊙AD【点睛】本题考查了全等三角形的判定与性质,圆内接四边形的性质,勾股定理,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.32.或(或(1,-1)或(1,-1)-【分析】根据圆与直线的位置关系可知,当⊙P 与x 轴相切时,P 点的纵坐标为1或-1,把1或-1代入到抛物线的解析式中求出横坐标即可.【详解】⊙⊙P 的半径为1,⊙当⊙P 与x 轴相切时,P 点的纵坐标为1或-1.当1y =时,221y x =-=,解得x =,⊙此时P 的坐标为或(;当1y =-时,221y x =-=-,解得1x =± ,⊙此时P 的坐标为(1,1)-或(1,1)--;故答案为:或(或(1,-1)或(1,-1)-.【点睛】本题主要考查直线与圆的位置关系和已知函数值求自变量,根据圆与x 轴相切找到点P的纵坐标的值是解题的关键.33.(﹣2,﹣1)【分析】根据外心的定义作图即可.【详解】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.⊙点A的坐标为(﹣3,2),⊙点O的坐标为(﹣2,﹣1).【点睛】本题考查了三角形外心,熟练掌握外心的定义,准确求作线段的垂直平分线是解题的关键.34.8【详解】连接OC,因为AE=8,BE=2,所以AB=10,则OB=12AB=5,所以OE=OB-BE=5-2=3,在Rt⊙OEC中,由勾股定理可得:CE4=,则CD=8,故答案为:8.35.【详解】解:设圆的圆心是O,连接OD,作DE⊙AB于E,OF⊙AC于F.根据题意知,⊙OF⊙AC,⊙AF=12AC=3,⊙⊙CAD=⊙BAD,⊙CD BD=,⊙点D是弧BC的中点.⊙⊙DOB=⊙OAC=2⊙BAD,在⊙AOF和⊙OED中,⊙⊙OFA=⊙OED,⊙FAO=⊙EDO,AO=DO,⊙⊙AOF⊙⊙OED(AAS),⊙OE=AF=3,⊙DO=5,⊙DE=4,=故答案为【点睛】本题考查翻折变换(折叠问题);勾股定理.36.18cm , 31cm .【分析】如图,延长OK 交线段MF 于点1M ,延长PQ 交BC 于点G ,交FN 于点2N ,设圆孔半径为r .根据勾股定理,得222BH KH BK +=.从而得16r =.根据题意知,12111122ON KN AB OM KM r CB ===+=,.则根据图中相关线段间的和差关系求得CN =QH -QN 2=44-26=18, AM =BC -PD -KM 1=130-50-49=31 ( cm).【详解】解:作辅助线如图所示,设圆孔半径为r ,根据勾股定理,得222BH KH BK +=.⊙()()2221305044100r -++=, 16r ∴=.按题意要求,切割后,以圆O 为中心,到两对边的距离相等, 即:12111122ON KN AB OM KM r CB ===+=,. ⊙21422KN AB ==, ⊙ QN 2+r =42,即QN 2=42-16=26.⊙CN =QH -QN 2=44-26=18.又⊙112KM r CB +=,即 11161302KM +=⨯, ⊙ KM 1=49.⊙AM =BC -PD -KM 1=130-50-49=31.⊙CN =18cm ,AM =31cm .故答案为:18cm ,31cm【点睛】本题考查了矩形、直角三角形及圆等相关知识,将实际问题转化为数学问题经验,利用图形变换思想是解题的关键,体现了数学思想方法在现实问题中的应用价值. 37.52π 【分析】每个扇形的圆心角是50°,半径为3,根据扇形面积计算公式计算即可.【详解】⊙菱形ABCD,⊙AD∥BC,OA=OC=12AC=3,⊙⊙ACB=⊙EAO=50°,⊙阴影部分的面积为50952=3602ππ⨯⨯⨯,故答案为:52π.【点睛】本题考查了菱形的性质,扇形的面积公式,熟练掌握菱形的性质,灵活运用扇形面积公式是解题的关键.38.1##1-+【分析】由题意根据“瓜豆原理-主从联动”可得Q的点轨迹也是一个圆,找到此圆即可解决问题.【详解】解:如图,取点M(2,-2),连接AM,MQ、PB,⊙⊙MAB=⊙QAP=90°,⊙⊙MAQ=⊙BAP,⊙12 AM AQAB AP==,⊙⊙MAQ⊙⊙BAP,⊙MQ=12PB=1,⊙Q点在以M为圆心,以1为半径的圆上,由图象可得:DQ的最小值为:DM-MQ,AD=OD-OA=6+2-2=6,由勾股定理可得:DM =⊙DQ 的最小值等于:故答案为:.【点睛】本题考查轨迹圆问题,熟悉掌握利用相似三角形的性质解决动点的轨迹是快速解题的关键.39. 245R 【分析】利用全等三角形的性质证明OM =ON ,设OM =ON =m ,则MQ =2m ,求出OQ ,可得结论. 再证明⊙AME ⊙⊙DMB ,可得AM EM DM BM,由此构建关系式,可得结论. 【详解】解:如图,连接OP .⊙四边形MNPQ 是正方形,⊙⊙OMQ =⊙ONP =90°,MQ =PN ,⊙OQ =OP ,⊙Rt ⊙OMQ ⊙Rt ⊙ONP (HL ),⊙OM =ON , 设OM =ON =m ,则MQ =2m ,225OQOM MQ m , ⊙sin⊙AOQ =22555MQ m OQ m . ⊙AB =2R ,⊙OA =OB =OQ =R ,⊙QM =2MO , ⊙525sin ,55R R OM OQ AOQ MQ ,55555,,555RAM R R BM R⊙AB 是直径,⊙⊙ACB =⊙DCE =90°,⊙⊙CED =⊙AEM ,⊙⊙A =⊙D ,⊙⊙AME =⊙DMB =90°,⊙⊙AME ⊙⊙DMB ,⊙ AM EM DM BM, 255554.555R DM EMR R245R 【点睛】本题考查了圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.40.⊙⊙【分析】根据圆周角定理,弧、弦、圆心角的关系定理,相似三角形的判定方法,以及其他与圆有关的性质及定理即可判断.【详解】⊙由作图可知,以M 为圆心,BC 为直径的半圆是Rt⊙ABC 的外接圆, ⊙⊙BAC=90°,⊙⊙BAC 是直径所对的圆周角,⊙点A 在半圆M 上,故⊙正确;⊙由分别以B ,C 为圆心,BA ,CA 为半径作弧,两弧交于点D 可知,CA 、CD 是以圆C 的半径,⊙AC=CD ,故⊙正确; ⊙⊙AC 在以M 为圆心、BM 为半径的圆中,CD 在以G 为圆心,以CG 为半径的圆中, ⊙AC CD ,故⊙错误;。

初中数学圆专项练习一

初中数学圆专项练习一

绝密★启用前初中数学圆专项练习一第I卷(选择题)请点击修改第I卷的文字说明一、选择题(题型注释)1.如图,以PQ=2r(r∈Q)为直径的圆与一个以R(R∈Q)为半径的圆相切于点P.正方形ABCD的顶点A、B在大圆上,小圆在正方形的外部且与边CD切于点Q.若正方形的边长为有理数,则R、r的值可能是( ).(A)R=5,r=2 (B)R=4,r=3/2(C)R=4,r=2 (D)R=5,r=3/22.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,⊙O是内切圆,E,F,D分别为切点,则tan∠OBD的值(A(B(C(D3.在半径为R的圆中,垂直平分半径的弦长等于A B C D4.在平面直角坐标系中,半径为5的⊙O与x轴交于A(-2,0),B(4,0),则圆心点M的坐标为5.如图,已知圆的半径是5,弦AB的长是6,则弦AB的弦心距是()A.3 B.4 C.5 D.86.如图,AB是半圆O的直径,点P从点O出发,沿线段OA—弧AB—线段OB的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是()7.如图,AB 是O ⊙的直径,AD 是O ⊙的切线,点C 在O ⊙上,BC OD ∥,23AB OD ==,,则BC 的长为( )A C8.如图,E ,B ,A ,F 四点共线,点D 是正三角形ABC 的边AC 的中点,点P 是直线AB上异于A ,B 的一个动点,且满足30CPD ∠=︒,则 ( )A .点P 一定在射线BE 上B .点P一定在线段AB 上 C .点P可以在射线AF 上 ,也可以在线段AB 上 D.点P 可以在射线BE 上,也可以在线段AB 上9.如图,顺次连结圆内接矩形各边的中点,得到菱形ABCD ,若BD=10,DF =4,则菱形ABCD 的边长为( ) (C)6. (D)9.A .B .C .D .第II卷(非选择题)请点击修改第II卷的文字说明二、填空题(题型注释)10.如图,过D、A、C三点的圆的圆心为E,过B、E、F三点的圆的圆心为D,如果∠A=63 º,那么∠B= .11.如图,在以O为圆心的两个同心圆图2中,MN为大圆的直径,交小圆于点P、Q,大圆的弦MC交小圆于点A、B.若OM=2,OP= 1,MA=AB=BC,则△MBQ的面积为 .12.如图,边长为1的菱形ABCD的两个顶点B、C恰好落在扇形AEF的 EF上时, BC的长度等于(结果保留π).13.已知⊙O1与⊙O2的半径1r、2r分别是方程2680x x-+=的两实根,若⊙O1与⊙O2的圆心距d=5.则⊙O1与⊙O2的位置关系是___ _14.在直角三角形中,若两条直角边长分别为6cm和8cm,则三角形的内切圆半径与外接圆半径之比为.15.如图,⊙O的半径为5,圆心O到弦AB的距离为3,则圆上到弦AB所在的直线距离为2的点有_________个。

初中数学圆形专题训练50题含(参考答案)

初中数学圆形专题训练50题含(参考答案)

初中数学圆形专题训练50题含参考答案一、单选题1.如图,A ,B ,C 是⊙O 上的三点,且⊙ACB =35°,则⊙AOB 的度数是( )A .35°B .65°C .70°D .90°【答案】C 【分析】根据圆周角定理即可得.【详解】解:由圆周角定理得:223570AOB ACB ∠=∠=⨯︒=︒,故选:C .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.2.如图,在半径为R 的圆内作一个内接正方形,⊙然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n 个内切圆,它的半径是( )A .RB .(12)RC .(12)n -1RD .n R3.如图,在ABC中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是()A.AD BD AB+<B.AD一定经过ABC的重心C.BAD CAD∠=∠D.AD一定经过ABC的外心【答案】C【分析】根据题意易得AD平分⊙BAC,然后根据三角形的重心、外心及三边关系可排除选项.【详解】解:⊙AD平分⊙BAC,⊙BAD CAD∠=∠,故C正确;在⊙ABD中,由三角形三边关系可得AD BD AB+>,故A错误;由三角形的重心可知是由三角形三条中线的交点,所以AD不一定经过ABC的重心,故B选项错误;由三角形的外心可知是由三角形三条边的中垂线的交点,所以AD不一定经过ABC的外心,故D选项错误;故选C.【点睛】本题主要考查三角形的重心、外心及角平分线的尺规作图,熟练掌握三角形的重心、外心及角平分线的尺规作图是解题的关键.4.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若⊙D=40°,则⊙A的度数为()A.20°B.25°C.30°D.40°【点睛】此题主要考查了切线的性质,正确得出⊙DOC =50°是解题关键.5.如图,点A ,B ,C 在圆O 上,65∠=︒ABO ,则ACB ∠的度数是( )A .50︒B .25︒C .35︒D .20︒6.如图4,在Rt ABC △中,90C =∠,3AC =.将其绕B 点顺时针旋转一周,则分别以BA ,BC 为半径的圆形成一圆环.该圆环的面积为( )AB .3πC .3πD .3π 【答案】C 【分析】根据勾股定理,得两圆的半径的平方差即是AC 的平方.再根据圆环的面积计算方法:大圆的面积减去小圆的面积,即9π.【详解】解:圆环的面积为πAB 2-πBC 2,=π(AB 2-BC 2),=πAC 2,=32π,=9π.故选C.7.已知水平放置半径为6cm的球形容器中装有溶液,容器内液面的面积为27πcm2,如图,是该球体的一个最大纵截面,则该截面O中阴影部分的弧长为()A.2πcm B.4πcm C.6πcm D.8πcm意,灵活运用所学知识解决问题,属于中考常考题型.8.如图,点A,B,C都在圆O上,若⊙C=34°,则⊙AOB为()A.34⊙B.56⊙C.60⊙D.68⊙【答案】D【分析】由题意直接根据圆周角定理中同圆同弧所对的圆周角等于这条弧所对的圆心角的一半进行分析即可求解.【详解】解:⊙⊙C=34°,⊙⊙AOB=2⊙C=68°.故选:D.【点睛】本题考查圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.9.下列命题中,真命题的个数是()⊙同位角相等⊙经过一点有且只有一条直线与这条直线平行⊙长度相等的弧是等弧⊙顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个【答案】A【详解】解:两直线平行,同位角相等,⊙错误;经过直线外一点有且只有一条直线与这条直线平行,⊙错误;在同圆或等圆中,长度相等的弧是等弧,⊙错误;顺次连接菱形各边中点得到的四边形是矩形,⊙正确.故选A.【点睛】本题考查命题与定理.10.AB是⊙O的直径,PB、PC分别切⊙O于点B、C,弦CD AB∥,若PB=AB=10,则CD的长为()A .6B C .D .3 OCF CPE ,四边形12BE OF OF ==,【详解】解:过点⊙OCF CPE , OF OC CE PC =, PB 、PC 分别切⊙O PB PC =,10PB AB ==,11.如图,AB 是O 的直径,ACD 是O 的内接三角形,若6AB =,105ADC ∠=︒,则BC 的长为( )A .8πB .4πC .2πD .π【答案】C【分析】连接OC 、BC ,根据四边形ABCD 是圆的内接四边形和⊙D 的度数,即可求出303602π=,【点睛】本题考查了圆内接四边形的性质、圆周角定理以及弧长公式等知识,根据圆12.将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD 与直尺的一边重合,光盘与直尺相切于点B ,与直角三角板相切于点C ,且3AB =,则光盘的直径是( )A .6B .C .3D .【答案】D13.如图,正五边形ABCDE,则⊙DAC的度数为()A.30°B.36°C.60°D.72°【答案】B【分析】根据正五边形和等腰三角形的性质即可得到结论.【详解】⊙在正五边形ABCDE中,AE=DE=AB=BC,⊙E=⊙B=⊙EAB=108°,⊙⊙EAD=⊙BAC=36°,⊙⊙DAC=108°﹣36°﹣36°=36°,故选:B.【点睛】此题考查正多边形和圆,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.14.菱形对角线的交点为O,以O为圆心,以O到菱形一边的距离为半径的圆与其他几边的关系为()A.相交B.相切C.相离D.不能确定【答案】B【分析】首先根据菱形的性质可知:菱形的对角线将菱形分成四个全等的直角三角形,故四个三角形面积相等且斜边相等,然后根据等面积法得出斜边的高相等,这样问题就容易解决了.【详解】如图:⊙菱形对角线互相垂直平分,⊙AO=CO,BO=DO,AB=BC=CD=DA.⊙⊙ABO⊙⊙BCO⊙⊙CDO⊙⊙DAO.⊙⊙ABO、△BCO、△CDO、△DAO的面积相等.又⊙AB=BC=CD=DA,⊙⊙ABO、△BCO、△CDO、△DAO斜边上的高相等.即O到AB、BC、CD、DA的距离相等.⊙O到菱形一边的距离为半径的圆与另三边的位置关系是相切.故选B..【点睛】本题考查了直线与圆的位置关系,解题的关键是画出图形进行分析.15.如图,已知AB是⊙O的直径,弦CD⊙AB于点E,G是弧AB的中点,连接AD,AG ,CD ,则下列结论不一定成立的是( )A .CE =DEB .⊙ADG =⊙GABC .⊙AGD =⊙ADC D .⊙GDC =⊙BAD 【答案】D 【详解】⊙AB 是⊙O 的直径,弦CD ⊙AB ,⊙CE =DE ,A 成立;⊙G 是AB 的中点,⊙AG BG =,⊙⊙ADG =⊙GAB ,B 成立;⊙AB 是⊙O 的直径,弦CD ⊙AB ,⊙AC AD =,⊙⊙AGD =⊙ADC ,C 成立;⊙GDC =⊙BAD 不成立,D 不成立,故选D .16.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m OA =, 1.5m OB =,则阴影部分的面积为( )A .24.25m πB .23.25m πC .23m πD .22.25m π【答案】D 【分析】根据S 阴影=S 扇形AOD -S 扇形BOC 求解即可.17.下列命题为真命题的是( )A .同旁内角互补B .三角形的外心是三条内角平分线的交点C .平行于同一条直线的两条直线平行D .若甲、乙两组数据中,20.8S =甲,2 1.4S =乙,则乙组数据较稳定【答案】C【分析】根据平行线的性质和判定,三角形的外心性质,方差一一判断即可.【详解】解:A 、两平行线被第三直线所截,同旁内角互补,原命题是假命题,不符合题意;B 、三角形的外心是三条边垂直平分线的交点,原命题是假命题,不符合题意;C 、平行于同一条直线的两条直线平行,是真命题,符合题意;D 、若甲、乙两组数据的平均数都是3,S 甲2=0.8,S 乙2=1.4,则甲组数据较稳定,原命题是假命题,不符合题意;故选:C .【点睛】考查了命题与定理的知识,解题的关键是根据平行线的性质和判定,三角形的外心性质,方差解答.18.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D ,E 两点,且⊙ACD=45°,DF⊙AB 于点F ,EG⊙AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )A.B.C.D.19.如图,AB为⊙O的直径,AB=AC,AC交⊙O于点E,BC交⊙O于点D,F为CE 的中点,连接DF.给出以下四个结论:⊙BD=DC;⊙AD=2DF;⊙BD DE;⊙DF是⊙O的切线.其中正确结论的个数是:()A.4B.3C.2D.1【答案】B【详解】连接AD,OD,⊙AB是直径,⊙⊙ADB=⊙AEB=90°,又⊙AB=AC,⊙BD=DC,故⊙正确;⊙F是CE中点,BD=CD,⊙BE//DF,BE=2DF,但没有办法证明AD与BE相等,故⊙错误;⊙AB=AC,BD=CD,⊙⊙BAD=⊙CAD,⊙BD=DE,⊙BD=DE,故⊙正确;⊙⊙AEB=90°,⊙⊙BEC=180°-⊙AEB=90°,⊙BE//DF,⊙⊙DFC=⊙BEC=90°,⊙O为AB的中点,D为BC的中点,⊙OD//AC,⊙⊙ODF=⊙DFC=90°,⊙OD是半径,⊙DF是⊙O的切线,故⊙正确,所以正确的结论有3个,故选B.【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质、三角形的中位线等,能根据具体的图形选择和灵活运用相关性质解题是关键.二、填空题20.如图,若正五边形和正六边形有一边重合,则⊙BAC=_____.【答案】132°##132度【详解】解:⊙正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,⊙⊙BAC=360°-108°-120°=132°.故答案为132°.21.已知直角⊙ABC中,⊙C=90°,BC=3,AC=4,那么它的内切圆半径为_______.【答案】1【分析】O分别与BC、AC、AB切于点D、E、F,连接OD、OE、OF,由切线的性质可得:⊙ODC=⊙OEC=90°,设OD=OE=r根据正方形的判定即可证出四边形OECD是正方形,从而得出:EC=CD=OD=OE=r,再根据切线长定理可得:BF=BD =3-r,AF=AE =4-r,再根据勾股定理求出AB,利用AB的长列方程即可.【详解】解:如图所示,O分别与BC、AC、AB切于点D、E、F,连接OD、OE、OF⊙⊙ODC=⊙OEC=90°22.如图,AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,BE =4,CG =6,则BC =_______.【答案】10【分析】从圆外一点可以引圆的两条切线,它们的切线长相等,据此分析解答.【详解】⊙AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,BE =4,CG =6,⊙BF =BE =4,CF =CG =6,⊙BC =BF +FC =10,故填:10.【点睛】此题主要是综合运用了切线长定理和切线的性质定理.23.若一个扇形的圆心角为60︒,面积为26cm π,则这个扇形的弧长为__________ cm(结果保留π)24.如图,在O 中,弦AC =B 是圆上一点,且=45ABC ∠︒,则O 的半径R =_____.25.如图,⊙O 的内接四边形ABCD 中,⊙A =45°,则⊙C 的度数 _____________ .【答案】135°【分析】根据圆内接四边形的对角互补可得结论.【详解】∵⊙O的内接四边形ABCD中,⊙A=45°,⊙⊙C=135°.故答案为135°.【点睛】本题考查了圆内接四边形,关键是掌握圆内接四边形的性质:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).26.如图,四边形ABCD内接于⊙O,E是BC延长线上一点,若⊙BAD=105°,则⊙DCE的度数是________°.【答案】105【详解】⊙四边形ABCD是圆内接四边形,⊙⊙DAB+⊙DCB=180°,⊙⊙BAD=105°,⊙⊙DCB=180°﹣⊙DAB=180°﹣105°=75°,⊙⊙DCB+⊙DCE=180°,⊙⊙DCE=⊙DAB=105°.故答案为10527.如图,圆O的半径OA=5cm,弦AB=8cm,点P为弦AB上一动点,则点P到圆心O的最短距离是____cm.【答案】3【分析】由当OP⊙AB时,OP最短,根据垂径定理,可求得AP的长,然后由勾股定28.如图,在矩形ABCD 中,AB a ,BC b =,点P 是BC 上的一个动点,连接AP ,把PAB 沿着AP 翻折到⊙PB C '(点B '在矩形的内部),连接B C ',B D '.点P 在整个运动过程中,若存在唯一的位置使得⊙B CD 为直角三角形,则a ,b 之间的数量关系是 __.为直径作O ,当点为直角三角形且唯一,在Rt ADO 中,根据22OD OA ,可得,计算可得答案. 为直径作O ,当点到O 的最小距离等于得B CD '为直角三角形且唯一,Rt ADO 中,2AD OD +22211())22b a a +=+,整理得22b =,a>,∴=2b29.尺规作图特有的魅力曾使无数人沉湎其中,传说拿破仑通过下列尺规作图考他的大臣:⊙将半径2的⊙O六等分,依次得到A,B,C,D,E,F六个分点;⊙分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;⊙连结OG.问:OG的长是多少?大臣给出的正确答案是_________2222OA,(23)222.【点睛】本题考查了圆周角定理,等腰三角形三线合一的性质以及勾股定理解直角三30.半径为O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若⊙OBD是直角三角形,则弦BC的长为_______________.31.如图,P A,PB是⊙O的切线,A,B是切点,点C是⊙O上异于A、B的一点,若⊙P=40°,则⊙ACB的度数为_________________.【答案】110°【分析】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APBO中,根据四边形的内角和求出⊙AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出⊙ADB的度数,再根据圆内接四边形的对角互补即可求出⊙ACB的度数.【详解】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示:⊙PA、PB是⊙O的切线,⊙OA⊙AP,OB⊙BP,⊙⊙OAP=⊙OBP=90°,又⊙⊙P=40°,⊙⊙AOB=360°-(⊙OAP+⊙OBP+⊙P)=140°,32.如图,矩形ABCD 中,6AB =,9BC =.将矩形沿EF 折叠,使点A 落在CD 边中点M 处,点B 落在N 处.连接EM ,以矩形对称中心O 为圆心的圆与EM 相切于点P ,则圆的半径为________.33.如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则AMN周长的最小值为________.34.如图所示,在⊙O 中,AB 是⊙O 的直径,⊙ACB 的角平分线CD 交⊙O 于D ,则⊙ABD=_________ 度.【答案】45.【详解】试题解析:⊙CD 平分⊙ACB⊙⊙ACD=⊙BCD=45°⊙⊙ABD=⊙ACD=45°.考点:圆周角定理.35.如图,在平面直接坐标系xOy 中,()40A ,,()03B ,,()43C ,,I 是ABC ∆的内心,将ABC ∆绕原点逆时针旋转90°后,I 的对应点'I 的坐标为________.【答案】(-2,3)【分析】直接利用直角三角形的性质得出其内切圆半径,进而得出I点坐标,再利用旋转的性质得出对应点坐标.【详解】解:过点作IF⊙AC于点F,IE⊙OA于点E,⊙A(4,0),B(0,3),C(4,3),⊙BC=4,AC=3,则AB=5,⊙I是⊙ABC的内心,⊙I到⊙ABC各边距离相等,等于其内切圆的半径,⊙IF=1,故I到BC的距离也为1,则AE=1,故IE=3-1=2,OE=4-1=3,则I(3,2),⊙⊙ABC绕原点逆时针旋转90°,⊙I的对应点I'的坐标为:(-2,3).故答案为:(-2,3).【点睛】此题主要考查了旋转的性质以及直角三角形的性质,得出其内切圆半径是解题关键.36.一个半径为4cm的圆内接正六边形的面积等于_______cm2.S=ABC⊙内接正六边形的面积是故答案是:37.圆心角为40°,半径为2的扇形面积为________.38.如图,在半圆O中,直径AE=10,四边形ABCD是平行四边形,且顶点A、B、C在半圆上,点D在直径AE上,连接CE,若AD=8,则CE长为_____【答案】【详解】连接OC,过O点作BC垂线,设垂足为F,根据垂径定理、勾股定理可以得到OC=5,CF=4,OF=3,在等腰三角形CDE中,高=OF=3,底边长DE=10-8=2,根据勾股定理即可求出CE.解:连接OC,过O点作OF⊙BC,垂足为F,交半圆与点H,⊙OC=5,BC=8,⊙根据垂径定理CF=4,点H为弧BC的中点,且为半圆AE的中点,⊙由勾股定理得OF=3,且弧AB=弧CE⊙AB=CE,又⊙ABCD为平行四边形,⊙AB=CD,⊙CE=CD,⊙⊙CDE为等腰三角形,在等腰三角形CDE中,DE边上的高CM=OF=3,⊙DE=10-8=2,⊙由勾股定理得,CE2=OF2+(DE)2,⊙CE=,故答案为.本题考查了勾股定理和垂径定理以及平行四边形的性质,是基础知识要熟练掌握.39.如图,⊙O是⊙ABC的外接圆,连接OB、OC,若OB=BC,则⊙BAC的度数是_____.三、解答题40.如图,AB是⊙O的直径,C是半圆上的一点,CD是⊙O的切线,AD⊙CD于点D,交⊙O于点E.(1)求证:AC平分⊙DAB;(2)若点E为弧AC的中点,⊙O的半径为1,求图中阴影部分的面积.41.如图,AB是⊙O的直径,点C、E位于⊙O上AB两侧.在BA的延长线上取点D,使⊙ACD=⊙B.(1)求证:DC是⊙O的切线;(2)当BC=EC时,求证:AC2=AE•AD;(3)在(2)的条件下,若BC=AD:AE=5:9,求⊙O的半径.【点睛】本题考查了切线的判定,圆周角定理,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.42.如图,已知、是⊙的切线,、为切点.直径的延长线与的延长线交于点.(1)求证:;(2)若,.求图中阴影部分的面积(结果保留根号与).【答案】(1)证明见解析;(2).【详解】试题分析:(1)连接,根据是⊙的切线,由切线长定理得到AP=BP,OP平分⊙APB,根据等腰三角形的性质三线合一得到OP⊙AB,再根据AC是⊙O的直径,得到⊙ABC=90°,即AB⊙BC,BC⊙OB,得到内错角相等,由等量代换得到结果.(2)根据切线长定理和三角形全等,S△OPA=S△OPB,通过解直角三角形得到OB,PB,再根据三角形的面积和扇形的面积推出结论.试题解析:(1)证明:连接. 1分⊙是⊙的切线,⊙平分. 2分.⊙是⊙的直径,⊙, 即:. 3分⊙.⊙. 4分,⊙. 5分(2) 连接.⊙,⊙⊙、是⊙的切线,⊙,,又⊙⊙⊙⊙.⊙. 6分在中,,. 7分在中,,⊙. 8分⊙.⊙,.⊙. 9分⊙所求的阴影面积:. 10分考点:1.切线的性质;2.扇形面积的计算.43.数学课上,王老师画好图后并出示如下内容:“已知AB为O的直径,O过AC 的中点D.DE为O的切线.(1)求证:DE BC ⊥(2)王老师说:如果添加条件“1DE =,1tan 2C =”,则能求出O 的直径.请你写出求解过程.DE 为O 的切线,OD DE ∴⊥,即∠AB 为O 的直径,OA OB ∴=,即点点D 为AC 的中点,OD BC ∴∥,CED ODE ∴∠=∠=BC .DE BC ⊥1tan DE CE ∴=O∴的直径为【点睛】本题考查了圆的切线的性质、圆周角定理、三角形中位线定理、解直角三角形等知识点,熟练掌握圆的切线的性质和圆周角定理是解题关键.44.如图,点A、B、C分别是⊙O上的点,⊙B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.45.如图,在O 中,弦AB 与CD 相交于点E ,AB CD =,连接AD BC ,,25ADC ∠=︒.(1)求证:AD BC =;(2)求证:AE CE =;(3)若弦BD 经过点O ,求BEC ∠的度数. 【答案】(1)见解析(2)见解析(3)65︒【分析】(1)由AB CD =,推出AB CD =,推出BC AD =;(2)证明AED CEB ≌可得结论;(3)先求出90BCD ︒∠=,再求出25CBE,即可得答案. 【详解】(1)解:AB CD =,C ABD ∴=, AB AC CD AC ∴-=-,BC AD ∴=;(2)BC AD ,BC AD ∴=,ADE ∠和CBE ∠都是AC 的圆周角,ADE CBE ∴∠=∠,AED CEB ,AED CEB ∴≌,AE CE ∴=;(3)25ADC ,25CBE ,弦BD 经过点O ,BD ∴是O 的直径,90BCD ︒∴∠=,⊙在CEB 中,18065BEC BCD CBE .【点睛】本题考查了圆心角、弧、弦之间的关系,全等三角形的判定和性质,直径所对的圆周角是90︒,三角形的内角和,解题的关键是正确寻找全等三角形解决问题. 46.如图,在ABC 中,90ABC ∠=,O 是AB 上一点,以O 为圆心OB 为半径的圆与AB 交于点E ,与AC 交于点D ,连接DE 、DE 、OC ,且//DE OC .()1求证:AC 是O 的切线;()2若8DE OC ⋅=,求O 的半径.【答案】(1)证明见解析;(2)2. 【分析】(1)先由OD=OE ,利用等边对等角可得⊙2=⊙3,再利用DE⊙OC ;进而利用平行线的性质,可得⊙3=⊙4,⊙1=⊙2,等量代换可得⊙1=⊙4;再结合OB=OD ,OC=OC ,利用SAS 可证△DOC⊙⊙BOC ,那么⊙CDO=⊙CBO ,而⊙ABC=90°,于是⊙CDO=90°,即CD 是 O 的切线;(2)由(1)可知⊙2=⊙4,而⊙CDO=⊙BDE=90°,易证△CDO⊙⊙BDE ,可得比例线段,OD :DE=OC :BE ,又BE=2OD ,可求OD .【详解】()1证明:连接OD ,⊙OE OD =,⊙23∠=∠,又⊙//DE OC ,⊙12∠=∠,34∠=∠,⊙14∠=∠;在DOC 和BOC 中,OD OB =,14∠=∠,OC OC =,⊙DOC BOC ≅,⊙CDO CBO ∠=∠;⊙90ABC ∠=,⊙90CDO ∠=,⊙CD 是O 的切线;()2⊙BE 是直径,⊙90BDE ∠=,在COD 和BED 中,24∠=∠,90EDB ODC ∠=∠=,⊙COD BED ∽,⊙::OD DE OC BE =;又⊙2BE OD =,⊙22OD DE OC =⋅,⊙2OD =.【点睛】考查了等边对等角,平行线的性质,全等三角形的判定与性质,切线的判定,直径所对的圆周角是直角,相似三角形的判定与性质.综合性比较强,难度较大. 47.已知:对于平面直角坐标系xOy 中的点P 和O ,O 的半径为4,交x 轴于点A ,B ,对于点P 给出如下定义:过点C 的直线与O 交于点M ,N ,点P 为线段MN 的中点,我们把这样的点P 叫做关于MN 的“折弦点”.(1)若()2,0C -⊙点()10,0P ,()21,1P -,()32,2P中是关于MN 的“折弦点”的是______;⊙若直线y kx =0k ≠)上只存在一个关于MN 的“折弦点”,求k 的值;(2)点C 在线段AB 上,直线y x b =+上存在关于MN 的“折弦点”,直接写出b 的取值范围.与D相交或相切,分两种情况利用勾股定理求出【详解】(1))与D相切,与D相交或相切,=+垂直直线y xy轴交于点重合时,b有最大值,此时48.如图1,AB 为O 的直径,C 为O 上一点,连接CB ,过C 作CD AB ⊥于点D ,过点C 作BCE ∠,使BCE BCD ∠=∠,其中CE 交AB 的延长线于点E .(1)求证:CE 是O 的切线.(2)如图2,点F 在O 上,且满足2FCE ABC ∠=∠,连接AF 并延长交EC 的延长线于点G .若4CD =,3BD =,求线段FG 的长.CD OB ⊥DCB ∴∠+∠BCE ∠=∠OC OB=OCB∴∠=OCB∴∠+即:OC⊥CE∴是O的切线.(2)过点O作OHFCE∠=FCE∴∠=FCE∠=FCO∴∠OC CE⊥DCO∴∠+DCO∴∠=DCO∴∠=CDO∠=OCH∴∆≅CH CD∴=8CF∴=设OB OC=2OC OD=2(x x∴=解得:256 x.256OB OC∴==.CDB中,OC CG ⊥GCF ∴∠GCF ∴∠AFCB 是圆的内接四边形,GFC ∴∠GFC∴∆∽∴GF CF BC OC=GF =49.问题探究:(1)如图⊙,已知在⊙ABC 中,BC =4,⊙BAC =45°,则AB 的最大值是 . (2)如图⊙,已知在Rt ⊙ABC 中,⊙ABC =90°,AB =BC ,D 为⊙ABC 内一点,且AD=BD =2.,CD =6,请求出⊙ADB 的度数.问题解决:(3)如图⊙,某户外拓展基地计划在一处空地上修建一个新的拓展游戏区⊙ABC ,且AB =A C .⊙BAC =120°,点A 、B 、C 分别是三个任务点,点P 是⊙ABC 内一个打卡点.按照设计要求,CP =30米,打卡点P 对任务点A 、B 的张角为120°,即⊙APB =120°.为保证游戏效果,需要A 、P 的距离与B 、P 的距离和尽可能大,试求出AP +BP 的最大值.的外接圆O,连接)如图⊙,作⊙的外接圆O,连接BAC=90°,OB是等腰直角三角形的外接圆O,连接AKC=⊙APB 是等边三角形。

2023年人教版初中数学中考第八章 圆(基础)专题训练(一)打印版含答案

2023年人教版初中数学中考第八章 圆(基础)专题训练(一)打印版含答案

2023年人教版初中数学中考第八章 圆(基础)专题训练时间:45分钟 满分:80分一、选择题(每题4分,共32分)1.已知⊙O 的直径为10,点P 到点O 的距离大于8,那么点P 的位置( )A .一定在⊙O 的内部B .一定在⊙O 的外部C .一定在⊙O 上D .不能确定2.如图,△ABC 内接于圆,弦BD 交AC 于点P ,连接AD .下列角中,AB ︵所对的圆周角是( )(第2题)A .∠APBB .∠ABDC .∠ACBD .∠BAC3.已知一个扇形的半径是1,圆心角是120°,则这个扇形的弧长是( ) A.π6 B .π C.π3 D.2π34.如图,⊙O 的直径AB =8,弦CD ⊥AB 于点P ,若BP =2,则CD 的长为( )A .2 5B .4 2C .4 3D .8 2(第4题) (第5题) (第6题)5.如图,AB是⊙O的直径,CD是⊙O的弦,若∠ACD=65°,则∠BAD的度数为()A.25°B.30°C.35°D.40°6.如图,在⊙O中,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E的度数为()A.40°B.50°C.55°D.60°7.如图,以边长为2的等边三角形ABC的顶点A为圆心,一定的长为半径画弧,恰好与BC边相切,分别交边AB,AC于点D,E,则图中阴影部分的面积是()A.3-π4B.23-πC.(6-π)33 D.3-π2 (第7题)(第8题)8.如图,在⊙O中,点C为弦AB上一点,AB=1,CD⊥OC交⊙O于点D,则线段CD的最大值是()A.12B.1 C.32D.2二、填空题(每题4分,共16分)9.已知圆的半径是3,则该圆的内接正六边形的边长是________.10.如图,四边形ABCD内接于⊙O,∠A=110°,则∠BOD=________°.(第10题)(第11题)11.如图,P A,PB与⊙O相切于A,B两点,点C在⊙O上,若∠C=70°,则∠P=________°.12.已知圆锥的母线长为5,底面半径为3,则圆锥的侧面展开图的面积为________.三、解答题(共32分)13.(10分)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD 至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若BC=3,⊙O的半径为2,求sin∠BAC.(第13题)14. (10分)如图,⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC交BC的延长线于点D,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若sin ∠CAB=35,⊙O的半径为522,求AB的长.(第14题)15.(12分)如图,在Rt △ABC 中,∠C =90°,BC 与⊙O 相切于点D ,且⊙O 分别交AB ,AC 于点E ,F .(1)求证:AD 平分∠CAB ;(2)当AD =2,∠CAD =30°时,求AD ︵的长.(第15题)答案一、1.B 2.C 3.D 4.C 5.A 6.A 7.D 8.A 二、9.3 10.140 11.40 12.15π三、13.(1)证明:∵四边形ABCD 是⊙O 的内接四边形,∴∠ABC +∠ADC =180°.∵∠ADC +∠ADE =180°,∴∠ADE =∠ABC . ∵AB =AC ,∴∠ABC =∠ACB .∵∠ACB =∠ADB ,∴∠ADB =∠ADE .(2)解:如图,连接CO 并延长交⊙O 于点F ,连接BF , 则∠FBC =90°.由题意得在Rt △BCF 中CF =4,BC =3,(第13题)∴sin F =BC CF =34.∵∠F =∠BAC ,∴sin ∠BAC =sin F =34.14.(1)证明:如图,连接OA .∵∠ABC =45°, ∴∠AOC =2∠ABC =90°.∵AD ∥OC ,∴∠DAO +∠AOC =180°,∴∠DAO =90°,即OA ⊥AD .又∵OA 是⊙O 的半径,∴AD 是⊙O 的切线.(2)解:如图,过点C 作CE ⊥AB 于点E .由(1)知∠AOC =90°.∵AO =OC =522,∵CE ⊥AB ,∴∠AEC =∠CEB =90°,∴sin ∠CAB =CE AC =35, ∴CE =3,∴AE =AC 2-CE 2=4.∵∠CEB =90°,∠ABC =45°,∴∠BCE =45°, ∴CE =BE =3,∴AB =AE +BE =7.(第14题)15.(1)证明:如图,连接OD .∵BC 与⊙O 相切于点D ,∴OD ⊥BC ,即∠ODB =90°.∵∠C =90°,∴OD ∥AC ,∴∠ODA =∠CAD .∵OD =OA ,∴∠OAD =∠ODA ,∴∠CAD =∠OAD ,∴AD 平分∠CAB .(2)解:如图,连接DE .∵AE 为⊙O 的直径,∴∠ADE =90°.∵∠CAD =30°,∠OAD =∠ODA =∠CAD , ∴∠OAD =∠ODA =30°,∴∠AOD =120°. 在Rt △ADE 中,AE =AD cos ∠EAD =232=43 3,∴⊙O 的半径为23 3, ∴AD ︵的长=120π×23 3180=49 3π.。

初中数学圆专题训练(一)

初中数学圆专题训练(一)

初中数学圆专题训练(一)(一)选择题1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有 ( )(A )4个 (B )3个 (C )2个 (D )1个 2.下列判断中正确的是 ( )(A )平分弦的直线垂直于弦 (B )平分弦的直线也必平分弦所对的两条弧 (C )弦的垂直平分线必平分弦所对的两条弧 (D )平分一条弧的直线必平分这条弧所对的弦 3.如图,在两半径不同的同心圆中,∠AOB =∠A ′OB ′=60°,则 ( )(A )=(B )>(C )的度数=的度数 (D )的长度=的长度4.如图,已知⊙O 的弦AB 、CD 相交于点E ,的度数为60°,的度数为100°,则∠AEC 等于 ( )(A )60° (B )100° (C )80° (D )130° 5.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2︰3︰6,则∠D 的度数是( )(A )67.5° (B )135° (C )112.5° (D )110°6.OA 平分∠BOC ,P 是OA 上任一点,C 不与点O 重合,且以P 为圆心的圆与OC 相离,那么圆P 与OB 的位置关系是 ( )(A )相离 (B )相切 (C )相交 (D )不确定 7.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( )(A )21(a +b +c )r (B )2(a +b +c ) (C )31(a +b +c )r (D )(a +b +c )r 8.如图,已知四边形ABCD 为圆内接四边形,AD 为圆的直径,直线MN 切圆于点B ,DC 的延长线交MN 于G ,且cos ∠ABM =23,则tan ∠BCG 的值为……( ) (A )33 (B )23 (C )1 (D )3 9.在⊙O 中,弦AB 和CD 相交于点P ,若P A =3,PB =4,CD =9,则以PC 、PD 的长为根的一元二次方程为 ( ) (A )x 2+9 x +12=0 (B )x 2-9 x +12=0 (C )x 2+7 x +9=0 (D )x 2-7 x +9=0 10.已知半径分别为r 和2 r 的两圆相交,则这两圆的圆心距d 的取值范围是 ( ) (A )0<d <3 r (B )r <d <3 r (C )r ≤d <3 r (D )r ≤d ≤3 r 11.两圆半径分别为2和3,两圆相切则圆心距一定为 ( )(A )1cm (B )5cm (C )1cm 或6cm (D )1cm 或5cm 12.弦切角的度数是30°,则所夹弧所对的圆心角的度数是 ( )(A )30° (B )15° (C )60° (D )45° 13.在两圆中,分别各有一弦,若它们的弦心距相等,则这两弦 ( )(A )相等 (B )不相等 (C )大小不能确定 (D )由圆的大小确定 ∠PAD= ( )14.A.10°B.15°C.30°D.25°15.如图,PA 、PB 分别切⊙O 于A 、B ,AC 是⊙O 的直径,连接AB 、BC 、OP ,则 与∠APO 相等的角的个数是 ( )A.2个B.3个C.4个D.5个(二)填空题16.某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为_____.17.如图,已知AB 为⊙O 的直径,∠E =20°,∠DBC =50°,则∠CBE =______.18.圆内接梯形是_____梯形,圆内接平行四边形是_______.19.如图,AB 、AC 是⊙O 的切线,将OB 延长一倍至D ,若∠DAC =60°,则∠D =_____.20.如图,BA 与⊙O 相切于B ,OA 与⊙O 相交于E ,若AB =5,EA =1,则⊙O 的半径为______.21.已知两圆的圆心距为3,半径分别为2和1,则这两圆有_____条公切线. 22.正八边形有_____条对称轴,它不仅是______对称图形,还是______对称图形. 23.边长为2 a 的正六边形的面积为______.24.扇形的半径为6 cm ,面积为9 cm 2,那么扇形的弧长为______,扇形的圆心角度数为_____.25.用一张面积为900 cm 2的正方形硬纸片围成一个圆柱的侧面,则这个圆柱的底面直径为______. 26. △ABC 的内切圆半径为3cm ,△ABC 的周长为20cm ,则△ABC 的面积为_______________ 。

初中数学中考专题复习之圆专题01切线长定理

初中数学中考专题复习之圆专题01切线长定理

专题01切线长定理切线长定理(Theorem of length of tangent),是初等平面几何的一个定理。

它指出,从圆外一点引圆的两条切线,它们的切线长相等。

即如图,AB、AC切圆O于B、C,切线长AB=AC。

1.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E,交PA,PB于C,D.若⊙O的半径为1,△PCD的周长等于2,则线段AB的长是()A.B.3 C.2D.3解析:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB,∵△PCD的周长等于2,∴PA+PB=2,∴PA=PB=,连接PA和AO,∵⊙O的半径为1,∴tan∠APO===,∴∠APO=30°,∴∠APB=60°,∴△APB是等边三角形,∴AB=PA=PB=.选A.2.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E且分别交PA、PB于点C,D,若PA=4,则△PCD的周长为()A.5 B.7 C.8 D.10解析:∵PA、PB分别切⊙O于点A、B,∴PB=PA=4,∵CD切⊙O于点E且分别交PA、PB于点C,D,∴CA=CE,DE=DB,∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=PA+PB=8,选C.3.如图,PA、PB、CD与⊙O相切于点为A、B、E,若PA=7,则△PCD的周长为()A.7 B.14 C.10.5 D.10解析:∵PA、PB、CD与⊙O相切于点为A、B、E,∴PB=PA=7,CA=CE,DE=DB,∴△PCD的周长=PC+CD+PB=PC+CE+DE+PD=PC+CA+DB+PD=PA+PB=14,选B.4.如图,PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,若⊙O 的半径为r,△PCD的周长为3r,连接OA,OP,则的值是()A.B.C.D.解析:∵PA,PB切⊙O于A,B两点,CD切⊙O于点E交PA,PB于C,D,∴CA=CF,DF=DB,PA=PB,∴PC+CF+DF+PD=PA=PB=2PA=3r,∴PA=r,则的值是:=.选D.5.如图,PA、PB切⊙O于点A、B,PA=8,CD切⊙O于点E,交PA、PB于C、D 两点,则△PCD的周长是()A.8 B.18 C.16 D.14解析:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,∴PB=PA=8,CA=CE,DB=DE,∴△PCD的周长=PC+CE+PD=PC+CE+DE+PC=PC+CA+DB+PD=PA+PB=16.选C.6.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B,CD切⊙O于点E,分别交PA,PB于点C,D.若PA=5,则△PCD的周长和∠COD分别为()A.5,(90°+∠P)B.7,90°+C.10,90°﹣∠P D.10,90°+∠P解析:∵PA、PB切⊙O于A、B,CD切⊙O于E,∴PA=PB=10,ED=AD,CE=BC;∴△PCD的周长=PD+DE+PC+CE=2PA,即△PCD的周长=2PA=10,;如图,连接OA、OE、OB.由切线性质得,OA⊥PA,OB⊥PB,OE⊥CD,DB=DE,AC=CE,∵AO=OE=OB,易证△AOC≌△EOC(SAS),△EOD≌△BOD(SAS),∴∠AOC=∠EOC,∠EOD=∠BOD,∴∠COD=∠AOB,∴∠AOB=180°﹣∠P,∴∠COD=90°﹣∠P.选C.7.P是⊙O外一点,PA、PB分别与⊙O相切于点A、B,点C是劣弧AB上任意一点,经过点C作⊙O的切线,分别交PA、PB于点D、E.若PA=4,则△PDE的周长是()A.4 B.8 C.12 D.不能确定解析:根据题意画出图形,如图所示,由直线DA和直线DC为圆O的切线,得到AD=DC,同理,由直线EC和直线EB为圆O的切线,得到EC=EB,又直线PA和直线PB为圆O的切线,所以PA=PB=4,则△PDE的周长C=PD+DE+PE=PD+DC+EC+PE=PD+DA+EB+PE=PA+PB=4+4=8.选B.8.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A.20 B.30 C.40 D.50解析:据切线长定理有AD=AE,BE=BF,CD=CF;则△ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BE+AC+CD=AD+AE=2AD=40.选C.9.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC =35°,∠P的度数为()A.35°B.45°C.60°D.70°解析:根据切线的性质定理得∠PAC=90°,∴∠PAB=90°﹣∠BAC=90°﹣35°=55°.根据切线长定理得PA=PB,所以∠PBA=∠PAB=55°,所以∠P=70°.选D.10.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.解析:∵PA,PB是⊙O的切线,∴PA=PB,PA⊥OA,∴∠PAB=∠PBA,∠OAP=90°,∴∠PBA=∠PAB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.11.如图,直角梯形ABCD中,以AD为直径的半圆与BC相切于E,BO交半圆于F,DF的延长线交AB于点P,连DE.以下结论:①DE∥OF;②AB+CD=BC;③PB=PF;④AD2=4AB•DC.其中正确的是()A.①②③④B.只有①②C.只有①②④D.只有③④解析:∵BA,BE是圆的切线.∴AB=BE,BO是△ABE顶角的平分线.∴OB⊥AE∵AD是圆的直径,∴DE⊥AE,∴DE∥OF,故①正确;∵CD=CE,AB=BE,∴AB+CD=BC,故②正确;∵OD=OF,∴∠ODF=∠OFD=∠BFP若PB=PF,则有∠PBF=∠BFP=∠ODF而△ADP与△ABO不一定相似,故PB=PF不一定成了,故③不正确;连接OC.可以证明△OAB∽△CDO∴,即:OA•OD=AB•CD∴AD2=4AB•DC,故④正确.故正确的是:①②④.选C.12.一个菱形的周长是20cm,两对角线之比是4:3,则该菱形的内切圆的半径是cm.解析:如图所示:菱形ABCD,对角线AC,BD,可得菱形内切圆的圆心即为对角线交点,设AB与圆相切于点E,可得OE⊥AB,∵一个菱形的周长是20cm,两对角线之比是4:3,∴AB=5cm,设BO=4x,则AO=3x,故(4x)2+(3x)2=25,解得:x=1,则AO=3,BO=4,故EO•AB=AO•BO,解得:EO=.13.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD 的周长为.解析:∵四边形ABCD是⊙O的外切四边形,∴AD+BC=AB+CD=22,∴四边形ABCD的周长=AD+BC+AB+CD=44,故答案为:44.14.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD的周长等于10cm,则PA=cm.解析:如图,设DC与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5cm,故答案为:5.15.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上底AD、下底BC 以及腰AB均相切,切点分别是D,C,E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是.解析:根据切线长定理,得AD=AE,BC=BE,所以梯形的周长是5×2+4=14,故答案为:14.16.如图,在Rt△ABC中,∠C=90°,BC=5,⊙O与Rt△ABC的三边AB、BC、AC 分别相切于点D、E、F,若⊙O的半径r=2,则Rt△ABC的周长为.解析:连接OE、OF,设AD=x,由切线长定理得AF=x,∵⊙O与Rt△ABC的三边AB、BC、AC分相切于点D、E、F,∴OE⊥BC,OF⊥AC,∴四边形OECF为正方形,∵r=2,BC=5,∴CE=CF=2,BD=BE=3,∴由勾股定理得,(x+2)2+52=(x+3)2,解得,x=10,∴△ABC的周长为12+5+13=30,故答案为30.17.如图,AB、BC、CD分别与⊙O相切于点E、F、G,若∠BOC=90°,(1)求证:AB∥CD;(2)若OB=3,OC=4,求由BE、BC、CG、及弧EFG围成图形的面积(即图中阴影部分).解析:(1)∵∠BOC=90°,∴∠OBC+∠OCB=90°,又BE与BF为圆O的切线,∴BO为∠EBF的平分线,∴∠OBC=∠OBF,同理可得∠OCB=∠OCG,∴∠OBF+∠OCG=90°,∴∠OBC+∠OCB+∠OBE+∠OCG=180°,即∠ABF+∠DCF=180°,∴AB∥CD;(2)连接OE,OF,OG,如图所示:由BE和BF为圆的切线,可得OE⊥AB,OF⊥BC,即∠OEB=∠OFB=90°,∴BE=BF,又OB=OB,∴Rt△OEB≌Rt△OFB(HL),∴∠BOE=∠BOF,S△OEB=S△OFB,∴S扇形OEM=S扇形OFM,∴S△OEB﹣S扇形OEM=S△OFB﹣S扇形OFM,即S阴影BEM=S阴影BFM,同理S阴影NFC=S阴影NCG,由∠BOC=90°,OB=3,OC=4,根据勾股定理得:BC=5,∵BC为圆的切线,∴OF⊥BC,∴OB•OC=BC•OF,即OF=,∴S△BOC=OB•OC=6,S扇形OMN==,则阴影部分面积S=2(S阴影BFM+S阴影NFC)=2(S△BOC﹣S扇形OMN)=12﹣18.如图,PA,PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=60°.(1)求∠BAC的度数;(2)当OA=2时,求AB的长.解析:(1)∵PA,PB是⊙O的切线,∴AP=BP,∵∠P=60°,∴∠PAB=60°,∵AC是⊙O的直径,∴∠PAC=90°,∴∠BAC=90°﹣60°=30°.(2)连接OP,则在Rt△AOP中,OA=2,∠APO=30°,∴OP=4,由勾股定理得:,∵AP=BP,∠APB=60°,∴△APB是等边三角形,∴.19.如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).解析:(Ⅰ)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,∴∠BAP=90°;∵∠BAC=30°,∴∠CAP=90°﹣∠BAC=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,∴△PAC为等边三角形,∴∠P=60°.(Ⅱ)如图,连接BC,则∠ACB=90°.在Rt△ACB中,AB=2,∠BAC=30°,∵c o s∠BAC=,∴AC=AB•c o s∠BAC=2c o s30°=.∵△PAC为等边三角形,∴PA=AC,∴PA=.20.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.解析:(1)方法1:过D作DF⊥BC于F在Rt△DFC中,DF=AB=8,FC=BC﹣AD=6∴DC2=62+82=100,即DC=10设AD=x,则DE=AD=x,EC=BC=x+6∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC,即:x(x+6)=16,解得x1=2,x2=﹣8,(舍去)∴AD=2,BC=2+6=8(2)存在符合条件的P点设AP=y,则BP=8﹣y,△ADP与△BCP相似,有两种情况①△ADP∽△BCP时,∴y=②△ADP∽△BPC时,∴y=4故存在符合条件的点P,此时AP=或4。

初中数学圆形专题训练50题答案

初中数学圆形专题训练50题答案

初中数学圆形专题训练50题含参考答案一、单选题1.函数233y x =--自变量x 的取值范围是( ). A .0x ≠ B .1x ≠ C .1x > D .1x <2.反比例函数y=kx的图象经过点(-1,2),k 的值是( ) A .-1 B . 1 C .-2 D .2 3.如图,A ,B ,C 是O 上的三个点,若66B ︒∠=,则OAC ∠的度数为( )A .24︒B .29︒C .33︒D .132︒ 4.如图,在同一平面直角坐标系中,一次函数(0)y ax b ab =+≠的图象与反比例函数(0)ab y ab x=≠的图象大致可以是( ) A . B .C .D .5.如图,扇形纸扇完全打开后,外侧两竹条AB ,AC 的夹角为150°,AB 的长为30cm,BD的长为15cm,则DE的长为()A.254cmπB.252cmπC.25cmπD.50cmπ6.已知点A(3a+1,﹣4a﹣2)在第二、四象限角平分线上,则a2009+a2010的值为()A.﹣1B.0C.1D.27.小芳步行上学,最初以某一速度匀速前进,中途遇红灯,稍作停留后加快速度跑步去上学,到校后,她请同学们画出她行进路程s(米)与行进时间t(分钟)的函数图象的示意图.你认为正确的是()A.B.C.D.8.如图是我们学过的反比例函数图象,它的函数解析式可能是()A.2y x B.4yx=C.3yx=-D.12y x=9.如图,点P为反比例函数myx=上的一点,PA x⊥轴于点A,C为y轴上一点.如果PCA 的面积为2,则二次函数()221y m x mx =--+的顶点在第( )象限A .一B .二C .三D .四 10.对于圆的周长公式C =2πR ,下列说法错误的是( )A .π是变量B .R、C 是变量 C .R 是自变量D .C 是因变量 11.已知圆O 的半径是3,A ,B ,C 三点在圆O 上,∠ACB=60°,则弧AB 的长是( )A .2πB .πC .32πD .12π 12.在圆柱形油槽内装有一些油.截面如图,油面宽AB 为60cm ,如果再注入一些油后,油面AB 上升10cm ,油面宽变为80cm ,则该圆柱形油槽直径MN 为( )A .55cmB .60cmC .80cmD .100cm 13.下列一次函数中,y 随x 增大而减小的是( )A .3y x =B .32y x =-C .32y x x =+D .32y x =-- 14.一次函数y =mx +n 的图象经过一、二、四象限,点A (1,y 1),B (3,y 2)在该函数图象上,则( )A .y 1>y 2B .y 1≥y 2C .y 1<y 2D .y 1≤y 215.已知抛物线()2210y ax ax a =-+<,当12x -≤≤时,y 的最大值为2,则当12x -≤≤时,y 的最小值为( )A .1B .0C .1-D .2- 16.如图,O 的半径为6,将劣弧沿弦AB 翻折,恰好经过圆心O ,点C 为优弧AB 上的一个动点,则ABC 面积的最大值是( )A.B.C.D.18+17.关于二次函数223y x x=-++,下列说法中不正确...的是()A.图象开口向下B.图象的对称轴是1x=C.当1x>时,y随x的增大而增大D.函数的最大值为418.若点B(a,0)在以点A(1,0)为圆心,以3为半径的圆内,则a的取值范围是()A.-2<a<4B.a<4C.a>-2D.a>4或a<-219.二次函数y=ax2+bx+c(abc≠0)的图象如图所示,反比例函数y=cx与正比例函数y=bx在同一坐标系内的大致图象是()A.B.C.D.20.给出下列函数:∠y=31(1)31(1)x xx x-≥⎧⎨--<⎩;∠y=3x;∠y=3x2.从中任取一个函数,取出的函数符合条件“当x>1时,函数值y随x增大而减小”的概率是()A .1B .23 C .13 D .0二、填空题21.若点P (a ,a ﹣4)在第四象限,则点N (﹣a ,4﹣a )在第 _____象限. 22.已知一次函数32y x =-+,那么y 的值随x 的增大而________.23.如图,抛物线2y ax bx c =++与x 轴交于点A ,B ,若对称轴为直线=1x -,点A 的坐标为(-3,0),则不等式20ax bx c ++>的解集为______.24.若点A (2,n )在x 轴上,则点B (n+2,n-5)位于第______象限.25.抛物线244y x x =-+与坐标轴有_______个交点.26.若一个扇形的圆心角为60︒,面积为26cm π,则这个扇形的弧长为__________ cm(结果保留π)27.已知二次函数y =x 2﹣2x +m 的图象与x 轴交于A ,B 两点,若点A 坐标为(﹣1,0),则点B 的坐标为_____.28.点()1,23A m m --在第一、三象限夹角的角平分线上,则m 的值为_________.29.把函数22y x x =-化为2()y a x h k =-+的形式为________.30.已知点(32,4)N a a --到x 轴的距离等于到y 轴的距离的2倍,则a 的值为__________.31.抛物线2y ax bx c =++上部分点的横坐标x ,纵坐标y 的对应值如表所示,则抛物线的对称轴是____.32.如图,这是一个铅皮做成的无盖半圆锥状容器,它是由半个圆锥侧面和一个等腰三角形围成的.若不考虑容器厚度、接缝以及余料等因素,则根据图中给出的尺寸,制造这样一个容器需要铅皮____cm 2.33.若抛物线 ()22y a x =- 的开口向上,则 a 的取值范围是________.34.如图,圆锥的母线长为10,侧面展开图的面积为60π,则圆锥主视图的面积为__________.35.如图,Rt △ABC 中,∠C =90°,AC =3,AB =5.则△ABC 的内切圆半径r =____.36.用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径为________. 37.我们规定:平面内点A 到图形G 上各个点的距离的最小值称为该点到这个图形的最小距离d ,点A 到图形G 上各个点的距离的最大值称为该点到这个图形的最大距离D ,定义点A 到图形G 的距离跨度为R =D -d .在平面直角坐标系xOy 中,图形G 为以原点O 为圆心,2为半径的圆,则点A(1,-1)到图形G 的距离跨度是_______. 38.如图,点、、A B C 在半径为8的O 上,过点B 作//BD AC ,交OA 延长线于点D .连接BC ,且30BCA OAC ︒∠=∠=,则图中阴影部分的面积为__________.39.一圆锥的侧面展开图的圆心角为90︒,底面半径为3,则该圆锥的侧面积为_______.40.在平面直角坐标系中,已知点()4,0A -,点()0,4B ,点()4,4C -,动点D 从A 点出发,以每秒1个单位的速度水平向右运动,动点E 从点B 出发,以每秒1个单位的速度竖直向上运动,过点A 作AG CE ∥交CD 于点G ,当线段OG 的值最小时,则运动时间t 的值为 _____.三、解答题41.如图,以四边形ABCD 的对角线BD 为直径作圆,圆心为O ,过点A 作AE CD ⊥的延长线于点E ,已知DA 平分BDE ∠.(1)求证:AE 是O 的切线;(2)若4AE =,6CD =,求O 的半径和AD 的长.42.如图,∠ABC 内接于∠O ,AB 是∠O 的直径,I 是∠ABC 内一点,AI 的延长线交BC 于点D ,交∠0于点E ,连接BE ,BI ,若IB 平分∠ABC ,EB =EI .(1)求证:AE 平分∠BAC ;(2)若BD OI ∠AD 于点I ,求BE 的长.43.如图,O 是ABC 的外接圆,点O 在BC 边上,BAC ∠的平分线交O 于点D ,连接,BD CD ,过点D 作DP BC ∥,与AC 的延长线交于点P .(1)求证:DP 是O 的切线;(2)当3cm,4cm AB AC ==时,求线段PC 的长.44.如图,一条直线11y k x b =+与反比例函数22k y x=的图象交于A (1,5)、B (5,n )两点,与x 轴交于C 点.(1)求反比例函数的解析式;(2)求C 点坐标(3)请直接写出当12y y <时,x 的取值范围;45.如图,已知AB 是O 直径,且8AB =,C ,D 是O 上的点,OC BD ∥,交AD于点E,连接BC,30CBD∠=︒.(1)求COA∠的度数;(2)求图中弧BD与弦BD围成的阴影部分的面积(结果保留π).46.小明准备给长16米,宽12米的长方形空地栽种花卉和草坪,图中I、II、III三个区域分别栽种甲、乙、丙三种花卉,其余区域栽种草坪.四边形ABCD和EFGH均为正方形,且各有两边与长方形边重合;矩形MFNC(区域II)是这两个正方形的重叠部分,如图所示.(1)若花卉均价为300元2/米,种植花卉的面积为S()2米,草坪均价为200元2/米,且花卉和草坪栽种总价不超过43600元,求S的最大值.(2)若矩形MFNC满足:1:2MF FN=.∠求MF,FN的长.∠若甲、乙、丙三种花卉单价分别为180元2/米,90元2/米,180元2/米,且边BN的长不小于边ME长的54倍.求图中I、II、III三个区域栽种花卉总价W的最大值.47.如图,在5×5的方格(每小格边长为1)内有4只甲虫A、B、C、D,它们爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:A→B(+1,+4),从B到A的爬行路线为:B→A(-1,-4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息,那么图中(1)A→C(,),B→D(,),C→ (+1,);(2)若甲虫A的爬行路线为A→B→C→D,请计算甲虫A爬行的路程;(3)若甲虫A的爬行路线依次为(+2,+2),(+1,-1),(-2,+3),(-1,-2),最终到达甲虫P处,请在图中标出甲虫A的爬行路线示意图及最终甲虫P的位置.48.如图,O是ABC∆的外接圆,AB是O的直径,点D在O上,AC平分BAD∠,过点C的切线交直径AB的延长线于点E,连接AD、BC.(1)求证:BCE=∠∠CAD.(2)若O的半径长为r,AD m=,写出求线段CE长的思路(不用求出结果).49.如图,点P是∠O直径AB上的一点,过P作直线CD∠AB,分别交∠O于C、D两点,连接AC,并将线段AC绕点A逆时针旋转90°,得到AE,连接ED,分别交∠O和A、B于F、G,连接FC,(1)求证:∠ACF=∠AED;(2)若点P在直径AB上运动(不与点A,B重合)其他条件不变,请问EGAP是否为定值?若是,请求出其值,若不是,请说明理由.50.已知△ABC内接于∠O,CD为直径,CD交AB边于点E,且CE=AC.(1)如图1,求证∠ACD=2∠BCD;(2)如图2,过点O作OF∠AC,过点B作BH∠CD,求证:AC=2OH;(3)如图3,在(2)的条件下,过点E作AB的垂线交BC于点K,连接EF,AD,若AD+AC=14,且∠AFE+∠CEF=90°,求CK的长.参考答案:1.B【分析】根据分式的分母不为零进行求解即可.【详解】根据题意,330x -≠,解得1x ≠,故选:B.【点睛】本题主要考查了反比例函数自变量的取值范围,熟练掌握分式的性质是解决本题的关键.2.C【详解】∠反比例函数y=kx经过(-1,2),∠k=-1×2=-2.故选C. 3.A【分析】根据圆周角定理得到2132AOC B ∠=∠=︒,再根据等腰三角形的性质及三角形内角和求解即可.【详解】解:66B ∠=︒,2132AOC B ∴∠=∠=︒,OA OC =,OAC OCA ∴∠=∠,11(180)(180132)2422OAC AOC ∴∠=︒-∠=⨯︒-︒=︒, 故选:A .【点睛】此题考查了圆周角定理,解题的关键是熟记圆周角定理.4.C【分析】根据一次函数图象所在象限,确定出a ,b 的符号,再根据反比例函数图象所在的象限,确定出a ,b 的符号,至此找出一次函数和反比例函数a ,b 的符号一致的选项即可.【详解】解:A.由一次函数图象知a ,b 异号,由反比例函数图象知a ,b 同号,故该选项错误,不符合题意;B.由一次函数图象知a ,b 同号,由反比例函数图象知a ,b 异号,故该选项错误,不符合题意;C.由一次函数图象知a ,b 异号,由反比例函数图象知a ,b 异号,故该选项正确,符合题意;D.由一次函数图象知a ,b 异号,由反比例函数图象知a ,b 同号,故该选项错误,不符合题意.故选:C .【点睛】本题考查了一次函数,反比例函数图象与系数的关系.解题的关键在于确定出a ,b 的符号,明确系数与函数图象的关系.5.B【分析】根据AB =30cm ,BD =15cm ,可以得到AD 的长,然后根据AB ,AC 夹角为150°和弧长计算公式可以得到DE 的长.【详解】∠AB =30cm ,BD =15cm ,AB ,AC 夹角为150°,∠AD =AB ﹣BD =15cm ,∠DE 的长为:15015180π⨯⨯=252π(cm ), 故选:B .【点睛】本题考查了弧长的计算,掌握计算公式是解题关键.6.B【分析】根据角平分线上的点到角的两边的距离相等,以及第二、四象限点的横坐标与纵坐标的符号相反列出方程求解即可.【详解】解:∠点A (3a +1,﹣4a ﹣2)在第二、四象限的角平分线上,∠3a +1=﹣(﹣4a ﹣2),解得a =﹣1,∠a 2009+a 2010=﹣1+1=0.故选:B【点睛】本题考查了角平分线的性质和平面直角坐标系各象限的点的坐标特征,熟知两个知识点是解题关键.7.C【详解】试题分析:运用排除法解答本题,中间的停留路程不变,可排除BD 两项,最后的加速图象应为比最初的路程增加直线增速更快的图象,排除A ,故选C.考点:函数的图象.8.B【分析】此题考查反比例函数图象的性质;【详解】反比例函数(0)k y k x=≠,当0k >时,图像分布在第一、三象限; 当0k <时,图像分布在第二、四象限;所以选B9.D【分析】先根据反比例函数比例系数的几何意义求出m 的值,然后求出二次函数的顶点坐标即可得到答案.【详解】解:∠点P 为反比例函数m y x=上的一点,PA x ⊥轴于点A ,C 为y 轴上一点,PCA 的面积为2, ∠24PCA m S ==△,又∠反比例函数图象经过第一象限,∠4m =,∠二次函数解析式为()22241211y x x x =-+=--, ∠二次函数的顶点坐标为()11-,, ∠二次函数()221y m x mx =--+的顶点在第四象限,故选:D .【点睛】本题主要考查了反比例函数比例系数的几何意义,二次函数图象的性质,判断点所在的象限,正确求出m 的值是解题的关键.10.A【详解】解:A .π是一个常数,是常量,故选项符合题意;B .R 、C 是变量,故选项不符合题意;C .R 是自变量,故选项不符合题意;D .C 是因变量,故选项不符合题意.故选:A .11.A【详解】分析:先根据同弧所对的圆心角是其所对圆周角的2倍求出∠AOB 的度数,再根据扇形的弧长公式计算.详解:如图,∠∠AOB 与∠ACB 对的弧相同,∠ACB =60°,∠∠AOB =2∠ACB =120°, ∠12032180180n R l πππ⨯⨯===. 故选A .点睛:本题考查了圆周角定理和弧长的计算公式,熟记弧长计算公式是解答本题的关键,如果扇形的圆心角是n º,扇形的半径是R ,则扇形的弧长l 的计算公式为:180n R l π=. 12.D【分析】若油面AB 上升后到达油面CD ,过圆心O 作圆的半径OE 垂直于AB ,设垂足为H ,交CD 于点G ,连接OA 、OC ,设出OG 的长度,在两直角三角形中利用勾股定理分别可得OA 、OC 的长度,利用圆的半径相等,即OA=OC 可求得OG ,进而可求MN 的长度【详解】解:如图:若油面AB 上升后到达油面CD ,过圆心O 作圆的半径OE 垂直于AB ,设垂足为H ,交CD 于点G ,连接OA 、OC ,由垂径定理可得:CG=40,AH=30设OG=x ,则OH=x+10在直角三角形OGC 中:22240OC x =+在直角三角形OHA 中:()2221030OA x =++OC OA =()2222401030x x ∴+=++ 解得x=30代入22240OC x =+可得22500OC =0OC >50OC ∴=2100MN OC ∴==故选:D【点睛】本题考查垂径定理的应用及勾股定理,根据垂径定理构造直角三角形是解决本题的关键13.D【详解】∠A ,B ,C 中,自变量的系数大于0,∠y 随x 增大而增大;∠D 中,自变量的系数小于0,∠y 随x 增大而减小;故选D.14.A【分析】先根据图象在平面坐标系内的位置确定m 、n 的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.【详解】解:∠一次函数y =mx +n 的图象经过第一、二、四象限,∠m <0,n >0∠y 随x 增大而减小,∠1<3,∠y 1>y 2.故选:A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系、一次函数的增减性等知识点,图象在坐标平面内的位置确定m 、n 的取值范围成为解答本题的关键. 15.D【分析】根据抛物线的解析式可得其对称轴为直线x =1,从而当x =1时,y 有最大值2,此时可求得a 的值,再根据抛物线的增减的性质求得y 在所给范围内的最小值.【详解】∠212a x a-=-=,即抛物线的对称轴为直线x =1 ∠当x =1时,y 有最大值,且1在12x -≤≤范围内∠a -2a +1=2解得:a =-1即2+21y x x =-+当1<1x ≤-时,函数值y 随x 的增大而增大,此时函数在x =-1处取得最小值,且最小值为1212y =--+=-当12x <≤时,函数值y 随x 的增大而减小,此时函数在x =2处取得最小值,且最小值为42211y =--⨯+=∠-2<1∠当12x -≤≤时,y 的最小值为−2故选:D .【点睛】本题考查了二次函数的增减性质、求函数解析式,关键是确定抛物线的对称轴,根据对称轴的位置便可确定函数的增减的范围,解答函数在某个自变量的范围的最值问题时,最好借助图象,利用数形结合的思想能帮助解决问题.16.A【分析】如图,过点C 作CT ∠AB 于点T ,过点O 作OH ∠AB 于点H ,交∠O 于点K ,连接AO ,AK .解直角三角形求出AB ,求出CT 的最大值,可得结论.【详解】解:如图,过点C 作CT ∠AB 于点T ,过点O 作OH ∠AB 于点H ,交∠O 于点K ,连接AO ,AK .由题意AB 垂直平分线段OK ,∠AO =AK ,∠OA =OK ,∠OA =OK =AK ,∠∠OAK =∠AOK =60°.∠AH =OA •sin60°=∠OH ∠AB ,∠AH =BH ,∠AB =2AH =∠OC +OH ≥CT ,∠CT ≤6+3=9,∠CT 的最大值为9,∠∠ABC 的面积的最大值为192⨯=, 故选:A .【点睛】本题考查垂径定理,勾股定理,三角形的面积,垂线段最短等知识,解题的关键是求出CT 的最大值,属于中考常考题型.17.C【分析】根据题目中的函数解析式,利用二次函数的性质可以判断各个选项中的说法是否正确. 【详解】解:二次函数()222314y x x x =-++=--+,∴该函数的图象开口向下,故选项A 的说法正确,不符合题意; 对称轴是直线()2121x =-=⨯-,故选项B 中的说法正确,不符合题意; 当1x >时,y 随x 的增大而增小,故选项C 中的说法错误,符合题意;函数图象的顶点坐标为()1,4,则函数的最大值为4,故选项D 中的说法正确,不符合题意;故选:C .【点睛】本题考查抛物线的开口方向,对称轴,顶点坐标,增减性,解答本题的关键是明确题意,利用二次函数的性质解答.18.A【详解】试题解析:∠点B (a ,0)在以点A (1,0)为圆心,以3为半径的圆内, ∠|a-1|<3,∠-2<a <4.故选A .点睛:点与圆的位置关系:设∠O 的半径为r ,点P 到圆心的距离OP=d ,则有:点P 在圆外⇔d >r ;点P 在圆上⇔d=r ;点P 在圆内⇔d <r .19.D【分析】先根据二次函数的图象可得,b c 的符号,再根据反比例函数的图象、正比例函数的图象特点即可得. 【详解】解:抛物线的开口向上,与y 轴的交点位于y 轴的正半轴,0,0a c ∴>>,抛物线的对称轴位于y 轴的右侧,02b x a∴=->, 0b ∴<,由0c >可知,反比例函数c y x=的图象位于第一、三象限, 由0b <可知,正比例函数y bx =的图象经过原点,且经过第二、四象限,观察四个选项可知,只有选项D 符合,故选:D .【点睛】本题考查了二次函数、反比例函数和正比例函数的图象,熟练掌握各函数的图象特点是解题关键.20.C【分析】分别求各函数在X 大于1时的单调性以得到在X 大于1时递减的函数的个数,再求其概率.【详解】∠X 大于1时,系数3大于0,函数递增.∠K=3时,反比例函数在第一象限递减.∠二次函数系数3大于0,在第一象限递增.综上所述,三个函数中,只有第二个函数满足条件,所以概率为13.即答案选C. 【点睛】熟练掌握各种函数的图像单调性是本题解答的关键.21.二【分析】根据各象限内点的坐标特征解答即可.【详解】解:∠点P (a ,a ﹣4)在第四象限,∠a >0,a -4<0,∠0<a <4,∠-a <0,4-a >0,∠点N (﹣a ,4﹣a )在第二象限,故答案为:二.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).22.减小【分析】根据一次函数图象与系数的关系可判断.【详解】解:∠一次函数的0k <,∠y 的值随x 的增大而减小,故答案为减小.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y =kx +b :当k >0,y 的值随x 的增大而增大;k <0,y 的值随x 的增大而减小.23.31x -<<【分析】函数的对称轴为直线=1x -,与x 轴交点(3,0)A -,则另一个交点(1,0)B ,进而求解.【详解】解:函数的对称轴为直线=1x -,与x 轴交点(3,0)A -,则另一个交点(1,0)B , 观察函数图象知,不等式20ax bx c ++>的解集为:31x -<<,故答案为:31x -<<.【点睛】本题考查了抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,解题的关键是要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.24.四【分析】直接利用x 轴上点的坐标特点得出n 的值,进而得出答案.【详解】∠点A (2,n )在x 轴上,∠n =0,则点B (n +2,n ﹣5)的坐标为:(2,﹣5)位于第四象限.故答案为四.【点睛】本题考查了点的坐标,正确得出n 的值是解题的关键.25.2【分析】根据二次函数的图像与系数的关系直接进行求解即可.【详解】解:由抛物线244y x x =-+可得与y 轴的交点坐标为()0,4,与x 轴只有一个交点其坐标为()2,0,所以与坐标轴的交点有2个;故答案为2.【点睛】本题主要考查二次函数的图像与系数的关系,熟练掌握二次函数的图像与系数的关系是解题的关键.26.3π 【分析】先利用扇形的面积公式求出扇形的半径,再利用弧长公式即可得.【详解】设扇形的半径为rcm 则2603606πr π= 解得1()r cm =或1()r cm =-(不符题意,舍去) 则这个扇形的弧长为601()1803ππcm ⨯= 故答案为:3π. 【点睛】本题考查了扇形的面积公式、弧长公式,熟记公式是解题关键.27.(3,0).【分析】根据二次函数y =x 2﹣2x +m 的图象与x 轴交于A ,B 两点,点A 坐标为(﹣1,0),可以求得m 的值,从而可以得到该函数的解析式,进而求得点B 的坐标.【详解】∠二次函数y =x 2﹣2x +m 的图象与x 轴交于A ,B 两点,点A 坐标为(﹣1,0), ∠0=(﹣1)2﹣2×(﹣1)+m ,解得,m =﹣3,∠y =x 2﹣2x ﹣3,当y =0时,0=x 2﹣2x ﹣3=(x ﹣3)(x +1),解得,x 1=3,x 2=﹣1,∠点B 的坐标为(3,0),故答案为(3,0).【点睛】本题考查抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.28.2【分析】根据第一、三象限角平分线上点的坐标特点列式计算即可.【详解】解:∠点A (m -1,2m −3)在第一、三象限夹角的平分线上,∠m -1=2m −3,解得m =2,故答案为:2.【点睛】本题主要考查点的坐标,解题的关键是掌握第一、三象限角平分线上点的横纵坐标相等.29.2(1)1y x =--【分析】由于二次项系数为1,利用配方法直接加上一次项系数的一半的平方配成完全平方式,可把一般式转化为顶点式.【详解】y =x 2﹣2x =x 2﹣2x +1﹣1=(x ﹣1)2﹣1.故答案为y =(x ﹣1)2﹣1.【点睛】本题主要考查了利用配方法将一般式转化为顶点式的方法.二次函数的解析式有三种形式:(1)一般式:y =ax 2+bx +c (a ≠0,a 、b 、c 为常数);(2)顶点式:y =a (x ﹣h )2+k ;(3)交点式(与x 轴):y =a (x ﹣x 1)(x ﹣x 2).30.87或0 【详解】解:由题可知: ∠4232a a -=-,∠当42(32)a a -=-时,得:87a =; ∠当42(23)a a -=-时,得0a =, 故答案为:87a =或0. 31.x =12 【分析】利用y 值相等的x 值,根据抛物线对称性即可求解.【详解】解:∠x =0,x =1时,y=6,∠对称轴为x =0+11=22. 故答案为x =12.【点睛】本题考查表格信息获取问题,抛物线对称轴,掌握表格信息获取方法,抛物线对称性求对称轴方法是解题关键.32.(240+130π)【详解】由题意得圆锥的侧面展开图面积为S=11202626022LR ππ=⨯⨯=但是图中的是圆锥的一半所以为了130π,而三角形的面积为240.故为(240+130π).33.a >2【分析】利用二次函数图像的性质直接求解.【详解】解:∠抛物线()22y a x =-的开口向上, ∠a-2>0,∠a >2,故答案为a >2.【点睛】本题考查二次函数图像的性质,掌握二次项系数决定开口方向是本题的解题关键. 34.48【分析】圆锥的主视图是等腰三角形,根据圆锥侧面积公式S=πrl 代入数据求出圆锥的底面半径长,再由勾股定理求出圆锥的高即可.【详解】根据圆锥侧面积公式:S=πrl ,圆锥的母线长为10,侧面展开图的面积为60π, 故60π=π×10×r ,解得:r=6.由勾股定理可得圆锥的高∠圆锥的主视图是一个底边为12,高为8的等腰三角形,∠它的面积=1128=482⨯⨯, 故答案为:48【点睛】本题考查了三视图的知识,圆锥侧面积公式的应用,正确记忆圆锥侧面积公式是解题关键.35.1【分析】设AB 、BC 、AC 与∠O 的切点分别为D 、E 、F ;易证得四边形OECF 是正方形;那么根据切线长定理可得:CE=CF=12(AC+BC-AB ),由此可求出r 的长.【详解】如图,在Rt△ABC,∠C=90°,AC=3,AB=5,根据勾股定理,四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°,∠四边形OECF是正方形,由切线长定理,得:AD=AF,BD=BE,CE=CF,∠CE=CF=1(AC+BC-AB),2(3+4-5)=1.即:r=12故答案为1【点睛】此题考查了三角形内切圆的性质.注意切线长定理,还要注意直角三角形的内切圆中,如果连接过切点的半径,可以得到一个正方形,借助于方程即可求得半径.36.3cm.【详解】解:由题意知:底面周长=6πcm,∠底面半径=6π÷2π=3cm.故答案为:3cm.【点睛】本题考查圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.37.【分析】先根据跨度的定义先确定出点到圆的最小距离d和最大距离D,即可得出跨度;【详解】解:如图,过点A作圆O的直径EF,则EF=4,d=AF,D=EA∠A(1,-1),=,∠R=D -d=故答案为:【点睛】本题主要考查了点和圆的位置关系,理解和应用新定义解决问题,还涉及到平面坐标系内,两点间的距离公式,由已知点的坐标计算距离跨度是解本题的关键.38.323π 【分析】连接OB ,证明∠OBD=90°,再由//BD AC 得到∠D=∠OAC=30°,求出BD ,分别求出∠BOD 的面积和扇形AOB 的面积,再相减即可得出答案.【详解】解:证明:连接OB ,交CA 于E ,∠∠C=30°,∠C=12∠BOA , ∠∠BOA=60°,又//BD AC ,∠∠D=∠OAC=30°∠∠DBO=180°-∠D-∠BOA=180°-30°-60°=90°,∠∠D=30°,∠BD∠2211132==882360263阴影扇形πππ∆-⨯⨯-⨯=⨯-⨯=BOD BOA n S S S BD OB OB .故答案为323π. 【点睛】本题考查了平行线的性质,圆周角定理,扇形的面积,三角形的面积,解直角三角形等知识点的综合运用,题目比较好,难度适中.39.36π【分析】由题意知圆锥展开扇形的弧长为9023180r ππ⨯⨯=⨯⨯,求出r 的值,然后根据圆锥的侧面积为290360r π⨯⨯计算求解即可. 【详解】解:由题意知圆锥展开扇形的弧长为9023180r ππ⨯⨯=⨯⨯ 解得12r =∠圆锥的侧面积为2901236360ππ⨯⨯= 故答案为:36π.【点睛】本题考查了扇形的面积与弧长.解题的关键在于求出圆锥展开图的半径.40.2##2-+【分析】如图,连接CA ,CB ,取AC 的中点Q ,连接QG ,QO ,证明四边形ACBO 为正方形,可得90ACB ∠=︒,证明CAD CBE ≌,可得90AGC DCE ∠=∠=︒,则G 在以AC 为直径的圆上运动,可得当Q ,G ,O 三点共线时,OG 最短,OG 最短时,2OG =,再证明OGD OAG ∽,从而可得答案.【详解】解:如图,连接CA ,CB ,取AC 的中点Q ,连接QG ,QO ,∠点()4,0A -,点()0,4B ,点()4,4C -,∠4OA OB AC BC ====,CB OE ⊥,CA OA ⊥,∠90CBE CAD ∠==∠︒,∠四边形ACBO 为正方形,∠90ACB ∠=︒,∠动点D 从A 点出发,以每秒1个单位的速度水平向右运动,动点E 从点B 出发,以每秒1个单位的速度竖直向上运动,∠AD BE =,∠CAD CBE ≌,∠ACD BCE ∠=∠,∠90DCE DCB BCE DCB ACD ∠=∠+∠=∠+∠=︒,∠AG CE ∥,∠90AGC DCE ∠=∠=︒,∠G 在以AC 为直径的圆上运动,当Q ,G ,O 三点共线时,OG 最短,∠4AC =,则2AQ =,∠OQ =∠OG 最短时,2OG =,∠QC QG =,∠QCG QGC ∠=∠,而DGO QGC ∠=∠,∠QCG DGO ∠=∠,∠90QCG CAG CAG OAG ∠+∠=︒=∠+∠,∠QCG OAG ∠=∠,∠OAG DGO ∠=∠,∠GOD GOA ∠=∠,∠OGD OAG ∽, ∠OG OD OA OG=,∠()22264OG OD OA ===-,∠462AD =-+,∠2t ==.故答案为:2.【点睛】本题考查的是坐标与图形,全等三角形的判定与性质,相似三角形的判定与性质,圆周角定理的应用,证明G 在以AC 为直径的圆上运动是解本题的关键. 41.(1)见解析(2)5,【分析】(1)连接OA ,根据已知条件证明OA AE ⊥即可解决问题;(2)取CD 中点F ,连接OF ,根据垂径定理可得OF CD ⊥,所以四边形AEFO 是矩形,利用勾股定理即可求出结果.【详解】(1)证明:如下图,连接OA ,∠AE CD ⊥,∠90DAE ADE ∠+∠=︒.∠DA 平分BDE ∠,∠ADE ADO ∠=∠.又∠OA OD =,∠OAD ADO ∠=∠,∠90DAE OAD ∠+∠=︒,∠OA AE ⊥,∠OA 是半径,∠AE 是O 切线;(2)解:如上图,取CD 中点F ,连接OF ,∠OF CD ⊥于点F ,∠四边形AEFO 是矩形.∠6CD =,∠3DF FC ==.在Rt ∠OFD 中,4OF AE ==,∠5OD =,在Rt ∠AED 中,4AE =,532ED EF DF OA DF OD DF =-=-=-=-=,∠AD =,∠AD 的长是【点睛】本题考查了切线的判定与性质,垂径定理,圆周角定理,勾股定理,解决本题的关键是掌握切线的判定与性质.42.(1)见解析(2)2【分析】(1)根据角平分线的性质得到∠ABI =∠CBI ,由等腰三角形的性质得到∠EBI =∠EIB ,通过三角形外角的性质和圆周角定理即可得到结论;(2)由AB 是∠O 的直径,得到AE ∠BE ,推出OI ∠BE ,根据三角形的中位线的性质得到AI =IE =BE ,推出AE =2BE ,根据相似三角形的性质得到12DE BE BE AE ==,求得BE =2,DE =1,AE =4,AD =3,由于∠ACD ∠∠BDE ,得到EC CD A BE D =即可求得BE 的长. (1)证明:∠IB 平分∠ABC ,∠∠ABI =∠CBI ,∠EB =EI ,∠∠EBI =∠EIB ,∠∠EIB =∠BAI +∠IBA ,∠EBI =∠IBC +∠CBE ,∠∠BAE =∠CBE ,∠∠CBE =∠EAC ,∠∠BAE =∠CAE ,∠AE 平分∠BAC ;(2)如图,∠AB 是∠O 的直径,∠AE ∠BE ,∠OI ∠AE ,∠OI ∠BE ,∠AO =BO ,∠AI =IE =BE ,∠AE =2BE ,∠∠EBC =∠BAE ,∠∠BDE ∠∠ABE , ∠12DE BE BE AE ==,∠BD∠BE =2,DE =1,∠∠E =∠C ,∠EBC =∠DAC∠∠ACD ∠∠BDE , ∠EC CD A BE D ==2, ∠22BE DE ==【点睛】本题考查了三角形的外接圆和外心,垂径定理,圆周角定理,三角形外角性质,等腰三角形的性质,能正确作出辅助线并求出AE =2BE 是解此题的关键.43.(1)证明见解析 (2)25cm 6PC =【分析】(1)连接OD .根据角平分线的定义,圆周角定理的推论确定BD CD =,根据垂。

初中数学圆的练习题大全

初中数学圆的练习题大全

初中数学练习题——圆练习(一)一.填空(本题共26分,每空2分)1.在半径为10cm的⊙O中,弦AB长为10cm,则O点到弦AB的距离是______cm.3.圆外切等腰梯形的周长为20cm,则它的腰长为______cm.4.AB是⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=4cm,,BD=9cm,则CD=______cm,BC=______cm. 5.若扇形半径为4cm,面积为8cm,则它的弧长为______cm.6.如图,PA、PB、DE分别切⊙O于A、B、C点,若圆O的半径为6,OP=10,则△PDE的周长为______.7.如图,PA=AB,PC=2,PO=5,则PA=______.8.斜边为AB的直角三角形顶点的轨迹是______.9.若两圆有且仅有一条公切线,则两圆的位置关系是______.10.若正六边形的周长是24cm,它的外接圆半径是______,内切圆半径是______.二.选择题(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个是正确的,请你将正确答案前的字母填在括号内.1.两圆半径分别为2和3,两圆相切则圆心距一定为[ ]A.1cmB.5cmC.1cm或6cmD.1cm或5cm2.弦切角的度数是30°,则所夹弧所对的圆心角的度数是[ ]A.30°B.15°C.60°D.45°3.在两圆中,分别各有一弦,若它们的弦心距相等,则这两弦[ ]A.相等B.不相等C.大小不能确定D.由圆的大小确定∠PAD=[ ]A.10°B.15°C.30°D.25°5.如图,PA、PB分别切⊙O于A、B,AC是⊙O的直径,连接AB、BC、OP,则与∠APO相等的角的个数是[ ]A.2个B.3个C.4个D.5个6.两圆外切,半径分别为6、2,则这两圆的两条外公切线的夹角的度数是[ ]A.30°B.60°C.90°D.120°7.正六边形内接于圆,它的边所对的圆周角是[ ]A.60°B.120°C.60或120D.30°或150°A.7cmB.8cmC.7cm或8cmD.15cm三.(本题共6分)已知:如图,PBA是⊙O的割线,PC切⊙O于C,PED过点四.(本题7分)在同心圆O中,AB是大圆的直径,与小圆交于C、D,EF是大圆的弦,且切小圆于C,ED交小圆于G,若大圆半径为6,小圆半径为4,求EG的长.五.(本题8分)已知:如图AB为半圆O的直径,过圆心O作EO⊥AB,交半圆于F,过E作EC切⊙O于M,交AB的延长线于C,在EC上取一点D,使CD=OC 求证:DF是⊙O的切线.六.(本题8分)已知:如图△ABC内接于⊙O,∠BAC相邻的外角∠CAD的平分线AE交BC延长线于E,延长EA交⊙O于F,连BF七.(本题5分)已知:两圆内切于P,大圆的弦PA,PB分别交小圆于C、D,求证:PC·BD=PD·AC八.(本题8分)如图EB是⊙O的直径,A是BE的延长线上一点,过A作⊙O的切线AC,切点为D,过B作⊙O的切线BC,交AC于点C,若EB=BC=6,求:AD、AE的长.练习(二)一.选择题(每小题3分,共36分)1.圆的半径为5cm,圆心到一条直线的距离是7cm,则直线与圆()A.有两个公共点,B.有一个公共点,C.没有公共点,D.公共点个数不定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学圆专题训练(一)
(一)选择题
1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有 ( )
(A )4个 (B )3个 (C )2个 (D )1个 2.下列判断中正确的是 ( )
(A )平分弦的直线垂直于弦 (B )平分弦的直线也必平分弦所对的两条弧 (C )弦的垂直平分线必平分弦所对的两条弧 (D )平分一条弧的直线必平分这条弧所对的弦 3.如图,在两半径不同的同心圆中,∠AOB =∠A ′OB ′=60°,则 ( )
(A )=
(B )

(C )的度数=的度数 (D )
的长度=
的长度
4.如图,已知⊙O 的弦AB 、CD 相交于点E ,的度数为60°,
的度数为100°,则∠AEC 等于 ( )
(A )60° (B )100° (C )80° (D )130° 5.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2︰3︰6,则∠D 的度数是( )
(A )67.5° (B )135° (C )112.5° (D )110°
6.OA 平分∠BOC ,P 是OA 上任一点,C 不与点O 重合,且以P 为圆心的圆与OC 相离,那么圆P 与OB 的位置关系是 ( )
(A )相离 (B )相切 (C )相交 (D )不确定 7.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( )
(A )
21(a +b +c )r (B )2(a +b +c ) (C )3
1
(a +b +c )r (D )(a +b +c )r 8.如图,已知四边形ABCD 为圆内接四边形,AD 为圆的直径,直线MN 切圆于点B ,DC 的延长线交MN 于G ,且cos ∠ABM =
2
3
,则tan ∠BCG 的值为……( ) (A )
33 (B )2
3 (C )1 (D )3 9.在⊙O 中,弦AB 和CD 相交于点P ,若PA =3,PB =4,CD =9,则以PC 、PD 的长为根的一元二次方程为 ( ) (A )x 2
+9 x +12=0 (B )x 2
-9 x +12=0 (C )x 2
+7 x +9=0 (D )x 2
-7 x +9=0 10.已知半径分别为r 和2 r 的两圆相交,则这两圆的圆心距d 的取值范围是 ( ) (A )0<d <3 r (B )r <d <3 r (C )r ≤d <3 r (D )r ≤d ≤3 r 11.两圆半径分别为2和3,两圆相切则圆心距一定为 ( )
(A )1cm (B )5cm (C )1cm 或6cm (D )1cm 或5cm 12.弦切角的度数是30°,则所夹弧所对的圆心角的度数是 ( )
(A )30° (B )15° (C )60° (D )45° 13.在两圆中,分别各有一弦,若它们的弦心距相等,则这两弦 ( )
(A )相等 (B )不相等 (C )大小不能确定 (D )由圆的大小确定 14.
∠PAD= ( )
A.10°
B.15°
C.30°
D.25°
15.如图,PA 、PB 分别切⊙O 于A 、B ,AC 是⊙O 的直径,连接AB 、BC 、OP ,则 与∠APO 相等的角的个数是 ( )
A.2个
B.3个
C.4个
D.5个
(二)填空题
16.某公园的一石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为_____.
17.如图,已知AB 为⊙O 的直径,∠E =20°,∠DBC =50°,则∠CBE =______.
18.圆内接梯形是_____梯形,圆内接平行四边形是_______.
19.如图,AB 、AC 是⊙O 的切线,将OB 延长一倍至D ,若∠DAC =60°,则∠D =_____.
20.如图,BA 与⊙O 相切于B ,OA 与⊙O 相交于E ,若AB =
5,EA =1,则
⊙O 的半径为______.
21.已知两圆的圆心距为3,半径分别为2和1,则这两圆有_____条公切线. 22.正八边形有_____条对称轴,它不仅是______对称图形,还是______对称图形. 23.边长为2 a 的正六边形的面积为______.
24.扇形的半径为6 cm ,面积为9 cm 2
,那么扇形的弧长为______,扇形的圆
心角度数为_____.
25.用一张面积为900 cm 2
的正方形硬纸片围成一个圆柱的侧面,则这个圆柱的底面直径为______. 26. △ABC 的内切圆半径为3cm ,△ABC 的周长为20cm ,则△ABC 的面积为_______________ 。

27.在半径为1的圆中,长度等于 的弦所对的圆心角是______度。

28. 如图,⊙P 的半径为2,圆心P 在函数y= 的图象上运动,当⊙P 与x 轴相切时,点P 的坐标为 。

29.如图,在△ABC 中,∠C =90°,AC =5cm ,BC =12cm ,⊙O 分别切AC 、BC 于点D 、E ,圆心O 在AB 上,则⊙O 的半径r 为_____________。

(三)判断题
30.相交两圆的公共弦垂直平分连结这两圆圆心的线段 ( ) 31.各角都相等的圆内接多边形是正多边形 ( ) 32.正五边形既是轴对称图形,又是中心对称图形 ( ) 33.三角形一定有内切圆 ( ) 34.平分弦的直径垂直于弦 ( ) (四)解答题
35. 如图,⊙O 的直径AB 和弦CD 相交于点E ,且AE =1 cm ,EB =5 cm ,∠DEB =60°,求CD 的长.
36.如图,AB 为⊙O 的直径,P 为BA 的延长线上一点,PC 切⊙O 于点C ,CD ⊥AB ,
垂足为D ,且PA =4,PC =8,求tan ∠ACD 和sin ∠P 的值.。

D B
A O
37.如图,已知ABCD 是圆内接四边形,EB 是⊙O 的直径,且EB ⊥AD ,AD 与BC 的延长线交于F ,求证
FD AB =
DC
BC .。

38.已知:如图,⊙O 1与⊙O 2内切于点P ,过点P 的直线交⊙O 1于点D ,交⊙O 2于点E ;DA 与⊙O 2相切,切点为C .*(1)求证PC 平分∠APD ; (2)若PE =3,PA =6,求PC 的长.

39.如图,⊙O 是以AB 为直径的△ABC 的外接圆,点D 是劣弧
的中点,连结AD 并延长,与过C 点的切线交于P ,OD 与
BC 相交于点E .(1)求证OE =21AC ;(2)求证:AP DP =
2
2
AC BD ;(3)当AC =6,AB =10时,求PC 的长.

40. 已知:如图,PBA是⊙O的割线,PC切⊙O于C,PED过点
41.在同心圆O中,AB是大圆的直径,与小圆交于C、D,EF是大圆的弦,且切小圆于C,ED交小圆于G,若大圆半径为6,
小圆半径为4,求EG的长.
42.已知:如图AB为半圆O的直径,过圆心O作EO⊥AB,交半圆于F,过E作EC切⊙O于M,交AB的延长线于C,在EC上
取一点D,使CD=OC求证:DF是⊙O的切线.
43.已知:如图△ABC内接于⊙O,∠BAC相邻的外角∠CAD的平分线AE交BC延长线于E,延长EA交⊙O于F,连BF。

相关文档
最新文档