指数函数与对数函数(知识精讲)-2019-2020高一数学(人教A版必修第一册)(解析版)
4.4.1 对数函数的概念 课件 高一数学同步精讲课件(人教A版2019必修第一册)原创精品

则方程
ax2-2x+2=4
1
即存在x∈[ ,2], 使得 a
2
2
成立.
1
1
令t= , 则t∈[ ,2],
2
1
在区间[ ,2]上有解,
2
2
= 2
所以
1 2 1
a=2(t+ ) 2
2
3
∈[ ,12]
2
1
4.已知集合P=[ ,2],函数y=log2(ax2-2x+2)的定义域
2
转
化
与
化
归
为Q .
函数图象必需与轴有公共点的问题.
1
2.设函数f(x)=f( )lgx+1,求f(10)的值.
对
偶
思
想
+
方
程
思
想
1
解析:用 替代原方程中的x,得
1
f( )=-f(x)lgx+1
,与原方程联立,
1+
解得:f(x)=
1+2
所以 f(10)=1
方法:结构造对偶式,联立两函数方程,可解出函
(1)若P∩Q≠,求实数a的取值范围;
1
2
(2)若方程log2(ax -2x+2)=2在[ ,2]内有解,求实
2
数a的取值范围.
方法总结:
(1)不等式在区间内有解问题,通过分离参数,转化
为求有关函数的最值问题;
(2)方程在区间内有解问题,通过分离参数,转化为
求有关函数的值域问题.
课堂小结
一、本节课学习的新知识
2
转
化
数学人教A版(2019)必修第一册4-3-1对数的概念

其中 a 叫做对数的底数, N 叫做真数.
注意:①读法:以 a 为底 N 的对数 ②书写的规范性
loga N
二、探究新知
loga N
“log”是拉丁文 logarithm(对数)
的缩写
注意
log是对数的符号,类似除法运算的 “÷”,表示一种运算,用它连接运 算的对象; loga N 即已知底数 a和它的幂N求指 数的运算,这种运算叫做对数运算, 只不过对数运算的符号写在数的前面, 其运算结果仍是一个数。
1.111,1.11 2,1.11 3,1.11 x
一、问题引入
反之要想求经过多少年以后游客人次是2001
年游客人次的2倍3倍4倍…y倍,那么应如何
解决这个问题。
上述问题实际上就是从2 1.11x ,3 1.11x ,4 1.11x
中分别求出x
即已知底数和幂的值,求指数.
引进对数
二、探究新知
注意 : 对数是一个数!
二、探究新知
. 2.两个重要的对数
名称
名称
定义
常用 对数
自然 对数
以10为底的对数叫做常用对数 即
记法
二、探究新知
科普知识 e在数学中是代表一个数的符号,其实还不限 于数学领域。在大自然中,建构,呈现的形状, 利率或者双曲线面积及微积分教科书、伯努利 家族等都离不开e的身影。 e在科学技术中用得非常多,一般不使用以10 为底数的对数。以e为底数,许多式子都能得到 简化,用它是最“自然”的,所以叫“自然对 数”。由于我们的数系是十进制,因此常用对 数在数值计算上具有优越性。
跟踪练习:将下列指数式 写成对数式对数式写成指数式:
23=8 e3=m
例2:求下列各式中x的值 :
第四章-4.2-指数函数高中数学必修第一册人教A版

的交点,即方程 3 − 1 = 有一解.
图4.2-7
, +∞
子题1 若方程3 − 1 = 有两解,则的取值范围为________.
【解析】作出函数 = 3 − 1与 = 的图象如图4.2 − 8所示,数形结合可得 > 0.
(4)− ;(5) − 1 .
【解析】利用指数函数 = 2 的图象及变换作图法可作出所要作的函数图象.如图4.
2-3所示.
图4.2-3
例6 (2024·福建省龙岩市一级校联盟)函数 = − 的图象如图
4.2-6所示,其中,为常数,则下列结论正确的是( D
A. > 1, < 0
B. > 1, > 0
C.0 < < 1, > 0
D.0 < < 1, < 0
)
图4.2-6
【学会了吗|变式题】
2
1.(2024·山东省枣庄八中月考)二次函数 = + 与指数函数 =
是( A
A.
的图象可能
)
B.
【解析】二次函数的方程为 =
各选项中指数函数的图象知0 <
图4.2-8
(−∞, −]
子题2 若函数 = 3 − 1 + 的图象不经过第二象限,则的取值范围是__________.
【解析】作出函数 = 3 − 1 − 1的图象如图4.2-9所示.由图象知 ≤ −1,即
∈ (−∞, −1].
图4.2-9
【学会了吗|变式题】
2.[多选题]若直线 = 2与函数 = | − 1| + 1( > 0,且 ≠ 1)的图象有两个公
4.4.1对数函数的概念(教学课件)-高中数学人教A版(2019)必修第一册

x
【解析】
根据指数与对数的关系,由
y
=
1 2
5730
(x≥0)
得到
x=
(0<y≤1).如图, 过 y 轴正半轴上任意一点(0,y0) (0<y0≤1)作
x
x 轴的平行线,与 y=125730 (x≥0) 的图象有且只有一个交点(x0,y0).这
就说明,对于任意一个 y∈(0,1],通过对应关系 x=
() A. f(x)=2x,g(x)=log2x
B. f(x)=|x|,g(x)= x2
C. f(x)=2lgx,g(x)=lgx2
D. f(x)=x,g(x)=3 x3
12345
内容索引
【解析】 对于 A,f(x)=2x,g(x)=log2x 分别为指数运算与对数运算, 不为相同函数,故 A 错误;对于 B,因为 g(x)= x2=|x|=f(x),所以 f(x) =|x|与 g(x)= x2是同一函数,故 B 正确;对于 C,f(x)=2lgx 的定义域为 (0,+∞),g(x)=lgx2 的定义域为{x|x≠0},不为相同函数,故 C 错误;
内容索引
活动三 对数函数的定义域
例 2 求下列函数的定义域: (1) y=log3x2;
【解析】 因为x2>0,即x≠0, 所以函数 y=log3x2的定义域是{x|x≠0}. (2) y=loga(4-x) (a>0,且a≠1).
【解析】 因为4-x>0,即x<4,
所以函数 y=loga(4-x)的定义域是{x|x<4}.
内容索引
一般地,函数y=logax(a>0,且a≠1)叫作对数函数,其中x是自变 量,定义域是(0,+∞).
内容索引
新人教A版新教材学高中数学必修第一册第四章指数函数与对数函数指数函数的概念讲义

最新课程标准:(1)通过具体实例,了解指数函数的实际意义,理解指数函数的概念.(2)能用描点法或借助计算工具画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.知识点一指数函数的定义函数y=a x(a>0且a≠1)叫做指数函数,其中x是自变量.定义域为R.错误!指数函数解析式的3个特征(1)底数a为大于0且不等于1的常数.(2)自变量x的位置在指数上,且x的系数是1.(3)a x的系数是1.知识点二指数函数的图象与性质a>10<a<1图象定义域R值域(0,+∞)性质过定点过点(0,1),即x=0时,y=1函数值的变化当x>0时,y>1;当x<0时,0<y<1当x>0时,0<y<1;当x<0时,y>1单调性是R上的增函数是R上的减函数错误!底数a与1的大小关系决定了指数函数图象的“升”与“降”.当a>1时,指数函数的图象是“上升”的;当0<a<1时,指数函数的图象是“下降”的.[教材解难]规定底数a>0且a≠1的理由(1)如果a=0,则错误!(2)如果a<0,比如y=(—2)x,这时对于x=错误!,错误!,错误!,错误!,…在实数范围内函数值不存在.(3)如果a=1,那么y=1x=1是常量,对此就没有研究的必要.[基础自测]1.下列各函数中,是指数函数的是()A.y=(—3)xB.y=—3xC.y=3x—1D.y=错误!x解析:根据指数函数的定义y=a x(a>0且a≠1)可知只有D项正确.答案:D2.函数f(x)=错误!的定义域为()A.RB.(0,+∞)C.[0,+∞)D.(—∞,0)解析:要使函数有意义,则2x—1>0,∴2x>1,∴x>0.答案:B3.在同一坐标系中,函数y=2x与y=错误!x的图象之间的关系是()A.关于y轴对称B.关于x轴对称C.关于原点对称D.关于直线y=x对称解析:由作出两函数图象可知,两函数图象关于y轴对称,故选A.答案:A4.函数f(x)=错误!的值域为________.解析:由1—e x≥0得e x≤1,故函数f(x)的定义域为{x|x≤0},所以0<e x≤1,—1≤—e x<0,0≤1—e x<1,函数f(x)的值域为[0,1).答案:[0,1)题型一指数函数概念的应用[经典例题]例1(1)若函数f(x)=(2a—1)x是R上的减函数,则实数a的取值范围是()A.(0,1)B.(1,+∞)C.错误!D.(—∞,1)(2)指数函数y=f(x)的图象经过点错误!,那么f(4)·f(2)等于________.【解析】(1)由已知,得0<2a—1<1,则错误!<a<1,所以实数a的取值范围是错误!.(2)设y=f(x)=a x(a>0,a≠1),所以a—2=错误!,所以a=2,所以f(4)·f(2)=24×22=64.【答案】(1)C (2)64(1)根据指数函数的定义可知,底数a>0且a≠1,a x的系数是1.(2)先设指数函数为f(x)=a x,借助条件图象过点(—2,错误!)求a,最后求值.方法归纳(1)判断一个函数是指数函数的方法1看形式:只需判定其解析式是否符合y=a x(a>0,且a≠1)这一结构特征.2明特征:指数函数的解析式具有三个特征,只要有一个特征不具备,则不是指数函数.(2)已知某函数是指数函数求参数值的基本步骤跟踪训练1(1)若函数y=(3—2a)x为指数函数,则实数a的取值范围是________;(2)下列函数中是指数函数的是________.(填序号)1y=2·(错误!)x2y=2x—13y=错误!x4y=x x5y=31x⑥y=x13.解析:(1)若函数y=(3—2a)x为指数函数,则错误!解得a<错误!且a≠1.(2)1中指数式(错误!)x的系数不为1,故不是指数函数;2中y=2x—1=错误!·2x,指数式2x的系数不为1,故不是指数函数;4中底数为x,不满足底数是唯一确定的值,故不是指数函数;5中指数不是x,故不是指数函数;⑥中指数为常数且底数不是唯一确定的值,故不是指数函数.故填3.答案:(1)(—∞,1)∪错误!(2)31.指数函数系数为1.2.底数>0且≠1.题型二指数函数[教材P114例1]例2已知指数函数f(x)=a x(a>0,且a≠1),且f(3)=π,求f(0),f(1),f(—3)的值.【解析】因为f(x)=a x,且f(3)=π,则a3=π,解得a=π13,于是f(x)=π3x.所以,f(0)=π0=1,f(1)=π13=错误!,f(—3)=π—1=错误!.错误!要求f(0),f(1),f(—3)的值,应先求出f(x)=a x的解析式,即先求a的值.教材反思求指数函数的解析式时,一般采用待定系数法,即先设出函数的解析式,然后利用已知条件,求出解析式中的参数,从而得到函数的解析式,其中掌握指数函数的概念是解决这类问题的关键.因为底数a是大于0且不等于1的实数,所以a=—3应舍去.跟踪训练2若指数函数f(x)的图象经过点(2,9),求f(x)的解析式及f(—1)的值.解析:设f(x)=a x(a>0,且a≠1),将点(2,9)代入,得a2=9,解得a=3或a=—3(舍去).所以f(x)=3x.所以f(—1)=3—1=错误!.设f(x)=a x,代入(2,9)求出A.一、选择题1.下列函数中,指数函数的个数为()1y=错误!x—1;2y=a x(a>0,且a≠1);3y=1x;4y=错误!2x—1.A.0 B.1C.3D.4解析:由指数函数的定义可判定,只有2正确.答案:B2.已知f(x)=3x—b(b为常数)的图象经过点(2,1),则f(4)的值为()A.3B.6C.9 D.81解析:由f(x)过定点(2,1)可知b=2,所以f(x)=3x—2,f(4)=9.可知C正确.答案:C3.当x∈[—1,1]时,函数f(x)=3x—2的值域是()A.错误!B.[—1,1]C.错误!D.[0,1]解析:因为指数函数y=3x在区间[—1,1]上是增函数,所以3—1≤3x≤31,于是3—1—2≤3x—2≤31—2,即—错误!≤f(x)≤1.故选C.答案:C4.在同一平面直角坐标系中,函数f(x)=ax与g(x)=a x的图象可能是()解析:需要对a讨论:1当a>1时,f(x)=ax过原点且斜率大于1,g(x)=a x是递增的;2当0<a<1时,f(x)=ax过原点且斜率小于1,g(x)=a x是减函数,显然B正确.答案:B二、填空题5.下列函数中:1y=2·(错误!)x;2y=2x—1;3y=错误!x;4y=31x-;5y=x13.是指数函数的是________(填序号).解析:1中指数式的系数不为1;2中y=2x—1=错误!·2x的系数亦不为1;4中自变量不为x;5中的指数为常数且底数不是唯一确定的值.答案:36.若指数函数y=f(x)的图象经过点错误!,则f错误!=________.解析:设f(x)=a x(a>0且a≠1).因为f(x)过点错误!,所以错误!=a—2,所以a=4.所以f(x)=4x,所以f错误!=432-=错误!.答案:错误!7.若关于x的方程2x—a+1=0有负根,则a的取值范围是________.解析:因为2x=a—1有负根,所以x<0,所以0<2x<1.所以0<a—1<1.所以1<a<2.答案:(1,2)三、解答题8.若函数y=(a2—3a+3)·a x是指数函数,求a的值.解析:由指数函数的定义知错误!由1得a=1或2,结合2得a=2.9.求下列函数的定义域和值域:(1)y=21x—1;(2)y=错误!222x-.解析:(1)要使y=21x—1有意义,需x≠0,则21x≠1;故21x—1>—1且21x—1≠0,故函数y=21x—1的定义域为{x|x≠0},函数的值域为(—1,0)∪(0,+∞).(2)函数y=错误!222x-的定义域为实数集R,由于2x2≥0,则2x2—2≥—2.故0<错误!222x-≤9,所以函数y=错误!222x-的值域为(0,9].[尖子生题库]10.设f(x)=3x,g(x)=错误!x.(1)在同一坐标系中作出f(x),g(x)的图象;(2)计算f(1)与g(—1),f(π)与g(—π),f(m)与g(—m)的值,从中你能得到什么结论?解析:(1)函数f(x)与g(x)的图象如图所示:(2)f(1)=31=3,g(—1)=错误!—1=3;f(π)=3π,g(—π)=错误!—π=3π;f(m)=3m,g(—m)=错误!—m=3m.从以上计算的结果看,两个函数当自变量取值互为相反数时,其函数值相等,即当指数函数的底数互为倒数时,它们的图象关于y轴对称.。
高中人教A版必修一指数函数与对数函数知识点总结

高中人教A版必修一指数函数与对数函数知识点总结指数函数和对数函数是高中数学中的重要概念,它们经常出现在各种高考试题中。
下面对高中人教A版必修一中的指数函数和对数函数的知识点进行总结:一、指数函数的定义和性质:1.指数函数的定义:设a是一个正数且不等于1,x是任意实数,则形如y=a^x的函数称为指数函数。
2.指数函数的性质:(1)当a>1时,指数函数y=a^x是递增函数。
(2)当0<a<1时,指数函数y=a^x是递减函数。
(3)当a>0且不等于1时,指数函数y=a^x的图象经过点(0,1)。
(4)当a>1时,指数函数y=a^x的图象在y轴的右半部分无上界,且在x轴的左半部分无下界;当0<a<1时,指数函数y=a^x的图象在y轴的右半部分无下界,且在x轴的左半部分无上界。
(5)指数函数y=a^x的图象经过点(1,a)。
二、对数函数的定义和性质:1. 对数函数的定义:设a是一个大于0且不等于1的实数,b是一个正数,则形如y=log_a^b的函数称为对数函数。
2.对数函数的性质:(1) 对数函数y=log_a^b的定义域是(0,+∞),值域是(-∞,+∞)。
(2) 当0<a<1时,对数函数y=log_a^b是递增函数。
(3) 当a>1时,对数函数y=log_a^b是递减函数。
(4) 对数函数y=log_a^b的图象经过点(a,1)。
(5) 对数函数y=log_a^b是指数函数y=a^x的反函数,即y=log_a^b等价于b=a^y。
三、指数方程和对数方程:1.指数方程:形如a^x=b的等式称为指数方程。
(1)指数方程的解法:当指数方程左右两边的底数相等时,可取对数得到对数方程,再解对数方程得到解;当指数方程左右两边的指数相等时,可取对数得到对数方程,再解对数方程得到解。
2. 对数方程:形如log_a^b=c的等式称为对数方程。
(1)对数方程的解法:根据对数的定义,可将对数方程化为指数方程,再解指数方程得到解。
4.2 指数函数(共2课时课件)(人教A版2019高一数学必修第一册)

第四章 指数函数与对数函数
4.2.2 指数函数的图象与性质
高中数学/人教A版/必修一
……
4.2.2 指数函数的图象与性质
思维篇
素养篇
知识篇
让我们回顾一下前面研究幂函数性质的过程和
方法:
定义域?
值
图象
域?
单调性?
奇偶性?
过定点?
1 指数函数的图象
首先画出指数函数的图象,然后借助图象研究指数函
令x=0.5n, 则n=2x
所以f(x)=3×4x
方法总结:连续两项数值之比为常数,可通过连乘得
到指数增长(衰减)模型.
课堂小结
一、本节课学习的新知识
指数函数的概念
指数增长(衰减)模型
课堂小结
二、本节课提升的核心素养
数学抽象
数学建模
数据分析
课堂小结
三、本节课训练的数学思想方法
转化与化归
方程思想
观察表格中的数据
比较两地景区游客人次每
年的变化情况
发现了怎样的变化规律?
时间/
A地景区
年份 人次/
B地景区
2001
2002
万次
600
609
人次/
万次
278
309
2003
620
344
2004
631
383
2005
641
427
2006
650
475
2007
2008
661
671
528
588
2009
681
655
范围是
答案:(1)4
.
(2)(3,4)∪(4,+∞)
高中数学第四章指数函数与对数函数4.3.2对数的运算课件新人教A版必修第一册

=(log23+log23+log23+…+log23)×log9
=n×log23× × log32
= .
探索点三
对数运算的综合应用
【例 3】
(1)已知 2x=3y=a,若 + =2,则 a 的值为(
A.36
B.6
C.2
D.
解析:因为 2x=3y=a,所以 x=log2a,y=log3a,
所以 + =
+
=loga2+loga3=loga6=2,
所以 a2=6,解得 a=±
.
又因为 a>0,所以 a=
,故选 D.
答案:D
)
(2)方程 lgx+lg(x-1)=1-lg5 的根是 (
A.-1
B.2
C.1 或 2
D.-1 或 2
解析:原方程可化为 lg[x(x-1)]=g2,则有
所以
答案:B
所以 log3645=
=
=
=
=
.
方法规律
利用对数换底公式进行化简求值的原则和技巧
【跟踪训练】
3.变式练在本例(2)的条件下,试用 a,b 表示 log310.
+
=
解:log310=
- + -+ -+
① lg 25+
+lg
+lg(2
);
②(lg 5)2+lg 2·lg 50.
解:①原式= ×2×lg 5+3+ lg
+lg
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十一指数函数与对数函数知识精讲一知识结构图二.学法指导1.正确区分na n与(na)n:(1)(na)n已暗含了na有意义,据n的奇偶性可知a的范围;(2)na n中的a可以是全体实数,na n的值取决于n的奇偶性.2. 带条件根式的化简(1)有条件根式的化简问题,是指被开方数或被开方的表达式可以通过配方、拆分等方式进行化简.(2)有条件根式的化简经常用到配方的方法.当根指数为偶数时,在利用公式化简时,要考虑被开方数或被开方的表达式的正负.3.指数幂运算的常用技巧(1)有括号先算括号里的,无括号先进行指数运算.(2)负指数幂化为正指数幂的倒数.(3)底数是小数,先要化成分数;底数是带分数,要先化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.4.判断一个函数是否为指数函数,要牢牢抓住三点:(1)底数是大于0且不等于1的常数; (2)指数函数的自变量必须位于指数的位置上; (3)a x 的系数必须为1.5.求指数函数的解析式常用待定系数法.6.利用指数型函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式.7.解不等式a f (x )>a g (x )(a >0,a ≠1)的依据是指数型函数的单调性,要养成判断底数取值范围的习惯,若底数不确定,就需进行分类讨论,即a f (x )>a g (x )⇔⎩⎪⎨⎪⎧f (x )>g (x ),a >1,f (x )<g (x ),0<a <1.8.性质alog a N=N 与log a a b =b 的作用 (1)a log a N=N 的作用在于能把任意一个正实数转化为以a 为底的指数形式.(2)log a a b =b 的作用在于能把以a 为底的指数转化为一个实数.9.利用对数性质求值的解题关键是化异为同,先使各项底数相同,底数不同时,利用换底公式把底数换成相同,再找真数间的联系. 10.比较对数值大小的常用方法(1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化. (3)底数和真数都不同,找中间量. 11.常见的对数不等式的三种类型(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论;(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x 的单调性求解;(3)形如log a x >log b x 的不等式,可利用图象求解.12.已知对数型函数的单调性求参数的取值范围,要结合复合函数的单调性规律,注意函数的定义域求解;若是分段函数,则需注意两段函数最值的大小关系.13.求对数型函数的值域一般是先求真数的范围,然后利用对数函数的单调性求解.三.知识点贯通知识点1 根式运算1.a a nn =)(;2.⎩⎨⎧<-≥==0.0,||a a a a a a n n例题1.(1)若x <0,则x +|x |+x 2x=________.(2)若-3<x <3,求x 2-2x +1-x 2+6x +9的值.【答案】(1)-1 (2) ⎩⎪⎨⎪⎧-2x -2,-3<x ≤1,-4,1<x <3.【解析】(1)∵x <0,∴|x |=-x ,x 2=|x |=-x ,∴x +|x |+x 2x =x -x -1=-1.](2)x 2-2x +1-x 2+6x +9=(x -1)2-(x +3)2=|x -1|-|x +3|,当-3<x ≤1时,原式=1-x -(x +3)=-2x -2. 当1<x <3时,原式=x -1-(x +3)=-4.因此,原式=⎩⎪⎨⎪⎧-2x -2,-3<x ≤1,-4,1<x <3.知识点二 利用分数指数幂的运算性质化简求解1.正分数指数幂:规定:a mn =a >0,m ,n ∈N *,且n >1)2.负分数指数幂:规定:a -m n =1a m n =1(a >0,m ,n ∈N *,且n >1)3.幂的运算性质(1)a r a s =a r +s (a >0,r ,s ∈R ). (2)(a r )s =a rs (a >0,r ,s ∈R ). (3)(ab )r =a r b r (a >0,b >0,r ∈R ). 例题2:化简求值:知识点三 指数函数的概念1.一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R . 例题3 .已知函数f (x )为指数函数,且f ⎝⎛⎭⎫-32=39,则f (-2)=________. 【答案】19【解析】设f (x )=a x (a >0且a ≠1),由f ⎝⎛⎭⎫-32=39得a -32=39,所以a =3,又f (-2)=a -2,所以f (-2)=3-2=19知识点四 指数函数的性质及运用 1.指数函数的性质R例题4.求下列函数的定义域和值域:(1)y =1-3x ; (2)y =⎝⎛⎭⎫12x 2-2x -3;(3)y =4x +2x +1+2.【解析】(1)要使函数式有意义,则1-3x ≥0,即3x ≤1=30,因为函数y =3x 在R 上是增函数,所以x ≤0,故函数y =1-3x 的定义域为(-∞,0].因为x ≤0,所以0<3x ≤1,所以0≤1-3x <1,所以1-3x ∈[0,1),即函数y =1-3x 的值域为[0,1). (2)定义域为R .∵x 2-2x -3=(x -1)2-4≥-4,∴⎝⎛⎭⎫12x 2-2x -3≤⎝⎛⎭⎫12-4=16.又∵⎝⎛⎭⎫12x 2-2x -3>0,∴函数y =⎝⎛⎭⎫12x 2-2x -3的值域为(0,16]. (3)因为对于任意的x ∈R ,函数y =4x +2x +1+2都有意义,所以函数y =4x +2x +1+2的定义域为R .因为2x >0,所以4x +2x +1+2=(2x )2+2×2x +2=(2x +1)2+1>1+1=2,即函数y =4x +2x +1+2的值域为(2,+∞). 例题5. 比较下列各组数的大小: (1)1.52.5和1.53.2; (2)0.6-1.2和0.6-1.5;(3)1.70.2和0.92.1; (4)a 1.1与a 0.3(a >0且a ≠1).【解析】(1)1.52.5,1.53.2可看作函数y =1.5x 的两个函数值,由于底数1.5>1,所以函数y =1.5x 在R 上是增函数,因为2.5<3.2,所以1.52.5<1.53.2.(2)0.6-1.2,0.6-1.5可看作函数y =0.6x 的两个函数值,因为函数y =0.6x 在R 上是减函数, 且-1.2>-1.5,所以0.6-1.2<0.6-1.5.(3)由指数函数性质得,1.70.2>1.70=1,0.92.1<0.90=1, 所以1.70.2>0.92.1.(4)当a >1时,y =a x 在R 上是增函数,故a 1.1>a 0.3; 当0<a <1时,y =a x 在R 上是减函数,故a 1.1<a 0.3. 知识点五 对数运算性质的应用 对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么:(1)log a (MN )=log a M +log a N ; (2)log a MN =log a M -log a N ;(3)log a M n =n log a M (n ∈R ). 例题6.计算下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)lg 52+23lg 8+lg 5·lg 20+(lg 2)2;(3)lg 2+lg 3-lg 10lg 1.8.【解析】 (1)原式=12(5lg 2-2lg 7)-43·32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg 7+12lg 5=12lg 2+12lg 5=12(lg 2+lg 5)=12lg 10=12. (2)原式=2lg 5+2lg 2+lg 5(2lg 2+lg 5)+(lg 2)2 =2lg 10+(lg 5+lg 2)2=2+(lg 10)2=2+1=3. (3)原式=12(lg 2+lg 9-lg 10)lg 1.8=lg 18102lg 1.8=lg 1.82lg 1.8=12.知识点六 对数的换底公式1.若a >0且a ≠1;c >0且c ≠1;b >0,则有log a b =log c blog c a .例题7.(1)计算:(log 2125+log 425+log 85)·(log 1258+log 254+log 52). (2)已知log 189=a,18b =5,求log 3645(用a ,b 表示).【解析】(1)(log 2125+log 425+log 85)·(log 1258+log 254+log 52)=(log 253+log 2252+log 235)·(log 5323+log 5222+log 52)=⎝⎛⎭⎫3+1+13log 25·(1+1+1)log 52=133·3=13.(2)∵18b =5,∴b =log 185. 又log 189=a ,∴log 3645=log 1845log 1836=log 185+log 1891+log 182=a +b 2-log 189=a +b 2-a .知识点七 对数函数的概念1.函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 例题8.若函数y =log (2a -1)x +(a 2-5a +4)是对数函数,则a =________. 【解析】因为函数y =log (2a -1)x +(a 2-5a +4)是对数函数,所以⎩⎪⎨⎪⎧2a -1>0,2a -1≠1,a 2-5a +4=0,解得a =4.知识点八 对数函数的图象与性质(0,+∞)例题9.求下列函数的定义域:(1)f (x )=1log 12x +1;(2)f (x )=12-x+ln(x +1); 【解析】(1)要使函数f (x )有意义,则log 12x +1>0,即log 12x >-1,解得0<x <2,即函数f (x )的定义域为(0,2).(2)函数式若有意义,需满足⎩⎪⎨⎪⎧ x +1>0,2-x >0,即⎩⎪⎨⎪⎧x >-1,x <2,解得-1<x <2,故函数的定义域为(-1,2). 例题10.比较下列各组值的大小:(1)log 534与log 543;(2)log 132与log 152;(3)log 23与log 54.【解析】 (1)法一(单调性法):对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.法二(中间值法):因为log 534<0,log 543>0,所以log 534<log 543.(2)法一(单调性法):由于log 132=1log 213,log 152=1log 215,又因对数函数y =log 2x 在(0,+∞)上是增函数, 且13>15,所以0>log 213>log 215, 所以1log 213<1log 215,所以log 132<log 152.法二(图象法):如图,在同一坐标系中分别画出y =log 13x 及y =log 15x 的图象,由图易知:log 132<log 152.(3)取中间值1,因为log 23>log 22=1=log 55>log 54, 所以log 23>log 54. 五 易错点分析易错一 指数幂运算中的条件求值例题11.已知a 12+a -12=4,求下列各式的值: (1)a +a -1;(2)a 2+a -2.【解析】(1)将a 12+a -12=4两边平方,得a +a -1+2=16,故a +a -1=14. (2)将a +a -1=14两边平方,得a 2+a -2+2=196,故a 2+a -2=194. 误区警示已知条件求值时,注意把条件作为整体,找条件与所求结论的关系,根据关系利用合适的公式求解。