关于沼气的文献翻译解析

合集下载

推荐-餐厨垃圾厌氧的外文文献的译文 精品

推荐-餐厨垃圾厌氧的外文文献的译文 精品

庭院和餐厨垃圾的固态厌氧共同消化应用于沼气生产Dan Brown, Yebo Li﹡丹·布朗,李雅波食品,农业与生物工程学院,美国俄亥俄州立大学/俄亥俄州农业研究和发展中心,1680麦迪逊大道,伍斯特,OH44691-4096,美国要闻▲庭院和餐厨垃圾的固态厌氧消化处理 (SS-AD)。

▲原料/污水(F/E)比为1获得了甲烷产量最高。

▲ F/E比率增加1〜2和3造成甲烷产量下降。

▲ AD在 F/E 比率为3 被扰乱仅庭院废物除外。

摘要餐厨和庭院废物可获得全年较低成本,可全年有潜力与SS-AD相互补充。

这项研究的目的是确定最佳的原料/污水(F/E),食品废弃物/庭院废物最佳的沼气生产的混合比例。

庭院和食品废物消化进行了F/E比率为1,2,和3。

对于每个F/E比率,食品废物的百分比为0%,10%,和20%,基于干燥挥发性固体,进行了评价。

结果表明,食品废物的比例增加至10%和20%的基板上面的F / E比率为2和1,分别对应甲烷产量的增加和体积生产率。

这项研究表明,共同消化的食物渣滓和特定比例的庭院废物可以提高沼气池操作系统的特点和单独的庭院废物SS-AD高端性能指标。

关键词:固态厌氧消化,沼气,城市固体废弃物,食品废弃物,共同消化目录1.介绍固态厌氧消化(SS-AD)已成功地应用于各种木质纤维素生物质原料转换成沼气(Li 等,20XXa)。

自20世纪90年代初,SS-AD已经成为占主导地位的AD系统安装在欧洲处理城市固体废弃物(MSW),通常工作在15%至50%总固体(TS)的含量(Li等,20XXb;Baere和Mattheeuws,20XX; Guendouz等,20XX)。

SS-AD提供了许多好处通过液体AD 消化木质纤维素生物质,如在相同的大小沼气池处理更多的有机固体和生产堆肥等成品有机材料更容易处理,并可以适用于农业土地肥料。

(Martin等,20XXa;Li等,20XXb)。

关于沼气的文献综述

关于沼气的文献综述

关于沼气的文献综述沼气发电技术研究摘要:沼气燃烧发电是随着沼气综合利用的不断发展而出现的一项沼气利用技术,它将沼气用于发动机上,并装有综合发电装置,以产生电能和热能,是有效利用沼气的一种重要方式。

关键词:沼气发电;清洁能源;燃烧;1 引言随着对环境的日益重视,人们开始利用各种方式来减少工农业生产对环境的破坏。

近十几年来,在各级政府有关部门和企业的帮助协调下,用于处理畜禽粪便及各种生产、生活污水的大中型沼气工程纷纷出现,至2008年底,全国户用沼气池达到了2800多万口,已建成大中型沼气设施8000多处。

沼气年利用量达到了约120亿立方米。

随着沼气产量的不断提高,如何更高效地利用沼气,成为摆在我们面前的一项课题。

沼气发电以其低排放、低污染、节约能源、废物资源再利用等优点而倍受各国政府的关注,开发沼气发电成为建设绿色环保工程的一项重要措施。

2 沼气简介2.1 沼气的起源沼气,顾名思义就是沼泽里的气体。

人们经常看到,在沼泽地、污水沟等地方,经常有气泡往外冒出,气温越高,气泡冒得越多,如果我们把这些小气泡收集起来,用火一点,它就会燃烧。

这些气泡内的气体,就是沼气。

由于最初人们在沼泽中发现这种气体,所以就给它命名为“沼气”。

又因沼气是生物在厌氧条件下产生出来的气体,因此又叫生物气。

12.2 沼气的发展历史很久以前,人们就发现了沼气,但对沼气微生物的研究仅有一百年时间。

1776年,意大利科学家沃尔塔通过分析,测定沼气的主要成分为甲烷和二氧化碳。

1781年,法国科学家穆拉发明人工沼气发生器。

之后,沼气逐渐被人们所利用。

八十年代中后期,随着沼气生产使用技术的日趋完善,沼气生产发展较快。

目前世界约有农村家用沼气池530万个,一些大型沼气工程也有了迅速发展。

我国虽然很早就发现了沼气,但是真正开始推广应用是在20世纪20年代后期;到60年代未到70年代初,我国出现了兴建沼气的热潮,全国建起了600多万个沼气池,基本上都是农村家用沼气池及少量大中型人、畜粪便沼气池。

关于沼气的文献翻译解析

关于沼气的文献翻译解析

生物质能和沼气发电近期发展与看法Abdeen Mustafa OmerUON, Forest Road West, Nottingham NG7 4EU, UK生物质沼气作为替代能源的潜力,可能是因为生物质资源丰富。

这是一些关于沼气技术的观点。

对于目前文献关于沼气技术的生态,社会,文化和经济的影响。

本文给出了一个作为现在和未来使用生物质能作为工业原料用于生产燃料、化学品和其他材料的介绍。

然而,要真正在一个开放的市场竞争力的情况下生存,需要更高价值的产品。

结果表明,沼气技术必须鼓励,促进,投资,实施,论证,尤其是在偏远的农村地区[1]。

关键字:生物质资源/沼气应用/可持续发展/环境能源是一个重要因素,因为它的发展刺激,并支持着经济的增长与发展。

化石燃料在一定范围内是有限的,特别是石油和天然气,应作为消耗资产,并努力寻找新能源。

各地的呼吁要节省能源但环境问题加剧、传统的能源继续萎缩,环境也变得日益退化。

传统的生物质能主要来自木柴,木炭和作物残留物。

在总薪材和竹炭用品中92%在家庭部门消耗,其中大多数是农村地区的柴火消费。

燃烧仍然是供热和发电(用蒸汽为原料烘干机的涡轮机)的首选方法,而通过厌氧消化或在垃圾填埋场生产沼气,被广泛用于valorisation的湿残留物和液体污水为热发电(使用天然气发动机或燃气涡轮机)。

此外,一些液体燃料的生产来自于种植的作物(乙醇甘蔗,甜菜,玉米,高粱和小麦)。

虽然废物的利用和残留已建立了基本转换技术,仍然需要通过气化处理和热解,与联合循环来研究开发和尝试提高热效率。

同一时间正在努力增加植物性的非食品原料的范围。

实现正在采取这几种方法。

“首先是要提供成本较低的原料散装化学品和原料生产可用于洗涤剂,塑料,油墨,油漆和其他表面涂层。

在很大程度上,这些都是基于植物油或淀粉水解发酵产生的乳酸。

优点是可生物降解,与生物系统的相容性(因此,在使用更少过敏反应)和备件化石的二氧化碳排放量(与气候相关)。

阅读理解-第二十一篇 植物,沼气的又一来源

阅读理解-第二十一篇 植物,沼气的又一来源

第二十一篇Plant GasScientists have been studying natural sources of methane(甲烷)for decade s but hadn't regarded plants as a producer, notes Frank Keppler,a geochemist at the Max Planck Institute for Nuclear Physics in Heldelberg , Germany. Now Keppler and his colleagues find that plants,from grasses to trees ,may also be sources of the greenhouse gas.This is really surprising , because most scientists assumed that methane production requires an oxygen-free environment.Previous ly , researchers had thought that it was impossible for plants to make significant amounts of the gas. They had assumed that microbe s(微生物) need to be in environments without oxygen to produce methane. Methane is a greenhouse gas, like carbon dioxide. Gases such as methane and carbon dioxide trap heat in Earth's atrnosphere and contribute to global warming.In its experiments , Keppler' s team used seal ed charnber s(室)that contained the same concentration(浓度)of oxygen that Earth's atmosphere has. They measured the amounts of methane that were released by both living plants and dried plant material , such as fallen leaves.With the dried plants , the researchers took measurement at temperatures ranging from 30 degrees Celsius to 70 degrees C. At 30 degrees C ,they found , a gram of dried plant material released up to 3 nanogram s(毫微克) of methane per hour. (One nanogram is a billionth of a gram(克). ) With every 10-degree rise in temperature ,the amount of methane released each hour roughly(粗略的)doubled.Living plants growing at their normal temperatures released as much as 370 nanograms of methane per gram of plant tissue(组织)per hour. Methane emission s (排放量)triple d(增至三倍)when living and dead plant was expose d(暴露)to sunlight.Because there was plenty of oxygen available , it's unlikely that the types of bacteria that normally make methane were involved. Experiments on plants that were grown in water rather than soil also resulted in methane emissions. That' s another strong sign that the gas came from the plants and not soil microbes.The new finding is an "interesting observation(观察)," says Jennifer Y. King , a biogeochemist at the University of Minnesota in St. Paul. Because some types of soil microbes consume methane ,they may prevent plant-produced methane from reaching the atmosphere. Field tests will be needed to assess the plant' s influenee , she notes.练习:l. What was scientists, understanding of methane?A It was produced from plants.B It was not a greenhouse gas.C It was produced in oxygen-free environments.D It traps more heat than any other greenhouse gas.2. To test whether plants are a source of methane , the scientists createdA a oxygen-free environment.B an environment with the same concentration of oxygen as the Earth has.C a carbon dioxide-free environment.D an environment filled with the greenhouse gas.3. Which statement is true of the methane emissions of plants in the experiment?A The lower the temperature , the higher the amount of methane emissions.B Living plants release less methane than dried plants at the same temperature.C When exposed to sunlight, plants stop releasing methane.D The higher the temperature ,the greater the amount of methane emissions.4. Which of the following about methane is Not mentioned in the passage?A Plants growing in soil release methane.B Plants growing in water release methane.C Soil microbes consume methane.D Microbes in plants produce methane.5. What is the beneficial point of some microbes consuming plant-produced methane?A Methane becomes less poisonous.B Methane is turned into a fertilize r.C Less methane reaches the atmosphere.D Air becomes cleaner.第二十一篇植物,沼气的又一来源德国马克思·普朗克核物理研究所地球化学家FrankKeppler提到,科学家已经研究沼气几十年,但一直没认为植物能产生沼气。

沼气综述

沼气综述

沼气综述1 沼气定义沼气(Biogas)是有机物经微生物厌氧消化而产生的可燃性气体。

由于这种气体首先在沼泽地被发现,故名沼气。

即沼气是一些有机物质(如秸秆、杂草、树叶、人畜粪便等废弃物)在一定的温度、湿度、酸度条件下,隔绝空气(如用沼气池),经微生物作用(发酵)而产生的可燃性气体。

2 沼气成分沼气是多种气体的混合物,一般含甲烷50~70%,其余为二氧化碳和少量的氮、氢和硫化氢等。

它含有少量硫化氢,所以略带臭味,其特性与天然气相似。

3 沼气爆炸条件空气中如含有8.6~20.8%(按体积计)的沼气时,就会形成爆炸性的混合气体。

4 沼气的用途甲烷是一种理想的气体燃料,它无色无味,与适量空气混合后即对燃烧。

每立方米纯甲烷的发热最为34000焦耳,每立方米沼气的发热量约为20800-23600焦耳。

即1立方米沼气完全燃烧后,能产生相当于0.7千克无烟煤提供的热量。

沼气除直接燃烧用于炊事、烘干农副产品、供暖、照明和气焊等外,还可作内燃机的燃料以及生产甲醇、福尔马林、四氯化碳等化工原料。

经沼气装置发酵后排出的料液和沉渣,含有较丰富的营养物质,可用作肥料和饲料。

目前,世界各国已经开始将沼气用作燃料和用于照明。

用沼气代替汽油、柴油,发动机器的效果也很好。

将它作为农村的能源,具有许多优点。

例如,修建一个平均每人l-1.5平方米的发酵池,就可以基本解决一年四季的燃柴和照明问题;人、畜的粪便以及各种作物秸秆、杂草等,通过发酵后,既产生了沼气,还可作为肥料,而且由于腐熟程度高使肥效更高,粪便等沼气原料经过发酵后,绝大部分寄生虫卵被杀死,可以改善农村卫生条件,减少疾病的传染。

现在,沼气的应用正在各国广大农村推广,沼气能源的开发利用的普及等方面,已经取得了较好的成绩。

农村户用沼气池生产的沼气主要用来做生活燃料。

修建一个容积为10立方米的沼气池,每天投入相当于4头猪的粪便发酵原料,它所产的沼气就能解决一家3―4口人点灯、做饭的燃料问题。

沼气参考文献

沼气参考文献
[8]沼气综合利用六种模式[J]. 节能与环保, 2009, (02) .
[9] 孔凡标,臧峥峥,韩波,郑家涛. 沼气综合利用“十大模式”[J]. 安徽农学通报, 2007, (05) .
[10] 贺立新. “四位一体”沼气综合利用技术初探[J]. 安徽农学通报, 2006, (06) .
[4] 刘耕. 沼气建设在养殖业中的作用与价值[J]. 农村养殖技术, 2011, (16)
[5] 吴晓, 江建荣. 积极探索沼气综合利用新途径[J]. 农家参谋(种业大观), 2011, (07)
[6] 沈慧. 沼气灯使用不正常怎么办?[J]. 乡村科技, 2010, (11)
[7] 我国成立软体沼气池专业组推动沼气行业发展[J]. 农业工程技术(新能源产业), 2011, (06)
[5] 吴亚泽,师朝霞,张明娇. 沼气综合利用效益好9, (08) .
[6] 刘振波,高林朝,王滨杰. 沼气的综合利用技术和发展前景[J]. 农业工程技术(新能源产业), 2008, (02) .
[7] 赵福仁,车永革. 沼气综合利用技术[J]. 吉林农业, 2008, (01) .
[8] 邢念城, 刘佳丰. 沼肥在农业植保生态系统中的应用探讨[J]. 科技促进发展(应用版), 2011, (02)
[9] 翟洪民. 沼气池的越冬管护[J]. 乡村科技, 2011, (01)
[10] 沼气池快速启动措施[J]. 农家致富, 2011, (12)
[1] 张培栋,杨艳丽,李新荣. 中国沼气综合利用潜力[J]. 中国沼气, 2007, (05) .
[1] 闵师界. 沼气 沼肥综合利用技术[J]. 农村养殖技术, 2011, (16)
[2] 王青峰. 拜城县沼渣沼液综合利用技术[J]. 农村科技, 2011, (07)

外文翻译---对西班牙南方一个城市垃圾填埋场产生的沼气能源的研究

外文翻译---对西班牙南方一个城市垃圾填埋场产生的沼气能源的研究

对西班牙南方一个城市垃圾填埋场产生的沼气能源的研究Montserrat Zamora Jorge Ignacio Pe´ rez Pe´ rez b,Ignacio Aguilar Pave´ s c, A´ngel Ramos Ridao a西班牙格拉纳达大学土建工程环境技术部,18071西班牙格拉纳达大学土建工程规划建设部2005年5月接收,2005年8月确认摘要虽然垃圾填埋场不可避免产生废弃的管理问题,但是它仍是最通常的解决城市生活垃圾的方法之一。

垃圾填埋场是人为生产甲烷的重要来源。

在这种情况下,欧盟已经为可再生能源通过了欧盟政策结构里面的沼气的有效管理的规则。

这是一项研究密封的垃圾填埋场能源恢复的例子, 但这种能源恢复是指垃圾填埋场气体用来生产电能。

这一研究的结果具有很强的经济生存能力, 这实现了早先的对安装的工程. 以经验和理论上模型的使用为基础得出结果表示沼气中有 250 到 550 N m3/h的甲烷和一个以全部流量的45% 比例。

目前它用来生产电力共计大约 4,500,000 千瓦 h/年。

根据安装的经济分析和内在的恢复率 (IRR)估计开发时期为7年。

关键字: 垃圾填埋场气体,能源恢复,可再生能源,经济分析目录1. 介绍 (3)1.1垃圾填埋场气体对环境的影响 (3)1.2垃圾填埋场气体是一个可重新开发能源来源 (4)1.3. 法律问题 (4)1.3.1. 关于方向性96/61/CE污染的联合预防和控制 (5)1.3.2. 垃圾填埋场99/31/CE的指导 (5)1.3.3. 欧共体对97/C76/01废物管理战略的决议 (5)1.3.4.一个关于甲烷放射减少的战略交流 (6)2. 格拉那达城市的垃圾填埋场(西班牙) (7)2.1. 垃圾填埋场的结构 (7)2.2 垃圾的生产和特性 (8)2.3 沼气理论上的生产/生产量的定量化 (9)3. 安装设计 (12)3.1. 收集和抽出系统 (12)3.2. 能源可再生系统 (13)4. 经济上的可行性 (14)5. 结论 (14)1. 介绍1.1垃圾填埋场气体对环境的影响垃圾填埋场的垃圾处理能产生不少的环境问题,如水污染,臭气,爆炸和燃烧,窒息,植物破坏,和温室气体排放[1-3].现在正用不同的方法来评估这些影响以便能找出解决方案[4-7].垃圾填埋场气体(LFG)是在卫生垃圾填埋场中自然地发生有机废物分解的副产物,是在生产那期间被微生物地斡旋降解废物的有机部分.一个能生产大约 0.350 Nm3/公斤的沼气的城市垃圾卫生填埋场基本上能够把生物能转变成可使用的能源.[8,9].垃圾填埋场气体产生于有氧和无氧两种情况。

文献翻译

文献翻译

食物废物一级和两级发酵产氢产甲烷的研究摘要:厌氧消化过程有利于产氢和产甲烷,它涉及复杂的有机物分解的微生物过程和代谢中间体转化为氢气和甲烷的后续转化。

在中温孵化,不同的原料与微生物的比值(F/M)下,对间歇式反应器两级反应过程中氢气、甲烷的顺序发酵与一级反应过程中甲烷的发酵进行了性能比较。

F/M值影响了沼气的产量、产率和潜力。

当F/M为7.5时,在两级反应过程中,H2和CH4的最大产量为55和94ml/gVS。

而在一级反应过程中,获得82 ml/gVS的最大H2产量也是在相同的F/M值下。

在产氢发酵阶段,乙酸和丁酸是最主要的挥发性脂肪酸(VFA),其浓度范围是10-25mmol/L。

在这两个阶段过程中,甲烷发酵会积累小浓度的VFA。

两阶段过程中总能量的回收比一阶段的高,为18%。

这表明,两阶段的发酵相比一阶段的要好。

关键词:氢气甲烷食物废物发酵两级1.介绍因为化石燃料会对环境造成负面的影响,如排放二氧化碳,一氧化碳,碳氢化合物,氮氧化物,灰烬等的污染物。

所以,一直在寻求可再生的清洁能源来替代化石燃料。

由于氢气很高的能量含量(122kJ/g)[1,2]和燃烧后零的碳排放量[3],氢气被广泛地认为是一种理想的清洁能源。

氢气可以通过各种热化学、电化学和生物过程产生[4]。

生物制氢比非生物制氢过程所需的能量少,而且被认为是更环境友好地。

氢气作为产物可以在不同的代谢途径下获得。

包括:绿藻直接生物光解水,蓝藻间接生物光解水,紫色非硫光合细菌光发酵和异养厌氧细菌暗发酵。

相比依赖光的过程,暗发酵制氢速率更高,使用的底物更广泛并需要的能量更少[5-7]。

一些原料,如市政废物,畜禽粪便,作物秸秆,食物废物和废水,都在暗发酵中被用作底物[8-11]。

暗发酵产氢的生化途径已经很好地建立了。

在厌氧消化(AD)过程中,会获得产酸和产氢的产物,但是会很快地在一级消化中被产甲烷细菌消耗。

产酸、产氢的分离和两级消化系统中的产甲烷都可以获得氢气和甲烷[12-13]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物质能和沼气发电近期发展与看法Abdeen Mustafa OmerUON, Forest Road West, Nottingham NG7 4EU, UK生物质沼气作为替代能源的潜力,可能是因为生物质资源丰富。

这是一些关于沼气技术的观点。

对于目前文献关于沼气技术的生态,社会,文化和经济的影响。

本文给出了一个作为现在和未来使用生物质能作为工业原料用于生产燃料、化学品和其他材料的介绍。

然而,要真正在一个开放的市场竞争力的情况下生存,需要更高价值的产品。

结果表明,沼气技术必须鼓励,促进,投资,实施,论证,尤其是在偏远的农村地区[1]。

关键字:生物质资源/沼气应用/可持续发展/环境能源是一个重要因素,因为它的发展刺激,并支持着经济的增长与发展。

化石燃料在一定范围内是有限的,特别是石油和天然气,应作为消耗资产,并努力寻找新能源。

各地的呼吁要节省能源但环境问题加剧、传统的能源继续萎缩,环境也变得日益退化。

传统的生物质能主要来自木柴,木炭和作物残留物。

在总薪材和竹炭用品中92%在家庭部门消耗,其中大多数是农村地区的柴火消费。

燃烧仍然是供热和发电(用蒸汽为原料烘干机的涡轮机)的首选方法,而通过厌氧消化或在垃圾填埋场生产沼气,被广泛用于valorisation的湿残留物和液体污水为热发电(使用天然气发动机或燃气涡轮机)。

此外,一些液体燃料的生产来自于种植的作物(乙醇甘蔗,甜菜,玉米,高粱和小麦)。

虽然废物的利用和残留已建立了基本转换技术,仍然需要通过气化处理和热解,与联合循环来研究开发和尝试提高热效率。

同一时间正在努力增加植物性的非食品原料的范围。

实现正在采取这几种方法。

“首先是要提供成本较低的原料散装化学品和原料生产可用于洗涤剂,塑料,油墨,油漆和其他表面涂层。

在很大程度上,这些都是基于植物油或淀粉水解发酵产生的乳酸。

优点是可生物降解,与生物系统的相容性(因此,在使用更少过敏反应)和备件化石的二氧化碳排放量(与气候相关)。

消费者的喜好与经济与环境效益价值相关,有助于在这方面增加生产。

第二扩大活动是利用植物纤维,不仅非树的纸张,也可作为代替石油为基础的塑料包装和部件,如汽车零部件。

这些可能源自非织造纤维,或基于生物复合材料(在一个合适的塑料纤维素芯片矩阵)。

另一方面,新胶合的方法,加强保护和成型木材增加建设大型结构与预测长寿命。

这些措施包括广泛的天然产品,如香料,香精胶体和生物控制剂。

尽管几十年的研究和开发,工程技术(重组DNA技术)正被广泛应用,以实现这一目标,以及引进新航线,以不寻常的脂肪酸和其他有机化合物。

此外这种技术被用来帮助植物构造新的蛋白质,可作为疫苗使用或其他治疗使用。

所有这些作物的非食品用途加工将再次生成残渣和副产品,可作为能量来源,供内部使用处理,或出口到其他用户,可能未来的大多产品是生物质为基础的工业物。

技术说明厌氧微生物发酵形成沼气。

降解是非常复杂的过程,需要一定的环境条件以及不同的细菌种群。

完整的厌氧发酵过程下面简要介绍,如表1所示,沼气是一个相对高值的在厌氧过程中利用有机物的降解形成的燃料。

这个过程已经知道,并投入到工作中在过去30年被应用于不同的行业,农村的需要,如[2]:供水,粮食安全,健康,教育和通讯。

在过去的几十年世界各地建立了数千沼气工程,生产的甲烷用来做饭,抽水和发电。

为了不重复成功的深入当地的条件和认真规划要求[3]。

应实现的目标:➢用计算机模型和手册审查和交流有利于对生物质能沼气的经济评价。

➢利用信息交流系统分析从个案研究的成果。

➢调查实施商业沼气能源供应上的限制。

➢调查来自不同行业的原料之间的供应和需求的关系。

➢间接评价的方法原则的后果,如对影响增长,育林治疗,就业。

表(1)厌氧降解有机物[4]沼气技术不能只提供燃料,全面利用林业生物质能,动物畜牧业,渔业,农业经济,保护环境,实现农业循环,以及改善卫生条件,在农村地区同样重要。

“沼气技术的引进规模上有宏观规划的影响如政府分配投资和收支平衡的影响。

沼气厂验收的确定率的因素,如信贷,设施和后期服务,可能有计划作为一般宏观政策,成为研究的分配和发展基金的一部分[5]。

沼气是一种常见的从有机物质的分解中产生的气体。

由于材料分解,甲烷来源纷繁多样。

包括垃圾填埋场,污水处理厂和厌氧沼气池。

垃圾填埋场和污水处理厂产生的沼气。

到目前为止,废物处理业一直专注于控制排放到环境中的污染物,在某些情况下,可作为电力燃气涡轮机的潜在来源,从而产生电力。

垃圾填埋气体成分是甲烷,二氧化碳和氮气。

甲烷平均浓度为〜45%,CO2〜36%,氮〜18%。

其他气体是氧气(O2)、水蒸汽和微量非甲烷有机化合物的范(NMOCs)[6]。

对于热水和暖气,可再生能源来自生物质发电和热,地热,地源热泵和屋顶太阳能加热系统。

太阳能辅助冷却是一个非常小,但增长的贡献。

当涉及到大的安装光伏发电量,几个城市有共同因素。

这些因素包括:●一个强大的对环境和可持续发展的政治承诺。

●执政的市部门或办事处,致力于环境,可持续发展或可再生能源。

●有关资料提供可再生能源的可能性。

●部分或所有建筑物的义务包括可再生能源沼气的使用情况在过去的二十年,人类变得越来越关注枯竭化石燃料储量和二氧化碳的排放量对气候变化的影响。

因此,延伸了使用可再生资源,高效节能生产和节能减排为主要目标的可持续的能源供应。

可再生能源来源包括水和风力发电,太阳能和地热能源,以及生物质能源。

该技术可实现和实际使用这些能源,虽然在欧洲各地不同,但生物量被视为有很大的潜力在其中许多人看来。

生物能源,一个转换为有效的方法,在缺氧的情况微生物降解有机物(厌氧消化)生产沼气。

它现在是有可能在农村安装产生沼气,升级到生物甲烷,天然气管网送入,在使用控制热量需求的热电联产和接收收入。

沼气是一种混合物,甲烷(按体积的50-65%)、二氧化碳。

沼气是一种宝贵的燃料。

湿-95%)与低木质素的有机材料和纤维素一般适合厌氧消化[7]。

一个值得关注问题是,污泥处理,往往集中了重金属,目前在废水极少有可生物降解的微量有机化合物和潜在的病原微生物(病毒,细菌和类似)。

这些材料严重威胁环境。

当沉积在土壤中,重金属通过食物链,首先进入农作物,然后动物饲料作物上,最终人类,他们似乎是高度有毒的。

此外,他们还存在于土壤中,进入地下水,并进一步以不受控制的方式传播污染。

欧洲和美国市场旨在改造各种有机废物(动物农场废物,工业和城市垃圾)分为两个主要的副产品:⏹解决的腐殖质(液体氧化抗坏血酸)。

⏹固体残渣。

沼气生态优势技术一个更简单的情况是,可以发现在不同的生态效应中沼气综合利用的途径。

比较不同的沼气利用工艺过程是[8]:◆沼气利用热需求控制天然气发动机提供出来的500千瓦的天然气网-电效率为37.5%,42.5%的热效率,甲烷0.01损失◆沼气利用在当地的燃气发动机,在沼气厂安装500千瓦- 37.5%的发电效率,热效率42.5%,而0.5甲烷亏损。

◆基于玉米生产沼气使用沼气厂盖储罐- 甲烷损失1%的沼气生产。

◆沼气与电源升级消费0.3 kWhe/m3沼气- 0.5甲烷损失。

沼气可转换能源的几个方法。

主要利用热电联产(CHP)[9],在沼气生产的地方安装汽油发动机。

这一点主要有两个原因。

首先,沼气生产是一个几乎持续不断的过程,在短期它是相当困难的,甚至是不可能的,以控制根据厌氧沼气池操作任何给定的需求配置文件。

其次,致力于促进可再生能源电力生产。

正因为如此,沼气厂的运营商收到的主要收入是保证饲料的电费。

小结生态平衡的结果变得明显- 不仅使用化石燃料,而且还通过使用可再生燃料如沼气- 热电联产是气候变化问题作斗争的最佳方式。

从技术角度查看它可以得出结论,沼气生产,即,可再生能源的转换资源和能源的生物垃圾,可以看出作为国家的最先进的技术[10]。

生物质能和可持续发展在能源和人类可持续发展之间有一个明确无误的链接。

能源本身并不是目的,而是一个重要的工具来促进社会和经济活动。

因此,缺乏可用的能源服务与许多可持续发展的挑战密切相关,例如创造就业机会。

重视机构建设,加强政策对话有必要建立社会,经济和在政治上有利的一个过渡的条件一个更可持续的未来。

另一方面,生物质能技术是有前途的选择,一个潜在的大苏丹与其他发展中国家的影响,地方能源目前的水平服务是低的。

有关生物量帐户三分之一的所有发展中国家的能源国家作为一个整体,近96%在某些最不发达国家[11]。

建议1.沼气技术的大规模引进的宏观影响如分配计划对政府投资和影响国际收支平衡表。

沼气验收率的决定因素,如信贷和技术备份服务,很可能作为一般宏观政策的一部分,因为这样做的分配的研究和发展资金.2. 在一些农村社区,普遍的文化信仰关于处理动物粪便会影响的沼气技术可接受性[12]。

3. 统筹生产和使用沼气,化肥和污染控制优化推广和发展在农村的农业和畜牧业领域。

结论(1)沼气技术,不仅可以提供燃料,在农村领域同样重要的是全面的利用林业生物质能,动物畜牧业,渔业,农业经济,保护环境,实现农业循环再造,以及改善卫生条件,。

2)生物质能源,其中一个重要选项,这可能会逐渐取代对石油的需求,任何一个县可以依赖的生物能源以满足本地消费的一部分。

3)沼气技术的发展是一个农村替代能源的重要组成部分,其潜力仍有待利用。

所有需要协调一致的效果如果可以实现,该技术将准备利用在国内,农业,小规模的工业应用。

4)支持与先进国家在生物研究这一领域的交流。

在此期间,生物质能能源可以帮助保存即将耗尽的石油财富。

5)递减的农业用地会阻碍沼气能源开发,但适当的技术和资源管理技术,将抵消影响。

参考文献1. Robinson, G. 2007. Changes in construction waste management. Waste Management World p. 43-49. May-June 2007.2. Sims, R.H. 2007. Not too late: IPCC identifies renewable energy as a key measure to limit climate change. Renewable Energy World 10 (4): 31-39.3. Omer, A.M., et al. 2003. Biogas energy technology in Sudan. Renewable Energy, 28 (3): 499-507.4. Omer, A.M. 2007. Review: Organic waste treatment for power production and energy supply. Cells and Animal Biology 1 (2): 34-47.5. Omer, A. M. 2007. Renewable energy resources for electricity generation. Renewable and Sustainable Energy Reviews, Vol.11, No.7, p. 1481-1497, United Kingdom, September 2007.6. Bacaoui, A., Yaacoubi, A., Dahbi, C., Bennouna, J., and Mazet, A. 1998. Activated carbon production from Moroccan olive wastes-influence of some factors. Environmental Technology 19:1203-1212.7. Rossi, S., Arnone, S., Lai, A., Lapenta, E., and Sonni no, A. 1990. ENEA’s activities for developing new crops for energy and industry. In: Biomass for Energy and Industry (G. Grassi, G. Gosse, G. dos Santos Eds.). Vol.1, p.107-113, Elsevier Applied Science, London and New York.8. Omer, A.M. 1996. Renewable energy potential and future prospects in Sudan. Agriculture Development in Arab World 3: 4-13.9. FAO. 1999. State of the world’s forest. Rome: FAO.10. Haripriye G. 2000. Estimation of biomass in India forests. Biomass and Bioenergy 19: 245-58.11. Hall O. and Scrase J. 1998. Will biomass be the environmentally friendly fuel ofthe future? Biomass and Bioenergy 15: 357-67.12. Omer, A.M. 2005. Biomass energy potential and future prospect in Sudan. Renewable & Sustainable Energy Review 9: 1-27Biomass and biogas for energy generation: recentdevelopment and perspectivesAbdeen Mustafa OmerUON, Forest Road West, Nottingham NG7 4EU, UKBiogas from biomass appears to have potential as an alternati ve energy source, which is potentially rich in biomass resources. T his is an overview of some salient points and perspectives of bio gas technology. The current literature is reviewed regarding the e cological, social, cultural and economic impacts of biogas technolo gy. This article gives an overview of present and future use of bi oma ss as an industrialfeedstock for production of fuels, chemicals and other materials. However, to be truly competitive in an open market situation, higher value products are required. Results sug gest that biogas technology must be encouraged, promoted, investe d, implemented, and demonstrated, but especially in remote rural a reas.Keywords: biomass resources, biogas application, sustainable development, environment.Energy is an essential factor in development since it stimulates, and supports econo mic growth, and development. Fossil fuels, especially oil and natural gas, are finite in e xtent, and should be regards as depleting assets, and efforts are oriented to search for ne w sources of energy. The clamour all over the world for the need to conserve energy an d the environment hasintensified as traditional energy resources continue to dwindle whils t the environment becomes increasingly degraded. The basic form of biomass comes mainly from firewood, charcoal and crop residues. Out of the total fuel wood and charcoal supplies 92% was consumed in the household sector with most of firewood consumption in rural areas.Combustion remains the method of choice for heat and power generation (using stea m turbines) for dryer raw materials, while biogas production through anaerobic digestion or in landfills, is widely used for valorisation of wet residues and liquid effluents for he at and power generation (using gas engines or gas turbines). In addition, some liquid fue l is produced from purpose grown crops (ethanol from sugarcane, sugar beet, maize, sor ghum and wheat or vegetable oil esters from rapeseed, sunflower oil oilpalm). The use of wastes and residues has established these basic conversion technologies, although resea rch, development and demonstration continues to try and improve the efficiency of therm al processing through gasification and pyrolysis, linked to combined cycle generation. At the same time considerable effort is being made to increase the range of plant-derived non-food materials. To achieve this several approaches are being taken. The first is to provide lower cost raw materials for production of bulk chemicals and ingredients that c an be used in detergents, plastics, inks, paints and other surface coatings. To a large ext ent these are based on vegetable oils or starch hydrolysates used in fermentation to prod uced lactic acid (for polylactides) or polyhydroxbutyrate, as well as modified starches, ce llulose and hemicellulose. The advantages are biodegradability, compatibility with biologic al systems (hence, less allergic reaction in use) and sparing of fossil carbon dioxide emi ssions (linked to climate chance). Associating an economic value to these environmental benefits, linked to consumer preferences has contributed to increased production in this a rea. The second expanding activity is the use of plant fibres, not only for non-tree paper, but also as a substitute for petroleum based plastic packing and components such as ca r parts. These may be derived from non-woven fibres, or be based on bio-composite mat erials (lingo -cellulose chips in a suitable plastic matrix). At the other end of the scale, new methods of gluing, strengthening, preserving and shaping wood have increased the b uilding of large structures with predicted long-lifetimes. These include a wide range of natural products such as flavours, fragrances, hydrocolloids and biological control agents. I n spite of decades of research and development, engineering (recombinant DNA technolo gy) is being widely investigated to achieve this, as well as to introduce new routes to u nusual fatty acids and other organic compounds. In addition such techniques are being u sed to construct plants that produce novel proteins and metabolites that may be used as vaccines or for other therapeutic use. Processing of the crops for all these non-food uses will again generate residues and by-products that can serve as a source of energy, for i nternal use in processing, or export to other users, suggesting the future possibility of la rge multi-product biomass-based industrial complexes.[1]Technical DescriptionBacteria form biogas during anaerobic fermentation of organic matters. The degradati on is very complex process and requires certain environmental conditions as well as diff erent bacteria populations. The complete anaerobic fermentation process is briefly describ ed below as shown in Table 1, and Figure 1. Biogas is a relatively high-value fuel that is formed during anaerobic degradation of organic matter. The process has been known, and put to work in a number of different applications during the past 30 years, for rur al needs such as in [2]: food security, water supply, health cares, education and communi cations. During the last decades thousands of biogas units were built all over the world, producing methane CH4 for cooking, water pumping and electricity generation. In order not to repeat successes in depth on local conditions and conscientious planning urged[3]. The goals should be achieved through:➢Review and exchange of information on computer models and manuals useful for economic evaluation of biogas from biomass energy.➢Exchange of information on methodologies for economic analysis and results from case studies.➢Investigation of the constraints on the implementation of the commercial supply of biogas energy.➢Investigation of the relations between supplies and demand for the feedstock from differentindustries.➢Documentation of the methods and principles for evaluation of indirectconsequences such as effects on growth, silvicultural treatment, and employment.Table (1) Anaerobic degradation of organic matter[4]Biogas technology cannot only provide fuel, but is also important for comprehensive utilisation of biomass forestry, animal husbandry, fishery, agricultural economy, protectin g the environment, realising agricultural recycling, as well as improving the sanitary co nditions, in rural areas. The introduction of biogas technology on wide scale has implicat ions for macro planning such as the allocation of government investment and effects on the balance of payments. Factors that determine the rate of acceptance of biogas plants, such as credit facilities and technical backup services, are likely to have to be planned a s part of general macro-policy, as do the allocation of research and development funds[5].Biogas is a generic te rm for gases generated from the decomposition of organic m aterial. As the material breaks down, methane (CH4) is produced as shown in Figure 3. Sources that generate biogas are numerous and varied. These include landfill sites, waste water treatment plants and anaerobic digesters. Landfills and wastewater treatment plants emit biogas from decaying waste. To date, the waste industry has focused on controlling these emissions to our environment and in some cases, tapping this potential source of fuel to power gas turbines, thus generating electricity. The primary components of landfill gas are methane (CH4), carbon dioxide (CO2), and nitrogen (N2). The average concentr ation of methane is ~45%, CO2is ~36% and nitrogen is ~18%. Other components in th e gas are oxygen (O2), water vapour and trace amounts of a wide range of non-methane organic compounds (NMOCs)[6]For hot water and heating, renewables contributions come from biomass power and heat, geothermal direct heat, ground source heat pumps, and rooftop solar hot water and space heating systems. Solar assisted cooling makes a very small but growing contribu tion. When it comes to the installation of large amounts of PV, the cities have several i mportant factors in common. These factors include[7]:● A strong local political commitment to the environment and sustainability.●The presence of municipal departments or offices dedicated to●the environment, sustainability or renewable energy.●Information provision about the possibilities of renewables.●Obligations that some or all buildings include renewable energy.Biogas UtilisationIn the past two decades the world has become increasingly aware of the depletion of fossil fuel reserves and the indications of climatic changes based on carbon dioxide e missions. Therefore extending the use of renewable resources, efficient energy production and the reduction of energy consumption are the main goals to reach a sustainable ener gy supply. Renewable energy sources include water and wind power, solar and geotherm al energy, as well as energy from biomass[8]. The tech nical achievability and the actual usage of these energy sources are different around Europe, but biomass is seen to have a great potential in many of them. An efficient method for the conversion of biomass to energy, is the production of biogas by microbial degradation of organic matter under th e absence of oxygen (anaerobic digestion). It is now possible to produce biogas at rural installation, upgrade it to bio-methane, feed it into the gas grid, use it in a heat deman d-controlled CHP and to receive revenues.Biogas is a mixture containing predominantly methane (50-65% by volume) and carbon dioxide and in a natural setting it is formed in swamps and anaerobic sediments[9], etc., due to its high methane concentration, biogas is a valuable fuel. Wet (40-95%) orga nic materials with low lignin and cellulose content are generally suitable for anaerobic di gestion (Figure 3). A key concern is that treatment of sludge tends to concentrate heavy metals, poorly biodegradable trace organic compounds and potentially pathogenic organis ms (viruses,bacteria and the like) present in wastewaters.These materials can pose a serio us threat to the environment. When deposited in soils, heavy metals are passed through t he food chain, first entering crops, and then animals that feed on the crops and eventual ly human beings, to whom they appear to be highly toxic. In addition they also leach fr om soils, getting into groundwater and further spreading contamination in an uncontrolled manner. European and American markets aiming to transform various organic wastes (a nimal farm wastes, industrial and municipal wastes) into two main by-products[11]:⏹ A solution of humic substances (a liquid oxidate).⏹ A solid residue.Ecological Advantages of Biogas Technology An easier situation can be found when looking at the ecological effects of different biogas utilisation pathways. The key assum ptions for the comparison of different biogas utilisation processes are:◆Biogas utilisation in heat demand controlled gas engine supplied out of thenatural gas grid with 500 kWe - electrical efficiency of 37.5%, thermalefficiency of 42.5%, and a methane loss of 0.01.◆Biogas utilisation in a local gas engine, installed at the biogas plant with 500 kWe -electrical efficiency of 37.5%, thermal efficiency of 42.5%, and a methane loss of 0.5.◆Biogas production based on maize silage using a biogas plant with covered storage tank -methane losses were 1% of the biogas produced.◆Biogas upgrading with a power consumption 0.3 kWhe/m3biogas - methane losses of 0.5.Biogas can be converted to energy in several ways. The predominant utilisation is c ombined heat and power (CHP) generation in a gas engine installed at the place of biog as production. There are mainly two reasons for this. First, biogas production is an almost continuous process; it is rather difficult or, in the short-term, even impossible, to contr ol the operation of anaerobic digesters according to any given demand profile. Secondly, promotion of renewable energies is focused on electricity production. Because of that, b iogas plant operators receive the predominant fraction of revenues from the guaranteed fe ed-in tariffs for electricity. Summarising the results of the eco-balances it becomes obvio us that - not only by using fossil fuels but also by using renewable fuels like biogas –combined heat and power cogeneration is the optimal way for fighting climate change. F rom a technical point of view it can be concluded that biogas production, i.e., the conve rsion of renewable resources and biowaste to energy, can be seen as state-of-the-art tech nology[12].Biomass and SustainabilityThere is an unmistakable link between energy and sustainable human development. E nergy is not an end in itself, but an essential tool to facilitate social and economic activ ities. Thus, the lack of available energy services correlates closely with many challenges of sustainable development, such as poverty alleviation, the advancement of women, prot ection of the environment, and jobs creation. Emphasis on institution-building and enhanc ed policy dialogue is necessary to create the social, economic, and politically enabling c onditions for a transition to a more sustainable future. On the other hand, biomass energ y technologies are a promising option, with a potentially large impact for Sudan as with other developing countries, where the current levels of energy services are low. Biomass accounts for about one third of all energy in developing countries as a whole, and near ly 96% in some of least developed countries.Recommendations1. The introduction of biogas technology on wide scale has implications for macro planning such as the allocation of government investment and effects on the balance of payments. Factors that determine the rate of acceptance of biogas plants, such as credit f acilities and technical backup services, are likely to have to be planned as part of gener al macro-policy, as do the allocation of research and development funds.2. In some rural communities, cultural beliefs regarding handling animal dung are pr evalent and will influence the acceptability of biogas technology.3. Co-ordination of production and use of biogas, fertiliser and pollution control can optimise the promotion and development of agricultural and animal husbandry in rural ar eas.Conclusions(1) Biogas technology cannot only provide fuel, but is also important for comprehen sive utilisation of biomass forestry, animal husbandry, fishery, evol uting the agricultural economy, protecting the environment, realising agricultural recycling, as well as improvi ng the sanitary conditions, in rural areas.(2) The biomass energy, one of the important options, which might gradually replace the oil in facing the increased demand for oil and may be an advanced period in this century. Any county can depend on the biomass energy to satisfy part of local consum ption.(3) Development of biogas technology is a vital component of alternative rural ener gy programme, whose potential is yet to be exploited. A concerted effect is required by all if this is to be realised. The technology will find ready use in domestic, farming, and small-scale industrial applications.(4) Support biomass research and exchange experiences with countries that are adva nced in this field. In the meantime, the biomass energy can help to save exhausting the oil wealth.(5) The diminishing agricultural land may hamper biogas energy development but ap propriate technological and resource management techniques will offset the effects.。

相关文档
最新文档