导数练习题(含答案)

导数练习题(含答案)
导数练习题(含答案)

导数练习题

1.已知函数f (x )=ax 3

+bx 2

+cx 在x =±1处取得极值,在x =0处的切线与直线3x +y =0平行.

(1)求f (x )的解析式;

(2)已知点A (2,m ),求过点A 的曲线y =f (x )的切线条数. 解 (1)f ′(x )=3ax 2

+2bx +c ,

由题意可得????

?

f ′(1)=3a +2b +c =0,f ′(-1)=3a -2b +c =0,

f ′(0)=c =-3,

解得????

?

a =1,

b =0,

c =-3.

所以f (x )=x 3

-3x .

(2)设切点为(t ,t 3-3t ),由(1)知f ′(x )=3x 2-3,所以切线斜率k =3t 2

-3, 切线方程为y -(t 3

-3t )=(3t 2

-3)(x -t ).

又切线过点A (2,m ),代入得m -(t 3

-3t )=(3t 2

-3)(2-t ),解得m =-2t 3

+6t 2

-6. 设g (t )=-2t 3

+6t 2

-6,令g ′(t )=0, 即-6t 2

+12t =0,解得t =0或t =2.

当t 变化时,g ′(t )与g (t )的变化情况如下表:

作出函数草图(图略),由图可知:

①当m >2或m <-6时,方程m =-2t 3

+6t 2

-6只有一解,即过点A 只有一条切线; ②当m =2或m =-6时,方程m =-2t 3

+6t 2

-6恰有两解,即过点A 有两条切线; ③当-6

+6t 2

-6有三解,即过点A 有三条切线. 2.已知函数f (x )=a ln x -bx 2.

(1)当a =2,b =12时,求函数f (x )在[1

e

,e]上的最大值;

(2)当b =0时,若不等式f (x )≥m +x 对所有的a ∈[0,32],x ∈(1,e 2

]都成立,求实数m 的

取值范围.

解 (1)由题意知,f (x )=2ln x -12x 2,f ′(x )=2x -x =2-x

2

x ,

当1e ≤x ≤e 时,令f ′(x )>0得1

e

≤x <2;令f ′(x )<0,得2

∴f (x )在[1

e ,2)上单调递增,在(2,e]上单调递减,∴

f (x )max =f (2)=ln 2-1.

(2)当b =0时,f (x )=a ln x ,若不等式f (x )≥m +x 对所有的a ∈[0,32],x ∈(1,e 2

]都成

立,则a ln x ≥m +x 对所有的a ∈[0,32],x ∈(1,e 2

]都成立,即m ≤a ln x -x ,对所有的a ∈[0,

32

],x ∈(1,e 2

]都成立,令h (a )=a ln x -x ,则h (a )为一次函数,m ≤h (a )min .∵x ∈(1,e 2],∴ln x >0,

∴h (a )在[0,32]上单调递增,∴h (a )min =h (0)=-x ,∴m ≤-x 对所有的x ∈(1,e 2

]都成立.

∵1

,∴-e 2

≤-x <-1,∴m ≤(-x )min =-e 2

.即实数m 的取值范围为(-∞,-e 2

]. 3.设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数. (1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N *

,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;

(3)设n ∈N *

,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明. 解 由题设得,g (x )=x

1+x

(x ≥0).

(1)由已知,g 1(x )=

x 1+x ,g 2(x )=g (g 1(x ))=x

1+x 1+

x 1+x

=x 1+2x ,g 3(x )=x

1+3x

,…,可得g n (x )

x

1+nx

. 下面用数学归纳法证明.

①当n =1时,g 1(x )=x

1+x

,结论成立.

②假设n =k 时结论成立,即g k (x )=x

1+kx

.那么,当n =k +1时,

g k +1(x )=g (g k (x ))=

g k (x )1+g k (x )=x

1+kx 1+

x 1+kx

=x 1+(k +1)x

,即结论成立.

由①②可知,结论对n ∈N *

成立.

(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax 1+x 恒成立.设φ(x )=ln(1+x )-ax

1+x (x ≥0),

则φ′(x )=11+x -a (1+x )2=x +1-a

(1+x )

2,

当a ≤1时,φ′(x )≥0(当且仅当x =0,a =1时等号成立),∴φ(x )在[0,+∞)上单调递

增.

又φ(0)=0,∴φ(x )≥0在[0,+∞)上恒成立, ∴a ≤1时,ln(1+x )≥

ax

1+x

恒成立(当且仅当x =0,a =1时等号成立). 当a >1时,对x ∈(0,a -1]有φ′(x )≤0,∴φ(x )在(0,a -1)上单调递减∴φ(a -1)<φ(0)=0.

即a >1时,存在x >0,使φ(x )<0,故知ln(1+x )≥ax

1+x

不恒成立,

综上可知,a 的取值范围是(-∞,1].

(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+n n +1,n -f (n )=n -ln(n +1),比较结果

为g (1)+g (2)+…+g (n )>n -ln(n +1). 证明如下:

方法一:上述不等式等价于12+13+…+1

n +1

在(2)中取a =1,可得ln(1+x )>x 1+x ,x >0.令x =1n ,n ∈N *

,则1n +1

.

下面用数学归纳法证明.

①当n =1时,1

2

②假设当n =k 时结论成立,即12+13+…+1

k +1

那么,当n =k +1时,12+13+…+1k +1+1k +2

k +1=ln(k +

2),即结论成立.

由①②可知,结论对n ∈N *

成立.

方法二:上述不等式等价于12+13+…+1

n +1

在(2)中取a =1,可得ln(1+x )>x 1+x ,x >0.令x =1n ,n ∈N *

,则ln n +1n >1n +1

.

故有ln 2-ln 1>12,ln 3-ln 2>13,…,ln(n +1)-ln n >1

n +1,

上述各式相加可得ln(n +1)>12+13+…+1

n +1

,结论得证.

D1、已知函数()2f x m x =+与函数()11ln 3,22g x x x x ??

??=--∈ ???????的图像上至少存

在一对关于x 轴对称的点,则实数m 的取值范围是( )。

A 、5ln 2,24??+????

B 、52ln 2,ln 24??

-+????

C 、5ln 2,2ln 24??

+-????

D 、[]2ln 2,2-

B2、已知函数()32

31f x a x x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围,为( )。

A 、(2,+∞)

B 、(,2-∞-)

C 、(,1-∞-)

D 、(1,+∞) A3、定义在R 上的函数()f x 满足:()()()()1,00,f x f x f f x ''>-=是()f x 的导函数,则不等式()1x x e f x e >-(其中e 为自然对数的底数)的解集为( )。 A 、()0,+∞ B 、()(),10,-∞-?+∞ C 、()(),01,-∞?+∞ D 、()1,-+∞ 4、已知函数()2

143ln 2

f x x x x =-

+-在[],1t t +上不单调,那么实数t 的取值范围是 。(0,1)(2,3)U

C5、若函数32()132x a f x x x =-++在区间1,32??

???

内有极值点,则实数a 的取值范围

是( )。

A 、52,2?? ???

B 、52,2??????

C 、102,3?? ???

D 、102,3??

????

B6、已知函数3214

()33

f x x x x =+++,若函数()y f x a b =++为奇函数,则a b +的

值为( )。

A 、-5

B 、-2

C 、0

D 、2

D7、已知函数2()(32),x f x e x a x =+++在区间(1,0)-有最小值,则实数a 的取值范围是( )。

A 、11,e ??-- ???

B 、1,3e ??-- ???

C 、3,1e ??-- ???

D 11,3e ?

?-- ??

?

A8、设函数()f x 在R 上的导函数为2(),2()()f x f x xf x x ''+>且,下面的不等式在R 上恒成立的是( )。

A 、()0f x >

B 、()0f x <

C 、()f x x >

D 、()f x x <

A9、已知函数()(2)x f x x e ax a =---,若不等式()0f x >恰有两个正整数解,则a 的取值范围是( )。

A 、31,04e ??-????

B 、,02e ??-????

C 、31,42e e ??-????

D 、31,24e ??-????

D10、若函数2()ln ()(0)f x x g x ax a ==>与函数有两条公切线,则实数a 的取值范围是( )。 A 、1(0,)e B 、1(0,)2e C 、1(,)e +∞ D 、1

(,)2e

+∞

11、已知函数()g x 满足121

()(1)(0)2

x g x g e g x x -'=-+,且存在实数0x 使得不等式

021()m g x -≥成立,则m 的取值范围是 。【1,+无穷】

12、已知1,3x x ==是函数()sin()(0,)f x x ω?ω?π=+><相邻的两个极值点,且

()f x 在32x =

处的导数302f ??

'< ???,则13f ??

= ???

。(二分之一) 13、已知函数21

(),()241

f x x

g x x ax x =-

=-++,若任意[][]120,1,1,2x x ∈∈存在,使12()()f x g x ≥,则实数a 的取值范围是 。【四分之九到正无穷】 B14、已知M 为曲线x y e =上一动点,N 为曲线ln y x =上一动点,则MN 的最小值为( )。

A C 、、 A15、723456701234567(12)x a a x a x a x a x a x a x a x -=+++++++,则代数式

1234567234567a a a a a a a ++++++的值为( )。

A 、14-

B 、7-

C 、7

D 、14

导数练习题 含答案

导数练习题 班 级 姓名 一、选择题 1.当自变量从x 0变到x 1时函数值的增量与相应自变量的增量之比是函数( ) A .在区间[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化量 D .在区间[x 0,x 1]上的导数 2.已知函数y =f (x )=x 2 +1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 3.函数f (x )=2x 2-1在区间(1,1+Δx )上的平均变化率Δy Δx 等于( ) A .4 B .4+2Δx C .4+2(Δx )2 D .4x 4.如果质点M 按照规律s =3t 2 运动,则在t =3时的瞬时速度为( ) A . 6 B .18 C .54 D .81 5.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是( ) A .3 B .-3 C . 2 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直 7.曲线y =-1 x 在点(1,-1)处的切线方程 为( ) A .y =x -2 B .y =x C .y =x + 2 D .y =-x -2 8.已知曲线y =2x 2上一点A (2,8),则A 处的切线斜率为( ) A .4 B .16 C .8 D .2 9.下列点中,在曲线y =x 2上,且在该点 处的切线倾斜角为π 4的是( ) A .(0,0) B .(2,4) C .(14,1 16) D .(12,1 4) 10.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b = 1 B .a =-1,b =1 C .a =1,b =- 1 D .a =-1,b =-1 11.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C . 6 D .9 12.已知函数f (x )=1 x ,则f ′(-3)=( ) A . 4 B.1 9 C .-14 D .-1 9 13.函数y =x 2 x +3 的导数是( )

(完整word版)导数单元测试(含答案)

导数单元测试 【检测试题】 一、选择题 1. 设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A .'(1)f B .3'(1)f C .1 '(1)3 f D .以上都不对 2. 已知函数f (x )=ax 2 +c ,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 3 .()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足' ' ()()f x g x =,则 ()f x 与()g x 满足( ) A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4.三次函数x ax y +=3 在()+∞∞-∈,x 内是增函数,则 ( ) A . 0>a B .0

导数的运算练习题.doc

导数的运算练习 一、常用的导数公式 (1)'C = (C 为常数); (2)()'n x = ; (3)(sin )'x = ; (4)(cos )'x = ; (5)()'x a = ; (6)()'x e = ; (7)_____________; (8)_____________; 二、导数的运算法则 1、(1) ; (2) ; (3)______________________________________; (4) =___________________________________;(C 为常数) 2、复合函数的导数 设 . 三、练习 1、已知()2f x x =,则()3f '等于( ) A .0 B .2x C .6 D .9 2、()0f x =的导数是( ) A .0 B .1 C .不存在 D .不确定 3、32y x 的导数是( ) A .23x B .213x C .12- D 33x

4、曲线n y x =在2x =处的导数是12,则n 等于( ) A .1 B .2 C .3 D .4 5、若()f x =()1f '等于( ) A .0 B .13- C .3 D .13 6、2y x =的斜率等于2的切线方程是( ) A .210x y -+= B .210x y -+=或210x y --= C .210x y --= D .20x y -= 7、在曲线2y x =上的切线的倾斜角为4 π的点是( ) A .()0,0 B .()2,4 C .11,416?? ??? D .11,24?? ??? 8、设()sin y f x =是可导函数,则x y '等于( ) A .()sin f x ' B .()sin cos f x x '? C .()sin sin f x x '? D .()cos cos f x x '? 9、函数()2 2423y x x =-+的导数是( ) A .()2823x x -+ B .()2 216x -+ C .()()282361x x x -+- D .()()242361x x x -+- 10、曲线34y x x =-在点()1,3--处的切线方程是( ) A .74y x =+ B .72y x =+ C .4y x =- D .2y x =- 11、点P 在曲线323y x x =-+ 上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ) A .0,2π?????? B .30,,24πππ????????????U C .3,4ππ?????? D .3,24ππ?? ???

导数测试题(含答案)

导数单元测试题 班级姓名 一、选择题 1.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( ) A.0.40 B.0.41 C.0.43 D.0.44 2.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率Δy Δx 等于( ) A.4 B.4+2Δx C.4+2(Δx)2 D.4x 3.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( ) A.不存在B.与x轴平行或重合 C.与x轴垂直D.与x轴相交但不垂直 4.曲线y=-1 x 在点(1,-1)处的切线方程为( ) A.y=x-2 B.y=x C.y=x+2 D.y=-x-2 5.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π 4 的是( ) A.(0,0) B.(2,4) C.(1 4 , 1 16 ) D.( 1 2 , 1 4 ) 6.已知函数f(x)=1 x ,则f′(-3)=( ) A.4 B.1 9 C.- 1 4 D.- 1 9 7.函数f(x)=(x-3)e x的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) 8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( ) A.1个B.2个 C.3个D.4个 10.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分 别是( ) A.f(2),f(3) B.f(3),f(5) C.f(2),f(5) D.f(5),f(3) 11.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( ) A.-10 B.-71 C.-15 D.-22 12.一点沿直线运动,如果由始点起经过t秒运动的距离为s= 1 4 t4- 5 3 t3+2t2,那么速度为零的时刻是( ) A.1秒末 B.0秒 C.4秒末 D.0,1,4秒末 二、填空题 13.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________. 14.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则 b a =________. 15.函数y=x e x的最小值为________. 16.有一长为16 m的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m2. 三、解答题 17.求下列函数的导数:(1)y=3x2+x cos x; (2)y= x 1+x ; (3)y=lg x-e x. 18.已知抛物线y=x2+4与直线y=x+10,求: (1)它们的交点; (2)抛物线在交点处的切线方程. 19.已知函数f(x)= 1 3 x3-4x+4.(1)求函数的极值; (2)求函数在区间[-3,4]上的最大值和最小值.

(完整版)导数的综合大题及其分类.

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?? ?? 0,12,求 h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域内,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值范围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规范解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2, 令m (x )=x 2-ax +1,则Δ=a 2-4. ①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-4 2 ,

高中数学选修第一章导数测试题

高中数学选修第一章导 数测试题 Document number:PBGCG-0857-BTDO-0089-PTT1998

选修2-2第一章单元测试 (一) 时间:120分钟 总分:150分 一、选择题(每小题5分,共60分) 1.函数f (x )=x ·sin x 的导数为( ) A .f ′(x )=2x ·sin x +x ·cos x B .f ′(x )=2x ·sin x -x ·cos x C .f ′(x )=sin x 2x +x ·cos x D .f ′(x )=sin x 2x -x ·cos x 2.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0=( ) A .e 2 B .e D .ln2 4.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( ) A .0 B .-4 C .-2 D .2 5.图中由函数y =f (x )的图象与x 轴围成的阴影部分的面积,用定积分可表示为( ) A. ???-33 f (x )d x f (x )d x +??1-3f (x )d x C. ???-31f (x )d x D. ???-3 1f (x )d x -??13f (x )d x 6.如图是函数y =f (x )的导函数的图象,给出下面四个判断:

①f (x )在区间[-2,-1]上是增函数; ②x =-1是f (x )的极小值点; ③f (x )在区间[-1,2]上是增函数,在区间[2,4]上是减函数; ④x =2是f (x )的极小值点. 其中,所有正确判断的序号是( ) A .①② B .②③ C .③④ D .①②③④ 7.对任意的x ∈R ,函数f (x )=x 3+ax 2+7ax 不存在极值点的充要条件是( ) A .0≤a ≤21 B .a =0或a =7 C .a <0或a >21 D .a =0或a =21 8.某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P 元,销售量为Q ,则销量Q (单位:件)与零售价P (单位:元)有如下关系:Q =8 300-170P -P 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A .30元 B .60元 C .28 000元 D .23 000元 9.函数f (x )=-x e x (a f (b ) D .f (a ),f (b )大小关系不能确定 10.函数f (x )=-x 3+x 2+x -2的零点个数及分布情况为( ) A .一个零点,在? ? ???-∞,-13内

《导数》基础训练题(1)答案

高考数学模拟卷基础题型训练(1)姓名: 导数概念公式 【笔记】 课堂练习 1、在曲线2 y x =上切线倾斜角为 4 π 的点是( D ) A .(0,0) B .(2,4) C .11(, )416 D .11 (,)24 【笔记】 2、曲线2 21y x =+在点(1,3)P -处的切线方程为( A ) A .41y x =-- B .47y x =-- C .41y x =- D .47y x =+ 【笔记】 3、函数在322y x x =-+在2x =处的切线的斜率为 10 【笔记】 4、函数1 y x x =+ 的导数是( A ) A .211x - B .11x - C .2 11x + D .1 1x + 【笔记】 5、函数cos x y x = 的导数是( C ) A .2sin x x - B .sin x - C .2sin cos x x x x +- D . 2 cos cos x x x x +- 【笔记】 6、函数sin (cos 1)y x x =+的导数是( C ) A .cos2cos x x - B .cos2sin x x + C .cos2cos x x + D .2 cos cos x x + 【笔记】 课后作业(1) 姓名: 1、3 2 ()32f x ax x =++,若' (1)4f -=,则a 的值等于( D ) A .3 19 B .3 16 C .3 13 D .3 10 2、函数sin 4y x =在点(,0)M π处的切线方程为( D ) A .y x π=- B .0y = C . 4y x π=- D .44y x π=- 3、求下列函数的导数: (1)12 y x =; (2)41 y x = ; (3 )y 【答案】(1)11 ' 12x y =, (2)5 4--=x y ;(3)52 5 3- =x y 4、若3' 0(),()3f x x f x ==,则0x 的值为_________1±________ 5、函数sin x y x =的导数为___________2 ' sin cos x x x x y -=__________ 6、与曲线y =1 e x 2相切于P (e ,e)处的切线方程是(其中e 是自然对数的底) 高考数学模拟卷基础题型训练(2)姓名: 1、已知曲线3 :C y x =。求曲线C 上横坐标为1的点处的切线的方程为 【笔记】 2、已知3 2 ()32f x ax x =++,若' (1)4f -=,则a 的值是( ) A . 193 B .163 C .133 D .10 3 【笔记】

导数练习题含答案

导数概念及其几何意义、导数的运算 一、选择题: 1 已知32 ()32f x ax x =++,若(1)4f '-=,则a 的值等于 A 193 B 103 C 16 3 D 133 2 已知直线1y kx =+与曲线3 y x ax b =++切于点(1,3),则b 的值为 A 3 B -3 C 5 D -5 3 函数2y x a a = +2 ()(x-)的导数为 A 222()x a - B 223()x a + C 223()x a - D 22 2()x a + 4 曲线313y x x =+在点4 (1,)3 处的切线与坐标轴围成的三角形的面积为 A 1 9 B 29 C 13 D 2 3 5 已知二次函数2 y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1) (0) f f '的最小值为 A 3 B 52 C 2 D 32 6 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B ()2(1)f x x =- C 2()2(1)f x x =- D ()1f x x =- 7 下列求导数运算正确的是 A 211()1x x x '+=+ B 21 (log )ln 2 x x '= C 3(3)3log x x e '=? D 2 (cos )2sin x x x x '=- 8 曲线32 153 y x x =-+在1x =处的切线的倾斜角为 A 6 π B 34π C 4π D 3 π 9 曲线3 2 31y x x =-+在点(1,1)-处的切线方程为 A 34y x =- B 32y x =-+ C 43y x =-+ D 45y x =- 10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为

(完整版)导数单元测试(含答案)

导数单元测试 【检测试题】 一、选择题 1. 设函数()y f x =可导,则0(1)(1)lim 3x f x f x ?→+?-?等于( ). A .'(1)f B .3'(1)f C .1'(1)3 f D .以上都不对 2. 已知函数f (x )=ax 2+c ,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 3 .()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( ) A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4.三次函数x ax y +=3 在()+∞∞-∈,x 内是增函数,则 ( ) A . 0>a B .0

高中数学导数的几何意义测试题含答案

高中数学导数的几何意义测试题(含答案) 选修2-21.1第3课时导数的几何意义 一、选择题 1.如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么() A.f(x0)>0 B.f(x0)<0 C.f(x0)=0 D.f(x0)不存在 [答案] B [解析] 切线x+2y-3=0的斜率k=-12,即f(x0)=-12<0.故应选B. 2.曲线y=12x2-2在点1,-32处切线的倾斜角为() A.1 B.4 C.54 D.-4 [答案] B [解析] ∵y=limx0[12(x+x)2-2]-(12x2-2)x =limx0(x+12x)=x 切线的斜率k=y|x=1=1. 切线的倾斜角为4,故应选B. 3.在曲线y=x2上切线的倾斜角为4的点是() A.(0,0) B.(2,4) C.14,116 D.12,14

[答案] D 页 1 第 [解析] 易求y=2x,设在点P(x0,x20)处切线的倾斜角为4,则2x0=1,x0=12,P12,14. 4.曲线y=x3-3x2+1在点(1,-1)处的切线方程为() A.y=3x-4 B.y=-3x+2 C.y=-4x+3 D.y=4x-5 [答案] B [解析] y=3x2-6x,y|x=1=-3. 由点斜式有y+1=-3(x-1).即y=-3x+2. 5.设f(x)为可导函数,且满足limx0f(1)-f(1-2x)2x=-1,则过曲线y=f(x)上点(1,f(1))处的切线斜率为() A.2 B.-1 C.1 D.-2 [答案] B [解析] limx0f(1)-f(1-2x)2x=limx0f(1-2x)-f(1)-2x =-1,即y|x=1=-1, 则y=f(x)在点(1,f(1))处的切线斜率为-1,故选B. 6.设f(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线() A.不存在 B.与x轴平行或重合

人教A版高中数学选修2-2《导数综合练习题》

导数练习题 1.(本题满分12分) 已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y = 与m x x f y ++'= 5)(3 1 的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分) 已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++=在区间(1,3)上不是单调函数,求 m 的取值范围. 3.(本小题满分14分) 已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分) 已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分) 已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围;

(完整版)高二数学选修2-2导数单元测试题(有答案)

导数复习 一.选择题 (1) 函数13)(23+-=x x x f 是减函数的区间为 ( ) A .),2(+∞ B .)2,(-∞ C .)0,(-∞ D .(0,2) (2)曲线3231y x x =-+在点(1,-1)处的切线方程为( ) A .34y x =- B 。32y x =-+ C 。43y x =-+ D 。45y x =- a (3) 函数y =a x 2 +1的图象与直线y =x 相切,则a = ( ) A . 18 B .41 C .2 1 D .1 (4) 函数,93)(2 3-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4 D .5 (5) 在函数x x y 83-=的图象上,其切线的倾斜角小于4 π 的点中,坐标为整数的点的 个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤ (7)函数3()34f x x x =- ([]0,1x ∈的最大值是( ) A . 1 2 B . -1 C .0 D .1 (8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002 C 、200 D 、100! (9)曲线313y x x =+在点413?? ???,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23 .10设函数()1 x a f x x -= -,集合M={|()0}x f x <,P=' {|()0}x f x >,若 M P,则实数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) 11.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 12函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个 C .3个D . 4个 13. y =e sin x cos(sin x ),则y ′(0)等于( ) A.0 B.1 C.-1 D.2 14.经过原点且与曲线y =5 9++x x 相切的方程是( ) A.x +y =0或25 x +y =0 B.x -y =0或25 x +y =0 C.x +y =0或 25 x -y =0 D.x -y =0或 25 x -y =0 15.设f (x )可导,且f ′(0)=0,又x x f x )(lim 0 '→=-1,则 f (0)( ) A.可能不是f (x )的极值 B.一定是f (x )的极值 C.一定是f (x )的极小值 D.等于0 16.设函数f n (x )=n 2x 2(1-x )n (n 为正整数),则f n (x )在[0,1]上的最大值为( ) A.0 B.1 C.n n )221(+- D.1)2 ( 4++n n n 17、函数y=(x 2-1)3+1在x=-1处( ) A 、 有极大值 B 、无极值 C 、有极小值 D 、无法确定极值情况 18.f(x)=ax 3+3x 2+2,f ’(-1)=4,则a=( ) A 、3 10 B 、3 13 C 、3 16 D 、3 19 19.过抛物线y=x 2 上的点M (4 1,21)的切线的倾斜角是( ) A 、300 B 、450 C 、600 D 、900 20.函数f(x)=x 3-6bx+3b 在(0,1)内有极小值,则实数b 的取值范围是( ) a b x y ) (x f y ?=O

导数基础练习题

导数基础练习题 一 选择题 1.函数()22)(x x f π=的导数是( C ) (A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 28)(π=' (D) x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( A ) (A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0 3.已知对任意实数x ,有()()()()f x f x g x g x -=--=,,且0x >时,()0()0f x g x ''>>,,则0x <时( B ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4.若函数b bx x x f 33)(3+-=在()1,0内有极小值,则(A ) (A ) 10<b (D ) 2 1,对于任意实数x 都有()0f x ≥,则 (1) '(0) f f 的最小值为( C ) A .3 B .5 2 C .2 D .32 9.设2:()e ln 21x p f x x x mx =++++在(0)+∞,内单调递增,:5q m -≥,则p 是q 的( B ) A.充分不必要条件 B.必要不充分条件

(完整版)导数的计算练习题及答案

【巩固练习】 一、选择题 1.设函数310()(12)f x x =-,则'(1)f =( ) A .0 B .―1 C .―60 D .60 2.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( ) A.(0,1) B.()(),10,1-∞-U C. ()()1,01,-+∞U D.()1,+∞ 3.(2014春 永寿县校级期中)下列式子不正确的是( ) A.()'23cos 6sin x x x x +=- B. ()'1ln 2 2ln 2x x x x -=- C. ()' 2sin 22cos 2x x = D.'2sin cos sin x x x x x x -??= ??? 4.函数4538 y x x =+-的导数是( ) A .3543 x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为' ()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( ) A. 2 B.-2 C. 94 D.94- 6.设曲线1(1)1 x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12 D .―2 7.23log cos (cos 0)y x x =≠的导数是( ) A .32log tan e x -? B .32log cot e x ? C .32log cos e x -? D . 22log cos e x 二、填空题 8.曲线y=sin x 在点,12π?? ??? 处的切线方程为________。 9.设y=(2x+a)2,且2'|20x y ==,则a=________。 10.31sin x x '??-= ??? ____________,()2sin 25x x '+=????____________。 11.在平面直角坐标系xOy 中,点P 在曲线C :y=x 3―10x+3上,且在第二象限内,已知曲

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧. 技法一:“比较法”构造函数 [典例] (2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解] (1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的

结论求解. [对点演练] 已知函数f (x )=x e x ,直线y =g (x )为函数f (x )的图象在x =x 0(x 0<1) 处的切线,求证:f (x )≤g (x ). 证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)= 1-x e x - 1-x 0 e 0 x = ?1-x ?e 0 x -?1-x 0?e x e 0 +x x . 设φ(x )=(1-x )e 0 x -(1-x 0)e x , 则φ′(x )=-e 0 x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0, ∴φ(x )在R 上单调递减,又φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0, ∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ). 技法二:“拆分法”构造函数 [典例] 设函数f (x )=ae x ln x +be x -1 x ,曲线y =f (x )在点(1,f (1)) 处的切线为y =e (x -1)+2. (1)求a ,b ; (2)证明:f (x )>1. [解] (1)f ′(x )=ae x ? ?? ??ln x +1x +be x -1 ?x -1? x 2 (x >0), 由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2),

最新《导数及其应用》单元测试题(理科)

《导数及其应用》单元测试题(理科) (满分150分 时间:120分钟 ) 一、选择题(本大题共8小题,共40分,只有一个答案正确) 1.函数()2 2)(x x f π=的导数是( ) (A) x x f π4)(=' (B) x x f 24)(π=' (C) x x f 2 8)(π=' (D) x x f π16)(=' 2.函数x e x x f -?=)(的一个单调递增区间是( ) (A)[]0,1- (B) []8,2 (C) []2,1 (D) []2,0 3.已知对任意实数x ,有()() ()(f x f x g x g x -=--=,,且0x >时,()0()f x g x ''>>,,则0x <时( ) A .()0()0f x g x ''>>, B .()0()0f x g x ''><, C .()0()0f x g x ''<>, D .()0()0f x g x ''<<, 4. =-+? dx x x x )1 11(322 1 ( ) (A)8 7 2ln + (B)872ln - (C)452ln + (D)812ln + 5.曲线1 2 e x y =在点2 (4e ),处的切线与坐标轴所围三角形的面积为( ) A. 2 9e 2 B.24e C.2 2e D.2 e 6.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ) 7.已知二次函数2 ()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有

导数的基本题型归纳

导数的基本题型归纳 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

导数基础题型 题型一 导数与切线 利用两个等量关系解题: ①切点处的导数=切线斜率,即()k x f o ='; ②切点()o o y x ,代入曲线方程或者代入切线方程. 切点坐标(或切点横坐标)是关键 例1:曲线y =x x +2 在点(-1,-1)处的切线方程为( ) A .y =2x +1 B .y =2x -1 C .y =-2x -3 D .y =-2x -2 例2:已知函数的图象在点(1,f (1))处的切线方程是x -2y +1=0,则f (1)+2f ′ (1)的值是( ) B .1 D .2 例3 求曲线132+=x y 过点(1,1)的切线方程 练习题: 1.已知函数y =ax 2+1的图象与直线y =x 相切,则a =( ) D .1 2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A .-9 B .-3 C .9 D .15 3.设曲线y =x +1x -1 在点(3,2)处的切线与直线ax +y +1=0垂直,则a 等于( ) A .2 B .-2 C .-12 4.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a =________. 5.已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2. 求直线l 2的方程;

题型二 用导数求函数的单调区间 ①求定义域;②求导;③令0)(='x f 求出x 的值;④划分区间(注意:定义域参与区间的划分);⑤判断导数在各个区间的正负. 例1:求函数c x x x y +-+=33 123的单调区间. 例2 求函数x a x a x x f )1(ln 2 1)(2+-+=的单调区间(其中a >0) 例3:已知函数ax x y +=2在),1[+∞上为增函数,求a 的取值范围. 练习题: 1.求函数x x x f ln 2)(2-=的单调增区间. 2.已知33 1)(23-++=x ax x x f 在]3,1[上单调递减,求a 的取值范围. 题型三 求函数极值和最值 ①求定义域;②求导;③令0)(='x f 求出x 的值;④列表(注意:定义域参与区间的划分); ⑤确定极值点.;5,求出极值,区间端点的函数值,比较后得出最值 例:求函数x x y ln 2-=的极值. 例:求函数y =x +2cos x 在区间???? ??0,π2上的最大值. 例:已知函数f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在 [-2,2]上的最小值为 ( ) A .-37 B .-29 C .-5 D .-11 例:若函数b bx x x f 36)(3+-=在)1,0(内有极小值,则实数b 的取值范围是 ( ) A .)1,0( B .)1,(-∞ C .),0(∞+ D .)2 1, 0( 练习题: 1.设函数x x x f ln 2)(+=则 ( ) =21为f(x)的极大值点 =21为f(x)的极小值点 =2为f(x)的极大值点 =2为f(x)的极小值点

相关文档
最新文档