第二十一讲发电机失磁保护
发电机失磁保护.

发电机失磁微机保护的研究摘要:介绍了现阶段的发电机失磁保护装置、发电机失磁保护的4种主要判据,并针对阻抗Ⅱ段和低电压判据延时较长的不足,提出利用发电机功率变化量作为失磁保护辅助加速判据。
还研究了失磁保护方案存在的问题,针对相应的问题提出微机失磁保护新方案,并对新方案进行了介绍。
关键词:失磁保护;失磁保护判据;功率变化量;辅助加速判据;微机失磁保护新方案。
0 引言中国历年来的发电机失磁故障率都比较高,因而,发电机失磁保护受到广泛重视。
近年来,国内在发电机失励磁分析和试验方面做了很多工作,取得了很大的成绩。
在失磁保护装置方面也已经开发出了多种型号的装置,其性能基本满足了电力系统的要求。
现阶段新型微机失磁保护判据组合及作用结果包括如下四方面的内容:a.失磁保护Ⅰ段:定子阻抗判据、转子电压判据、变励磁转子低电压判据、功率判据和无功反向判据组合。
失磁保护Ⅰ段投入,发电机失磁时,0.5 s降出力;b.失磁保护Ⅱ段:系统低电压判据、定子阻抗判据、转子电压判据、变励磁转子低电压判据和无功反向判据组合。
失磁保护Ⅱ段投入,发电机失磁时, 系统电压低于整定值,延时0.8 s 动作切发变组主断路器、灭磁断路器、厂用电源断路器及励磁系统各断路器;c.失磁保护Ⅲ段:定子阻抗判据、转子电压判据、变励磁转子低电压判据和无功反向判据组合。
失磁保护Ⅲ段保护投入,发电机失磁后,延时1.5 s,动作于“报警”,也可动作于“切换备用励磁”,或者动作于“跳闸”,有3种状态供选择;d.失磁保护Ⅳ段:定子阻抗判据和无功反向判据组合。
失磁保护Ⅳ段为长延时段,只判断定子阻抗判据,在减出力、切换备用励磁无效的情况下,5 min动作于“跳闸”。
1 发电机失磁后的基本物理过程及产生的影响发电机失磁故障是指发电机的励磁突然消失或部分消失。
对于失磁的原因有:转子绕组故障、励磁机故障、自动灭磁开关误跳闸、及回路发生故障等。
当发电机完全失去励磁时,励磁电流将逐渐衰减至零。
浅谈发电机失磁保护

浅谈发电机失磁保护摘要:发电机失磁时会对发电机和电力系统产生巨大危害;本文分析了发电机失磁时对系统和发电机本身所产生的危害,介绍了发电机失磁保护的原理,使我们对发电机失磁及失磁保护有了一个系统的了解,为深入研究发电机失磁保护提供一定的帮助。
关键词:发电机;失磁保护;危害1发电机失磁的危害发电机失磁是指正常运行的发电机励磁电流全部或部分消失的现象。
引起发电机失磁原因有:励磁机故障、灭磁开关误跳闸、转子绕组以及转子回路发生故障、运行人员误操作、半导体励磁系统中某些元件的损坏等等。
失磁是发电机常见故障形式之一,特别是大型发电机组,由于励磁系统环节较多,因而也增加了发生失磁的机率。
发电机发生失磁以后,励磁电流将逐渐衰减至零,发电机的感应电势Ed随着励磁电流的减小而不断减小,电磁转矩将小于原动机的转矩,因而使转子加速,导致发电机功角增大。
当发电机功角超过静稳极限角时,发电机将会与电力系统失去同步。
发电机失磁后将从系统中吸取一定的感性无功,转子会出现转差,在定子绕组中感应电势,并且定子电流增大,定子电压下降,有功功率下降,而无功功率反向并不断增大,在转子上会有差频电流产生,整个系统的电压可能会下降,某些电源支路也会产生过电流,发电机的各个电气量不断摆动,严重威胁发电机和整个电力系统的安全稳定运行。
1.1 失磁对电力系统的危害,主要表现在以下几个方面(1)低励或失磁的发电机,从系统中吸收无功功率,引起系统电压下降,如果电力系统中无功功率储备不足,将使电力系统中邻近的某些点电压低于允许值,破坏负荷与各电源间的稳定运行,甚至使电力系统因电压崩溃而瓦解。
(2)当一台发电机发生低励或失磁后,由于电压下降,电力系统中的其他发电机,在自动调整励磁装置的作用下,将增加其无功功率输出,从而使这些发电机、输出变压器或线路过电流,其后备保护(过电流保护)可能动作而跳闸,使故障范围扩大。
(3)一台发电机低励或失磁后,由于该发电机有功功率的摆动,以及系统电压的下降,可能导致相邻的正常运行发电机与系统之间,或电力系统的各部分之间失步,使系统产生振荡甩掉大量负荷。
发电机的失磁保护

发电机失磁故障是指发电机的励磁突然消失或部分消失。
对于失磁的原因有:转子绕组故障、励磁机故障、自动灭磁开关误跳闸、及回路发生故障等。
当发电机完全失去励磁时,励磁电流将逐渐衰减至零。
由于发电机的感应电势Ed 随着励磁电流的减小而减小,因此,其励磁转矩也将小于原动机的转矩,因此引起转子加速,使发电机的功角δ增大。
当δ超过静态稳定极限角时,发电机与系统失去同步。
发电机失磁后将从系统中吸取感性无功供给转子励磁电流,在定子绕组中感应出电势。
在发电机超过同步转速后,转子回路中将感应出频率为ff-fs(fs为系统频率、ff为发电机频率)的电流,此电流产生异步制动转矩,当异步转矩与原动机转矩达到平衡时,即进入稳定的异步运行。
当发电机异步运行时,将对发电机及电力系统产生巨大的应影响。
⑴需要从系统中吸收很大的无功功率以建立发电机磁场。
⑵由于从电力系统中吸收无功功率将引起电力系统的电压下降,如果电力系统的容量较小或无功储备不足,则可能使失磁的发电机端电压、升压变压器高压侧的母线电压、及其它的临近点的电压低于允许值,从而破坏了负荷与电源间的稳定运行,甚至引起电压崩溃而使系统瓦解。
⑶由于失磁发电机吸收了大量的无功功率,因此为了防止其定子绕组的过电流,发电机所发的有功功率将减少。
⑷失磁发电机的转速超过同步转速,因此,在转子及励磁回路中将产生频率为ff-fs的交流电流,因而形成附加的损耗,使发电机转子和励磁回路过热。
对于水轮机,①其异步功率较小,必须在较大的转差下运行,才能发出较大的功率。
②由于水轮机的调速器不够灵敏,时滞大,乃至可能在功率未达到平衡时就以超速,使发电机与系统解列。
③其同步电抗较小,异步运行时,则需要从电网吸收大量的无功功率。
④其纵轴和横轴不对称,异步运行时,机组震动较大等因素的影响,因此发电机不允许失磁。
因此必须加装失磁保护。
1 发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。
由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。
发电机失磁保护的典型配置方案

发电机失磁保护的典型配置方案第一篇:发电机失磁保护的典型配置方案发电机失磁保护的典型配置方案1 引言励磁系统是同步发电机的重要组成部分,对电力系统及发电机的稳定运行有十分重要的影响。
由于励磁系统相对较为复杂,主要包括励磁功率单元和励磁控制部分,因而励磁故障的发生率在发电机故障中是较高的。
加强失磁保护的研究,找到一个合理而成熟可靠的失磁保护配置方案是十分必要的。
由于失磁保护的判据较多,闭锁方式和出口方式也较多,因此失磁保护的配置目前在所有发电机保护中最复杂,种类也最多。
据国内一发电机保护的大型生产厂家统计,2000年中,该厂所供的失磁保护配置方案就有20多种。
如此之多的配置方案对于现场运行是十分不利的。
不仅业主和设计部门难以作出选择,而且整定、调试、运行、培训都变得复杂。
这样,现场运行经验和运行业绩不易取得,无法形成一个典型方案以提高设计、整定效率和运行水平,也不利于保护的成熟和完善。
从电网运行中反映,失磁保护的误动率较高。
湖北襄樊电厂4台300MW汽轮发电机组,首次在300MW发电机组上采用国产WFB-100微机保护,经过近3年的现场运行,其失磁保护在试运行期间发生过误动作,在采取一定措施后,未再误动。
近年来,失磁保护先后经过数次严重故障的考验和进相运行实验,都正确动作。
本文将分析该厂失磁保护方案的特点,并以此为典型方案,以供同行借鉴参考。
2 失磁保护的主判据目前失磁保护使用最多的主判据主要有三种,分别是1)转子低电压判据,即通过测量励磁电压Ufd是否小于动作值;2)机端低阻抗判据Z<;3)系统低电压Um<。
三种判据分别反映转子侧、定子侧和系统侧的电气量。
2.1 转子低电压判据Ufd早期的整流型和集成电路型保护,采用定励磁电压判据,表达式为:Ufd<K·Ufd0,Ufd0为空载励磁电压,K为小于1的常数。
目前的微机保护,多采用变励磁电压判据Ufd(P),即在发电机带有功P的工况下,根据静稳极限所需的最低励磁电压,来判别是否已失磁。
发电机保护简介

1.发电机失磁保护失磁保护作为发电机励磁电流异常下降或完全消失的失磁故障保护。
由整定值自动随有功功率变化的励磁低电压Ufd(P)、系统低电压、静稳阻抗、TV断线等判据构成,分别动作于发信号和解列灭磁。
励磁低电压Ufd(P)判据和静稳阻抗判据均与静稳边界有关,可检测发电机是否因失磁而失去静态稳定。
静稳阻抗判据在失磁后静稳边界时动作。
TV断线判据在满足以下两个条件中任一条件:│Ua+Ub+Uc-3U0│≥Uset(电压门坎)或三相电压均低于8V,且0.1A<Ia<Iset(电流门坎)时判为TV二次回路断线,将失磁保护闭锁。
│Ua+Ub+Uc-3U0│≥Uset用于判别TV单相或两相断线,低压判据判断三相失压。
在电力系统短路或短路切除等非失磁因素引起系统振荡时,保护采取措施闭锁Ufd(P),可防止保护误出口。
励磁低电压Ufd(P)判据动作后经t1(2s)发出失磁信号。
励磁低电压Ufd(P)判据、静稳阻抗判据均满足且无TV二次回路断线时经t2(6s)发出跳闸指令。
励磁低电压Ufd(P)判据、静稳阻抗、系统低电压判据均满足且无TV二次回路断线时经t3(1s)发出跳闸指令。
2.发电机过激磁保护过激磁保护是反应发电机因频率降低或者电压过高引起铁芯工作磁密过高的保护。
过激磁保护分高、低两段定值,低定值经固定延时5s发出信号和降低励磁电压(降低励磁电压、励磁电流的功能暂未用),高定值经反时限动作于解列灭磁。
反时限延时上限为5秒,下限为200秒。
3.发电机定子接地保护发电机定子接地保护作为发电机定子单相接地故障保护,由基波零序电压部分和三次谐波电压两部分组成,基波零序电压保护机端至机尾95%区域的定子绕组单相接地故障,由反映发电机机端零序电压原理构成,经时限t1(3s)动作于解列灭磁;三次谐波电压保护机尾至机端30%区域的定子绕组单相接地故障,由发电机中性点和机端三次谐波原理构成,经时限t2(5s)动作于信号。
同步发电机的失磁保护

保护的配置
电流检测元件
用于检测发电机的机端电流,判 断是否出现失磁现象。
阻抗元件
通过测量发电机的功角和机端电压, 计算出发电机的阻抗,并与预设的 阻抗值进行比较,判断是否出现失 磁。
延时元件
用于防止因发电机在正常范围内的 波动而误发失磁信号,设定一定的 延时时间。
保护的整定
电流阈值
开展跨学科的研究合作,引入 新的理论和技术手段,推动失 磁保护技术的创新发展。
THANKS
谢谢
根据发电机的额定电流和允许的失磁电流,设定一个电流阈值,当 检测到的机端电流低于该阈值时,判断为失磁。
阻抗整定
根据发电机的特性,设定一个阻抗值作为判断失磁的依据。通常选 取发电机的正常阻抗与极端阻抗之间的某个值。
延时时间
根据发电机的运行特性和波动情况,合理设置延时时间,以避免误判。
保护的测试与校验
致磁场强度降低。
功角增大
由于磁场强度降低,同 步发电机输出的有功功 率会增大,功角随之增
大。
转子转速异常
失磁会导致转子转速异 常,可能高于正常转速。
无功电流反向
失磁会导致无功电流反 向流动,即从系统流向
发电机。
对电力系统的影响
01
02
03
04
电压下降
由于发电机输出的有功功率增 大,无功功率减小,导致系统
同步发电机的失磁保护
目录
CONTENTS
• 同步发电机失磁现象及影响 • 失磁保护的重要性及要求 • 失磁保护装置及原理 • 失磁保护的配置及整定 • 失磁保护的案例分析 • 总结与展望
01
CHAPTER
同步发电机失磁现象及影响
失磁现象描述
失磁保护(讲课资料)

低励.掉磁呵护应控制的常识点:1.什么是掉磁?2.掉磁后,发电机的运行状况若何变更?或者说发电机开端掉磁(在未超出静稳极限之前)的现象?3.掉磁呵护有哪些判据?(看解释书,先记住这些判据的名称,道理可以先不看)4.发电机掉磁对体系和发电机本身有什么影响?5.发电机掉磁后,机端测量阻抗大致若何变更?(先懂得)一.界说掉磁呵护,有时刻也叫低励呵护.但从加倍确实的界说上讲,低励:暗示发电机的励磁电流低于静稳极限所对应的励磁电流;(发电机要向外送这么多有功,必须要有响应的励磁电流来保持,励磁电流太低,连静稳极限都保持不了的时刻,就叫低励.而掉磁:暗示发电机完整掉去励磁.发电机低励.掉磁,是罕有的故障情势,特殊是大型发电机组,励磁体系的环节比较多.增长了产生低励.掉磁的机遇.二.掉磁的进程正常运行时,转子的扭转磁场,与定子绕组中电流产生的交变磁场,两者耦合到一路,同步扭转,转子磁场起推进力的感化,定子绕组中电流产生的交变磁场起制动力的感化,两者大小相等,同步扭转,把原念头的能量,经由过程磁场传到三相体系中去.而低励.掉磁时,转子中的磁场就减小,最后没有了,相当于转子用来推进定子交变磁场扭转的磁场减小.甚至没有了,相当于将“原念头的能量”转换成“三订交换体系中的电能”的序言减小.甚至没有了,那么原念头的能量就只能转换成转子的机械能,所以转子的转速要加快.以下为填补:励磁与有功.机端电压的关系(纯属小我懂得,仅供参考)有功增长了在机端电压不变的情形下定子电流就会增长,定子电流增长的话就会使机端电压降低, 为了保持机端电压的恒定就会增长励磁电流来稳固电压,励磁电流只调节无功,但无功和有功要知足功率圆.可能会出如今无功必定的情形下有功无法调节.就是说在有功增长的情形下励磁电流会变大的有功减小的话励磁电流也会响应的减小.也就是说,增长励磁电流,可以增长发电机输出的无功Q,也会使发电机的输出电压升高;反之,则相反.而励磁电流与有功P之间无必定的接洽.差不久不多吧,有功增长会使发电机产生去磁感化,这个时刻发电机电压会降低,发电机遇掉磁,无功就要响应的增长.理论上调剂有功,无功会跟着变更,增长无功,有功不跟着无功变更.单台发电机对于无限大体系而言,发电机输出的有功.无功的表达式为如下,式中,各参数的界说与上面填补部分的界说雷同.但下式成立的前提是xd=xq(此时xdΣ=xqΣ),即对于隐极发电机,才成立,对于凸极机,不成立.式中,P为发电机的有功,E0为发电机的机端电压;Us为体系电压,XΣ为包含发电机在内的全部体系的电抗,δ为转子磁场与定子绕组的电枢磁场的夹角(也可懂得为机端电压与无限大体系电压之间的夹角).对于水轮发电机:d轴:直轴(横轴),磁极轴线,转子上是一个大齿;q轴:交轴(相轴.时轴),相邻南北极之间的中间线,都是些小齿.是以,Xd与Xq不成能完整相等,Xd>Xq.发电机的机端电压E0与励磁电流If是成线性关系的,掉磁进程中,励磁电流减小,引起机端电压E0降低(无功功率降低),但是掉磁后,因为转子转速加快,δ会变大(δ的转变比E0的转变慢),在必定规模内,sinδ变大,cosδ,所以:“机端电压E0降低”与“sinδ变大”二者是互相抵偿的感化,所以在掉磁初始阶段,有功功率P先减小,后增长,往返摇动,但有功P的平均值变更不大;而无功功率Q则中断降低,甚至向体系接收无功(E0降低.cosδ降低);因为机端电压E0降低(在超出静稳极限后,机端电压讲大幅降低),是以,机端电流I先降低,后面有功P增长后,I也会回升.具体各电气参数如上图所示.综上,发电机开端掉磁(在未超出静稳极限之前)的现象如下:①无功功率Q在中断降低,甚至从正值变成负值;②机端电压E0在中断降低;③机端电流I在上升(先降低.后上升);④有功功率P有摇动(先降低.后上升),但平均值变更不大.这个时刻,发电机仍能向体系输送有功P,但因为无功Q降低,甚至接收无功,机端电压要降低,是以须要本厂其他无故障的机组,或者其他厂无故障的机组多发一些无功功率,以保持体系电压.当功角δ>180°今后,发电机完整掉步,有功P已变成负值,即发电机接收有功,发电机在体系电压的感化下,作电念头运转,定子电枢磁场已不再是对转子磁场起制动感化,而是和转子上的原动力矩一路,合营使令发电机加快扭转,很快使δ>360°,开端一个新的扭转周期,发电机输出的有功功率.无功功率.定子电流.转子电流和电压均呈现不合程度的振荡,但定子机端电压手体系电压的牵制,是以摇动比较安稳.三.掉磁后的发电机机端测量阻抗轨迹以下内容针对汽轮发电机而言:满负荷稳固运行时,发电机运行在A点,以掉磁开端为0s,约5s后无功功率反向,机端测量阻抗轨迹开端进入-x的第四象限;10s今后,机端测量阻抗轨迹在C区摆动;若将有功负荷减到额定功率的60%,则机端测量阻抗轨迹在D区摆动;若将有功负荷减到额定功率的40%,则机端测量阻抗轨迹稳固在B点邻近,掉磁机组进入稳固异步运行.1.掉磁初始阶段(在掉去静态稳固之前)的阻抗轨迹:等有功阻抗圆等有功的概念:前面已经剖析,在掉磁初始阶段(在掉去静态稳固之前),发电机有功功率P固然在摇动,但其平均值差不久不多是不变的,是以叫等有功.如今就假定输出有功功率P(这里用Ps暗示)根本不变,来剖析机端测量阻抗Z的轨迹.掉磁初始阶段(在掉去静态稳固之前)的阻抗轨迹就是等有功圆,静稳极限损坏之后,阻抗轨迹才偏离等有功圆进入第三.四象限.图6-3-3给我们的启示:①假如掉磁发电机与无限大体系的衔接电抗Xs越大(即发电厂与体系接洽很单薄,远离体系中间),则等有功圆就要沿着jx轴往上偏移,是以掉磁后的机端测量阻抗轨迹也整体往上偏移,即位于阻抗平面的上部区域,就不轻易进入第三.第四象限,而掉磁阻抗圆的动作区在第三.第四象限,所以此时掉磁呵护可能拒动.②掉磁以前,发电机带的有功Ps越大,则掉磁后机端测量阻抗轨迹圆的圆心越接近原点(从式6-6-3a可知),掉磁后的机端测量阻抗轨迹(即等有功圆)越小,同理,就不轻易进入第三.第四象限,而掉磁阻抗圆的动作区在第三.第四象限,所以此时掉磁呵护可能拒动.2.静稳极限阻抗圆填补:对于汽轮机的静稳极限(鸿沟)阻抗圆,上面为Xs(体系接洽电抗,或者叫发电机与无限大体系的衔接电抗),下面为-Xd,以它们为直径所作的圆.机端测量阻抗轨迹进入该圆,暗示这台发电机的静稳极限损坏了.等有功圆与静稳极限(鸿沟)阻抗圆是订交的,刚一开端掉磁,机端测量阻抗轨迹就有可能沿着等有功圆进入静稳极限(鸿沟)阻抗圆,是以,静稳极限(鸿沟)阻抗圆的动作区域较大,比异步鸿沟阻抗圆更敏锐,静稳极限方才被损坏,呵护就动作了.但是,对于汽轮机的静稳极限(鸿沟)阻抗圆,其动作区域它包含了所有象限,第四象限是同步发电机掉磁应当动作的区域,第三象限是同步电念头掉磁应当动作的区域.而在第一.二象限,除了掉磁呵护会动作外,短路故障也会动作,是以,为了防止短路时静稳极限(鸿沟)阻抗圆误动,从第二象限到第四象限整齐根直线,弄成一个偏向阻抗继电器.如P303,图6-4-5所示.而在我国,为了防止短路时静稳极限(鸿沟)阻抗圆误动,就把Xs移到零点,即机端,以零点和-Xd为弦,以静稳极限(鸿沟)阻抗圆为基本,画一个苹果圆,让这个苹果圆尽可能的跟理论上的静稳极限(鸿沟)阻抗圆挨近.我们把这个苹果园叫:准静稳极限阻抗圆.如P304所讲.无论是静稳极限阻抗圆,照样异步鸿沟阻抗圆,阻抗继电器不但是在掉磁的时刻才动作,在体系振荡.PT断线以及发电机从机端到高压体系产生相间短路.接地短路(经由渡电阻短路,过渡电阻达到必定命值)时,这些阻抗圆可能会误动.所以阻抗圆也要和“励磁低电压”等判据相合营应用,即进入阻抗圆之后,要“励磁电压低于整定值”之后,才动作.若是体系短路,为了保持体系稳固,励磁体系会主动将励磁加大,此时进入阻抗圆之后,因为“励磁低电压”等判据不知足,掉磁呵护也不会动作.详见金安桥的“静稳极限励磁电压U (P) fd主判据”金安桥掉磁呵护的几个判据1.静稳极限励磁电压U (P) fd主判据若定子机端电势E0用定子的额定电压作为基准值,再盘算它的标幺值;而转子电压U1的基准值为发电机空载的额定励磁电压,则定子机端电势E0的标幺值,就等于转子电压U1的标幺值,那么从标幺值来说,E0就是转子电压,故有功P即为转子电压乘以无限大母线电压,再比上同步电抗.所以,发电机要发出某一数目的有功P,就必须要有必定命量的励磁电压E0(转子电压,它们的标幺值相等)来保持,换句话,发电机要送某一数目的有功功率P,且体系要保持静稳极限,那么必须要有的谁人转子电压就能肯定下来.转子电压的标幺值,与有功P成一个线性关系.故,用转子低电压作为判据时,转子低电压的定值是跟着有功功率的变更而变更的.不合的有功功率,保持静稳极限所需的转子电压就有不合的定值.(但这是从稳态的状况下来说的,而在暂态进程中,这个线性关系不成立)该判据的长处是:凡是能导致掉步的掉磁初始阶段,因为U fd 快速降低,U (P) fd判据可快速动作;在平日工况下掉磁,U (P) fd 判据动作大约比静稳鸿沟阻抗判据动作提前1 秒钟以上,有猜测掉磁掉步的功效,明显进步机组压出力或切换励磁的后果.5.6.2 定励磁低电压帮助判据为了包管在机组空载运行及 Pt < P 的轻载运行情形下掉磁时呵护能靠得住动作,或为了全掉磁及轻微部分掉磁时呵护能较快出口,附加装设整定值为固定值的励磁低电压判据,简称为“定励磁低电压判据”,其动作方程为:金安桥掉磁呵护跳闸清册:静稳鸿沟阻抗判据知足后,至少延时1~1.5s 发掉磁旌旗灯号.压出力或跳闸,延时1~1.5s 的原因是躲开体系振荡.扇形与R 轴的夹角10°~15°为了躲开辟电机出口经由渡电阻的相间短路,以及躲开辟电机正常进相运行.5.6.4 稳态异步鸿沟阻抗判据发电机产生凡是能导致掉步的掉磁后,老是先到达静稳鸿沟,然后转入异步运行,进而稳态异步运行.该判据的动作圆为下抛圆,它匹配发电机的稳态异步鸿沟圆.特征曲线见图5-6-4.5.6.5 主变高压侧三雷同时低电压判据发电机掉磁后,可能引起主变高压侧(体系)电压降低,激发局部电网电压解体,是以,在掉磁呵护设置装备摆设计划中,应有“三雷同时低电压”判据.为防止该判据误动,该判据应与其它帮助判据构成“与”门出口.此判据重要断定掉磁的发电机对体系电压(母线电压)的影响.五.不雅音岩所用的南瑞PCS-985GW发电机呵护中,掉磁呵护有哪些判据?它们各有什么感化?实用于哪些场合?答:①母线(机端)低电压判据:该判据用于呵护电力体系不被掉磁故障的发电机拖垮,是一个保体系的判据;实用于体系无功储备缺少时,远离负荷中间.与体系接洽比较单薄的发电厂扶植初期,或枯水运行季候的时刻.②定子阻抗判据,包含静稳极限阻抗圆.异步鸿沟阻抗圆:该判据为掉磁故障的主判据,用于判别发电机的低励掉磁故障,延时动作于旌旗灯号或出口;个中静稳极限阻抗圆实用于“远离负荷中间,与体系接洽单薄,体系等值阻抗大”的发电厂,而异步鸿沟阻抗圆实用于“在负荷中间,与体系接洽慎密,体系等值阻抗小”的发电厂.③转子侧判据,包含转子低电压判据.发电机的变励磁电压判据(也叫静稳极限励磁电压判据):因为在能导致掉步的掉磁初始阶段,该判据能快速动作;在平日工况下比定子抗判据动作提前1 s 以上,是以有猜测掉磁掉步的功效,明显进步机组减出力或切换励磁的后果;实用于在体系振荡.PT断线以及发电机从机端到高压体系产生相间短路.接地短路(经由渡电阻短路,过渡电阻达到必定命值)时,与定子阻抗判据合营应用,防止定子阻抗判据单独应用时误动作.④无功反向判据:该判据用于反应掉磁进程中发电机向体系倒吸无功,导致体系电压降低,用于与其他掉磁判据相合营,完美掉磁呵护的功效,增长掉磁呵护动作的靠得住性.六.发电机掉磁对发电机.体系的影响发电机掉磁对体系和发电机本身有什么影响?汽轮发电机许可掉磁运行的前提是什么?(高等技师)答:发电机掉磁对体系的影响:(1)发电机掉磁后,不单不克不及向体系送出无功功率,并且还要从体系中接收无功功率,将造成体系电压降低.(2)为了供应掉磁发电机无功功率,可能造成体系中其他发电机过电流.发电机掉磁对发电机自身的影响:(1)发电机掉磁后,转子和定子磁场之间消失了速度差,则在转子回路中感应出转差频率的电流,引起转子局部过热.(2)发电机受交变的异步电磁力矩的冲击而产生振动,转差率愈大,振动也愈大.汽轮发电机许可掉磁运行的前提是:(1)体系有足够供应发电机掉磁运行的无功功率,以不至于造成体系电压轻微降低为限.(2)降低发电机有功功率的输出,使之能在很小的转差下,在许可的一段时光内异步运行.即发电机应在较小的有功功率下掉磁运行,使之不至于造成伤害发电机转子的发烧和振动.七.几道技巧判定的习题大型发电机掉磁呵护,在什么情形下采取异步鸿沟阻抗圆?又在什么情形下采取静稳极限阻抗圆?解释来由.(技师)答:在负荷中间,体系等值阻抗小的宜选用异步鸿沟阻抗圆;远离负荷中间,体系等值阻抗大的宜选用静稳极限阻抗圆.来由是:远离负荷中间的大型发电机掉磁后,机端等有功阻抗圆可能不与异步鸿沟阻抗圆订交,掉磁呵护动作慢,有可能对侧体系的后备呵护是以掉磁引起过流而先动作了,本侧掉磁呵护却还未动作,造成对侧呵护先跳闸,从而扩展变乱规模.(即在掉磁初始阶段,还未掉步时,机端测量阻抗轨迹还在等有功圆上,且阻抗轨迹正在慢慢的由第一象限向第四象限移动的时刻,因为端等有功阻抗圆可能不与异步鸿沟阻抗圆订交,掉磁呵护就不克不及提前动作,而等阻抗轨迹进入异步鸿沟阻抗圆时,机组已完整异步运行了,这时才动作跳闸,线路上的后备呵护可能早就动作了,使故障扩展.)“励磁低电压”判据为什么不克不及单独用于掉磁呵护?答:这是因为当前电力体系的容量越来越大,鄙人三更电力体系负荷较低的时刻,超高压输电线路对地电容产生的无功,会使发电机机端电压升高(即容升效应,电容电流要给发电机励磁,即发电机接收无功,处于进相运行状况),是以不克不及不把发电机本身的励磁电压.励磁电流减小,以使发电机机端电压还能保持在正常程度,不至于过高,在励磁电压降低后,轻易使“励磁低电压”判据误动,所以,不克不及单独用于掉磁呵护,而要与其他判据合营应用.(为了抵偿高压输电线路的电容和接收其无功功率,防止电网轻负荷时因容性功率过多引起的电压升高.在线路两头装配了并联电抗器)。
发电机失磁保护介绍

发电机失磁保护介绍1 概述同步发电机是根据电磁感应的原理工作的,发电机的转子电流(励磁电流)用于产生电磁场。
正常运行工况下,转子电流必须维持在一定的水平上。
发电机失磁故障是指励磁系统提供的励磁电流突然全部消失或部分消失。
同步发电机失磁后将转入异步运行状态,从原来的发出无功功率转变为吸收无功功率。
对于无功功率容量小的电力系统,大型机组失磁故障首先反映为系统无功功率不足、电压下降,严重时将造成系统的电压崩溃,使一台发电机的失磁故障扩大为系统性事故。
在这种情况下,失磁保护必须快速可靠动作,将失磁机组从系统中断开,保证系统的正常运行。
引起发电机失磁的原因大致有:发电机转子绕组故障、励磁系统故障、自动灭磁开关误跳闸及回路发生故障等。
2 发电机失磁过程中机端测量阻抗分析发电机从失磁开始进入稳态异步运行,一般分为三个阶段:(1)失磁后到失步前(2)临界失步点(3)异步运行阶段2.1隐极式发电机以汽轮发电机经联络线与无穷大系统并列运行为例,其等值电路与正常运行时的向量图如图1所示。
图1 发电机与无限大系统并列运行图中,d E 为发电机的同步电势,f U 为发电机机端相电压,s U 为无穷大系统相电压,I 为发电机定子电流,d X 为发电机同步电抗,s X 为发电机与系统之间的等值电抗,且有s d X X X +=∑ ,ϕ为受端的功率因数角,δ为d E 与s U 之间的夹角(即功角)。
若规定发电机发出有功功率、无功功率时,表示为jQ P W -=,则δsin ∑=X U E P sd (1) ∑∑-=X UX U E Q ss d 2cos δ(2) 功率因数角为PQ1tan -=ϕ (3) 在正常运行时,090<δ。
090=δ为稳定运行极限,090>δ后发电机失步。
1. 失磁后到失步前在失磁后到失步前的阶段中,转子电流逐渐减小,Ed 随之减小,随之增大,两者共同的结果维持发电机有功功率P 不变。
与此同时,无功功率Q 随着Ed 的减小与的增大迅速减小,按(2)式计算的Q 值由正变负,发电机由发出感性无功转变为吸收感性无功。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统等值电路图
.
等有功阻抗圆
.
结论:
(1)园的大小与有功功率的大小有关,功率越小, 园的直径越大;
(2)失磁前,发电机向系统送有功功率和无功功率, θ为正,测量阻抗在第一象限;失磁后,无功功率由 正变负, θ角由正值向负值变化,测量阻抗也逐渐 向第四象限过渡,失磁前,发电机送出的有功功率 越大,进入第四象限的时间越短。
当P+Pac=PT时,发电机运行在稳定的异步状态。同 步功率随着δ 的变化将呈周期振荡状态,各电气量 也都相应地将周期性的摆动。
.
(四)失磁后的影响
对电力系统: (1)发电机失磁后,不但不能向系统送出无功功率,而 且还要从系统吸收无功功率。将造成系统电压下降; (2)为了供给失磁发电机无功功率,可能造成系统中其 它发电机过电流; (3)发电机失磁失步后,将造成系统振荡,甩掉大量负 荷。
发电机失磁后,它的各种电气量和机械量都会发生 变化。将危及发电机的安全。
.
系统等值电路
功角特性关系: P EdUs sin
xs xd
Q EdUs cos Us
xs xd
xs xd
PT—原动机功率;P—同步功率;PM—异步功率;
转子运动方程:
TJ dd22t PT(PPM)
d 2 dt 2
随着δ的增大,PT-P的值越来越大;
.
在发电机超过同步转速后,转子回路中将感应出频率为 ff-fx电流,该电流将产生异步功率Pac
Q负的越多机端电压下降的越多,定子电流将持续增大。 (三)完全失步δ >180°
在δ较大时,由于转子相对速度很大,发电机调 速器必然动作,关小汽门或水门,减小原动机输 入的功率,使转子减慢。
.
三、负序反时限过流保护
反时限过电流保护是一种动作 I2
时间随通过电流的增大而减小的
保护。反时限过电流保护的特性
与发电机允许的负序电流曲线相
配合,如图所示。即动作特性在
运行负序电流曲线的上面,这样 可避免在发电机还没有达到危险 状态时就被切除。次时保护的动 作特性可表示为
t
发电机反时限负序电流保护 的特性
第二十一讲 发电机的负序过电流保护 失磁保护和母线保护
.
主要内容
1.掌握发电机负序过电流保护的作用 2.掌握发电机失磁进入异步运行时,对电力系统和发电 机的危害 3.掌握发电机失磁机端测量阻抗的变化轨迹 4、什么是失磁发电机的等有功阻抗园、等无功阻抗园 和临界失步园 5、简述母线常见的故障类型及相应的保护方式 6、掌握母线完全差动保护和相位差动保护的基本原理
(3)等有功阻抗园的圆心坐标与联系阻抗Xs有关。
可见,失磁后,ZJ向第四象限移动,且最终将稳定 在第四象限内。
.
②等无功阻抗圆(δ=90°)
.
临界失步(或静稳极限)阻抗圆
.
③临界电压值(临界电压园)
发电机失磁后,系统某一点电压下降到使机组 不能稳定运行,此为临界电压值
Us Uf jI(xB xs)ZI jI(xB xS)
t
A
I
2 2
I22t At
式中 α—与发电机转子的温升特性,温升裕度等因
素有关的常数。
.
Ⅱ 发电机的失磁保护
发电机的失磁运行及其产生的影响 一、失磁的原因: (1)励磁回路开路、励磁绕组断线、灭磁开关误动作、励磁调节 装置的自动开关误动、可控硅励磁装置中部分元件损坏; (2)励磁绕组由于长期发热,绝缘老化或损坏引起短路; (3)运行人员误调整等。
I22t A .
I2*---为以发电机额定电流倍数表示的负序电流的标幺值; A –允许过热时间常数 曲线表明发电机允许负序电流持续的时间t是随大小而变 化的。I2*大时,允许的时间短,I2*小时,允许的时间长。 这种变化的特性称为反时限特性。 为此发电机应装设负序过电流保护。
二、负序定时限过电流保护
.
Ⅰ 发电机的负序过电流保护
一、负序电流保护的作用
在电力系统中发生不对称
短路或正常运行情况下三相
负荷不平衡时,在发电机绕
组中将出现负序电流,该电
流将在转子回路中感应出倍
频电流引起转子过热,危害
发电机安全。为使转子不致
过热,负序电流与允许它通
t
过过发电机的时间的关系为 发电机负序电流与允许它通过
的时间关系曲线
Ⅰ段: I2op0.5Ief
经t1(4s)延时动作于跳闸。
Ⅱ段ቤተ መጻሕፍቲ ባይዱ I2op0.1Ief
.
经t2(5-10)s延时动作于序信号
分析:
(1)在ab段内: t1>t允许,对发电机 不安全;
(2)在bc段内: t1<t,可保证发电机 安全,但没有充分利 用发电机承受负序电 流的能力。
两段负序定时限过电流保护动作特性与发电机 允许负序电流曲线的配合情况
.
(3)在cd段内,保护装置Ⅰ段不会动作,只能由 Ⅱ段动作于发信号,靠运行人员去处理。在靠近c 点部分,允许时间较短,实际上来不及处理,所以 在此区段内,对发电机是不安全的。
(4)在dc段内,保护不反应。 结论:两段式负序定时限过电流保护的动作特性与 发电机允许的负序电流曲线不能很好配合,且不能 反应负序电流变化时发电机转子的热积累过程。
--电气角加速度;TJ—机组的惯性时间常数
.
发电机从失磁到进入稳态的异步运行,一般可分为三个阶段: (一)失步前( δ ≤90°)
Ilc减小,Ed减小, δ增大; 维持P=PT;
定子电流随δ的增大而增大;
Q缓慢减小。
当δ =90°时,Q
U
2 s
xd xs
即从系统吸收无功功率。机端电压下降。
(二)开始失步( 90°<δ≤180° )
.
对发电机: (1)发电机失磁后,转子和定子磁场间出现了速度 差,则在转子回路中感应出转差频率的电流,引起转 子局部过热。 (2)发电机受交变的异步电磁力矩的冲击而发生振 动,转差率越大,振动越厉害。 可见,失磁后,若不失步,无直接危害。失步后,对 发电机及系统有不利影响。故应装设失磁保护。
.
二、失磁发电机机端测量阻抗的变化轨迹
UB Uf jIxB ZI jIxB
UB Us
Z jxB Z j(xB xs)
R2 (xxs)2 R2 (xxB xs)2
整理后:R 2(x 1-M M 22xs-xB )2(1 M M 22)2xs2
.
临界电压阻抗园
.
三、失磁保护的主要判据
1.主要判据 现在大型同步发电机的失磁保护都是利用定子回路 参数变化来检测失磁故障。可作为失磁保护的判据有: (1)无功功率改变方向; (2)机端测量阻抗超越静稳边界阻抗园的边界; (3)机端测量阻抗进入异步边界阻抗园。 可作为失磁保护的定子判据,还有反应发电机感应电 势衰减及消失、功角增大等。