高中对数函数有多难?图解概念加习题,让你轻松过关
对数函数(重难点突破)

对数函数重难点突破一、知识梳理二、知识精讲知识点一 对数函数及其性质(1)概念:函数 y =log a x(a >0,且 a≠1)叫做对数函数,其中 x 是自变量,函数的定义域是(0,+∞). (2)对数函数的图象与性质0<a<1图象定义域: (0,+∞)值域: R当 x = 1 时, y =0,即过定点(1,0)当 x>1 时, y>0; 当 0<x<1 时, y<0在(0,+∞)上是增函数a>1对数的性质、换底公式与运算性质(1)对数的性质:①a logaN =N ;②log a a b =b(a>0,且 a≠1). (2)对数的运算法则如果 a>0 且 a≠1,M>0,N>0,那么 ①log a (MN)=log a M +log a N ; M④log a m M n =n mlog a M(m ,n∈R,且 m≠0).(3)换底公式: log b N =log a Nlog a b(a ,b 均大于零且不等于 1).三、例题讲解(一) 对数函数的概念与图像 例 1、给出下列函数:;①y= x πx .其中是对数函数的有( ) A .1 个 B .2 个 C .3 个 D .4 个 【答案】解: ①y=x 2 的真数为 x 2,故不是对数函数;3(x ﹣ 1)的真数为x ﹣ 1,故不是对数函数; ③y= log x+1x 的底数为 x+1,故不是对数函数;②y= log④y=log πx 是对数函数;故选: A .【变式训练 1-1】.函数f(x)=log a |x|+1(0<a <1)的图象大致为( )【答案】 A②log a =log a M -log a N ;③log a M n =nlog a M(n∈R);2 ②y=log 3(x ﹣ 1); ③y=log x+1x ; ④y=logN【解析】选A 由函数f(x)的解析式可确定该函数为偶函数,图象关于y 轴对称.设g(x)=log|x|,先画出ax>0 时,g(x)的图象,然后根据g(x)的图象关于y 轴对称画出x<0 时g(x)的图象,最后由函数g(x)的图象向上整体平移一个单位即得f(x)的图象,结合图象知选 A.【变式训练 1-2】.函数f (x )=的图象可能是( )【答案】解:∵f(x )=,∴函数定义域为(﹣∞, 0)∪(0,+∞),∵,∴函数f (x )为奇函数,图象关于原点对称,故排除 B 、C ,∵当 0<x <1 时, lnx <0,∴f(x )=<0,x∈(0,1)故排除 D .故选: A .【变式训练 1-3】.函数 y =|lg (x+1) |的图象是( )A .B .C .D .故函数 y = lg (x+1)的图象与 X 轴的交点是(0,0),即函数 y = |lg (x+1) |的图象与 X 轴的公共点是(0, 0),考察四个选项中的图象只有 A 选项符合题意故选: A . 1273 8【变式训练 1-4】.计算: +log 2(log 216)=________. CD例 2.函数 y = 的图象大致是(A . . .B .【解析】:原式=2 331323x 2 ,x 02x1,x083.)+log24=+2=【答案】 B【变式训练 2-1】.已知a 0 ,b 0且a 1,b 1 ,若logab 1,则下列不等式可能正确的是().A.(b1)(b a)0B.(a1)(a b)0C.(a1)(b1)0D.(a1)(b a)0【答案】 AD【解析】∵loga b1logaa,∴若a1,则b a,即b a1.∴(b1)(b a)0,故A正确.(a1)(b a)0,故D正确.若0a1,则0b a1,∴(a1)(a b)0,(a1)(b1)0,故BC错误,2x,x12-3】.图中曲线是对数函数y log x的图象,已知a 取 3 ,,,C 2 ,C3,C4的a 值依次为( )4 3 1【变式训练a3510四个值,则相应于C1,【变式训练2-2】.已知函数f(x)log2(1x),x1,则f(0)f(3)_______.【解析】f(0)f(3)20log1(3)121.故答案为:-14 3 1 4 1 3A . 3 , , ,B . 3 , , ,3 5 10 3 10 54 3 1 4 1 3C . , 3 , ,D . , 3 , ,3 5 10 3 10 5【答案】 A 可得C 1 , C 2 , C 3 , C 4 的a 值从小到大依次为: C 4 ,C 3 , C 2 , C 1 ,4(二) 比较大小例 3.(2019·浙江湖州高一期中) 下列各式中错误的是( )A . 30.8 30.7B .log 0.5 0.4 log 0.5 0.6C . 0.750.10.750.1 D .log 2 3 log 3 2 【答案】 C【变式训练 3-1】.(2020·全国高一课时练习) 设 alog 3 ,b log 2 3,c log 3 2 则( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a 【答案】 A1 【解析】 alog 3log 3 3 1, 2log 3 3 log 3 2 c ,1 2【变式训练 3-2】.(2019 秋•沙坪坝区校级月考) 已知 a =log 30.3,b =30.3,c =0.30.2,则( ) A .a <b <c B .a <c <b C .c <a <b D .b <c <a 【分析】容易得出,从而可得出 a ,b ,c 的大小关系.【答案】解:∵log 30.3<log 31=0,30.3>30 =1,0<0.30.2<0.30=1 ∴a<c <b .故选: B . 【变式训练 3-3】.(2019•西湖区校级模拟)下列关系式中,成立的是( )【答案】解:∵log 34>log 33=1,0<0.31.7<0.30=1,log 0.310<log 0.31=0,CDlog 2 2 b log 2 3 log 2 2 1, a b c .故选: A. . . A . B . ..∴.故选: A.(三) 对数函数过定点问题例4.(2019 秋•水富县校级月考)已知函数y=3+log a(2x+3)(a>0,a≠1)的图象必经过定点 P,则P 点坐标是()A.(1,3)B.(﹣,4)C.(﹣1,3)D.(﹣1,4)【分析】令 2x+3=1,求得x 的值,从而求得P 点的坐标.【答案】解:令 2x+3=1,可得 x=﹣ 1,此时y=3.即函数y=3+log a(2x+3)(a>0,a≠1))的图象必经过定点 P 的坐标为(﹣ 1,3).故选:C.【点睛】本题主要考查对数函数的单调性和特殊点,属于基础题.【变式训练 4-1】.函数y=log a(x+2)+a x+1+2(a>0,且a≠1)的图象必经过的点是()A.(0,2) B.(2,2) C.(﹣ 1,2) D.(﹣ 1,3)【分析】根据 log a1=0,a0=1,求出定点的坐标即可.【答案】解:令x+2=1,解得:x=﹣ 1,故y=0+1+2=3,故图象过(﹣ 1,3),故选:D.【点睛】本题考查了对数函数,指数函数的性质,根据log a1=0,a0=1 是解题的关键.【变式训练 4-2】.已知a>0,a≠1,则f(x)=log a的图象恒过点()A.(1,0)B.(﹣2,0)C.(﹣1,0)D.(1,4)【分析】令=1,解得x=﹣ 2,y=0,进而得到f(x)=log a的图象恒过点的坐标.【答案】解:令=1,解得:x=﹣ 2,故f(﹣2)=log a1=0 恒成立,即f(x)=log a的图象恒过点(﹣ 2,0),故选:B.(四) 有关对数函数奇偶性问题例5.(多选题)下列函数中,是奇函数且存在零点的是( )A.y=x3+x B.y=logx2C.y=2x2 -3 D.y=x|x|【答案】 ADx 为非奇非偶函数,与题【解析】 A 中, y=x3+x 为奇函数,且存在零点x=0,与题意相符; B 中,y=log2意不符;C4.1,c f 20.8 ,【变式训练 5-1】.已知奇函数f x在R 上是增函数,若a f log b f log2则a,b,c 的大小关系为( )A.a b c B.b a c C.c b a D.c a b【答案】 C 5【解析】由题意:a f log21f log25,且:log25log24.12,120.82,据此: log 2 5log 2 4.1 20.8 ,结合函数的单调性有: f log 2 5 f log 2 4.1 f 20.8 , 即a b c,c b a .本题选择 C 选项.【变式训练 5-2】.对于函数 ,下列说法正确的是( )A .f (x )是奇函数B .f (x )是偶函数C .f (x )是非奇非偶函数D .f (x )既是奇函数又是偶函数【分析】根据函数奇偶性的定义判断函数的奇偶性即可. 【答案】解:由 >0,解得:﹣ 1<x <1,故函数f (x )的定义域是(﹣ 1,1),关于原点对称,而 f ( ﹣x )=log 2=﹣ log 2=﹣ f (x ),故f (x )是奇函数,故选: A .(五) 有关对数函数定义域问题 例 6.函数 y =1log 2(x 2)的定义域为( )A .(-∞ ,2)B .(2,+∞)C .(2,3)∪(3,+∞)D .(2,4)∪(4,+∞) 【答案】 Cx 2 0,【变式训练 6-1】.(2018 秋•宜宾期末) 函数 y =的定义域是( )A .( ,+∞)B .( ,1]C .(﹣∞, 1]D .[1,+∞)【分析】首先由根式有意义得到 log 0.5(4x ﹣ 3) ≥0,然后求解对数不等式得到原函数的定义域. 【答案】解:要使原函数有意义,则 log 0.5(4x ﹣ 3) ≥0,即 0<4x ﹣ 3≤1,解得.所以原函数的定义域为(].故选: B .【解析】:选 C 根据题意得 解得 x>2 且 x≠3,故选 C. log 2 (x 2) 0【变式训练 6-2】.(2018 春•连城县校级月考)函数y=的定义域是()A.[1,+∞) B.(,+∞) C.(1,+∞) D.(,1]【分析】利用对数的性质求解.【答案】解:函数 y = 的定义域满足: ,解得 .故选: D .1【变式训练 6-3】.函数ylog 2 x 2的定义域是__________.【答案】2,3 3,x 2 0 x 2 0因此,函数y 的定义域是2,3 3, .故答案为: 2,3 3, .【变式训练 6-4】.函数f xlog 1 x 2 2x 3 的定义域为______,最小值为______.2【答案】3,1 2 【解析】由题意得 x 2 2x 3 0 ,解得3 x 1,所以函数 f x 的定义域为 3,1 ,令t x 2 2x 3 x 1 2 4 0,4 ,所以g t log 1 t 在 0,4 递减,且g 4 log 1 4 2 .2 2因此函数 f x 的值域为[2, ) ,最小值为 2 .(六) 有关对数函数值域问题及最值问题1例 7.函数f(x)= 的值域是( )A .(-∞ ,1)B .(0,1)1 log2 x 23x 1【解析】由题意可得log 3 x2 0 ,即x2 1 ,解得 x 2且 x 3.【解析】∵3x +1>1, ∴0<13x 1<1,∴函数的值域为(0,1).【变式训练 7-1】.(2019 秋•南昌校级期中) 函数 y =log 4(2x+3 ﹣ x 2 )值域为.【分析】运用复合函数的单调性分析函数最值,再通过配方求得值域. 【答案】解:设 u (x )=2x+3 ﹣ x 2=﹣(x ﹣ 1) 2+4,当 x =1 时, u (x )取得最大值 4,∵函数 y =log 4x 为(0,+∞)上的增函数, ∴当 u (x )取得最大值时,原函数取得最大值,即 y max =log 4u (x ) max =log 44=1,8因此,函数 y =log 4(2x+3 ﹣ x 2)的值域为(﹣∞, 1],故填: (﹣∞, 1].【变式训练 7-2】.已知函数f(x) lg x 2 2x a ,若它的定义域为 R ,则 a_________,若它的值域为 R ,则 a__________. 【答案】 1 1【解析】函数 f(x) lg x 2 2x a 的定义域为 R ,则 x 22x a0恒成立,故 4 4a 0, 即 a1 ;函数 f(x) lg x2 2x a 为 R ,则 0, 是函数 y x 2 2x a 值域的子集,则 4 4a0 ,即 a 1.故答案为: 1; 1.【变式训练 7-3】.)已知f(x)=log 2(1-x)+log 2(x +3),求f(x)的定义域、值城.【答案】定义域为 3,1 ,值域为,2 .【解析】由函数 f(x) 有意义得 ,解得 3 x1,因为 f xlog 2 (1 x) log 2 (x 3) log 2 1 x x 3 log 2 x 2 2x 3log 2x 1 2 4 , 3 x 1, 又因为tx 1 24在( 3, 1) 上递增,在( 1,1) 上递减,所以t 0,4 ,所以log 2 t,2 .所以函数f(x) 的值域为 ,2 .【变式训练 7-4】.设f x log a 1 x log a (3 x)a 0,a 1 ,且 f 1 2 . 1)求a 的值及 fx 的定义域;2)求 fx 在区间 0, 3上的最大值.2 1 x 0 x3 0【答案】1)a2,定义域为1,3;2)2【解析】1)f1loga 2loga2loga42,解得a2.故f x log21x log2(3x),则解得-1< x < 3 ,故f x的定义域为1,3.(2)函数 f x log 2 1 x log 2 3 x log 2 3 x 1 x ,定义域为 1,3 , 01, 3 ,由函数 y log 2 x 在0, 上单调递增, 函数 y 3 x 1 x 在 0,1 上单调递增,在1, 3上单调递减,可得函数 f x 在0,1 上单调递增,在1, 3上单调递减.故 f x 在区间 0上的最大值为 f 1 log 2 4 2 .(七) 对数函数的概念与图像例 8.画出下列函数的图象:(1)y =lg|x -1| .(2) y lg(x 1) .(八) 对数型复合函数的单调性问题例 9.函数f(x) log 1 (2 x)的单调递增区间是( )2A .( , 2) B . ( ,0) C . (2, ) D . (0, )【答案】 A【解析】由 2 x 0 ,得到x 2 ,令t2 x ,则t 2 x 在(, 2) 上递减,而y log 1 t 在(0,) 上2递减,由复合函数单调性同增异减法则,得到f(x) log 1 (2 x) 在(, 2) 上递增,故选: A2226 ax在0,2 上为减函数,则a 的取值范围是()【变式训练9-1】.函数f x logaA .(0,1)B .1,3C.1,3D.3,【答案】B,计算得出,所以 B 选项是正确的.【变式训练 9-2】.已知函数 f(x) log x 2log x 2(a 0, a 1) .(1)当 a 2 时,求 f(2) ;(2)求解关于x 的不等式 f(x) 0 ;(3)若x [2,4], f(x) 4 恒成立,求实数a 的取值范围.2, 1 1, 3 2【解析】 (1)当 a2 时, f x log 2 x 2 log 2 x 2 f 2 1 1 22 (2)由 f x 0 得: log x 2log x 2 log x 2 log x 1 0log a x 1或log a x 2当 a 1 时,解不等式可得: 0 x或 x a 2 1 a综上所述:当 a 1 时, f x 0 的解集为0, 1 a 2,;当 0 a 1时, f x 0 的解集为0, a 21 ,a(3)由 f x4 得: log x 2 log x 6 log x 3 log x 2 0log a x 2 或log a x 3①当 a 1 时,log a x maxlog a 4 , log a xminlog a 2a当 0 a 1时,解不等式可得: x 或 0 x a 2【答案】(1) 2 ;(2)见解析; (3)【解析】若函数上为减函数,则a a a 2 在1a a a aa a a aloga 42logaa2或loga23logaa3,解得:1a32②当0 a 1时,loga xmaxloga2 ,logaxminloga4loga 2 2 logaa 2 或loga4 3 logaa3 ,解得:综上所述:a的取值范围为22,11,32(九) 对数型复合函数的最值问题2a 1例10.(2019·内蒙古集宁一中高三月考)已知f x loga 1x1xa0,a1(1)求f x的定义域;(2)判断f x的奇偶性并予以证明;(3)求使f x 0 的x 的取值范围.【答案】(1)1,1;(2)见解析;(3)见解析.【解析】(1)由>0 ,解得x∈(-1,1).(2)f(-x)=loga=-f(x),且x∈(-1,1),∴函数y=f(x)是奇函数.(3)若 a>1,f(x)>0,则>1,解得0<x<1;若0<a<1,f(x)>0,则 0<<1,解得-1<x<0.判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1 )直接法, f x f x(正为偶函数,负为减函数);(2 )和差法,f x f x0(和为零奇函数,差为零偶函数);(3)作商法,f xf x1(1为偶函数,1为奇函数).【变式训练10-1】..(2019·浙江高一期中)已知函数f(x) log3 mx2 8x nx21.2(Ⅰ)若m 4, n 4 ,求函数f(x) 的定义域和值域;(Ⅱ)若函数f(x) 的定义域为R ,值域为[0,2] ,求实数m, n 的值.8];(Ⅱ)m5,n5.【答案】(Ⅰ)定义域为x x1,值域为(,log3【解析】(Ⅰ)若m 4, n 4 ,则 f(x) log34x 2 8x 4x 21,由4x 2 8x 4x 210 ,得到x 22x 1 0 ,得到 x 1 ,故定义域为x x 1 .4x 28x 4,则 (t 4)x 2 8x t 4 0当t4 时, x 0 符合.64 4(t 4)2 0,又 x 1 ,所以 t 0 ,所以 0t 8 ,则值域为(,log 3 8] .(Ⅱ)由于函数 f(x) 的定义域为 R ,则mx 2 8x n x 2 1m 0 m 0tmx 2 8x n,由于 f(x) 的值域为[0,2] ,则t [1,9] ,而(t m)x 2 8x t n 0 ,则由 64 4(t m)(t n) 0, 解得t [1,9] ,故 t 1和 t 9 是方程m n 10 m 5意.所以m 5, n 5 . 【变式训练 10-2】.(2019 秋•荔湾区校级期末)已知函数 f (x )=log 3(1+x )﹣ log 3( 1 ﹣ x ). (1)求函数f (x )定义域,并判断 f (x )的奇偶性.(2)判断函数f (x )在定义域内的单调性,并用单调性定义证明你的结论. (3)解关于 x 的不等式f (1 ﹣ x )+f (1 ﹣ x 2 )>0.x 2 1 令 t 64 4(t m)(t n) 0 即t2(m n)t mn 16 0 的两个根,则 ,得到 ,符合题mn 16 9 n 5x 2 10 恒成立,则 ,即 ,令 64 4mn 0 mn 16当t 4 时,上述方程要有解,则 ,得到 0 t 4 或4 t 8 , t 0【分析】(1)根据对数函数的性质以及函数的定义域,根据函数的奇偶性的定义判断函数的奇偶性即可;(2)根据函数单调性的定义判断函数的单调性即可;(3)根据函数的单调性以及函数的奇偶性判断即可.【答案】解:(1)要使函数f(x)=log3(1+x)﹣log3(1﹣x)有意义,必须满足,解得:﹣1<x<1,∴函数f(x)的定义域是(﹣ 1 ,1),综上所述,结论是:函数f(x)的定义域是(﹣ 1 ,1).f(x)=log3(1+x)﹣log3(1﹣x)=log3().f(﹣x)=log3=﹣log3.∴f(x)为奇函数.(2)函数f(x)=log3(),在区间(﹣ 1 ,1)上任取两个不同的自变量x1 ,x2,且设x1<x2 ,则f(x1)﹣f(x2 )=log3,又(1+x1)(1﹣x2)﹣(1﹣x1)(1+x2)=2(x1﹣x2)<0,即(1+x1)(1﹣x2)<(1﹣x1)(1+x2),∵﹣1<x1<x2<1,∴1+x1>0,1﹣x2>0,∵(1+x1)(1﹣x2)>0,∴<1,∴log3<0,即f(x1 )>f(x2),∴函数f(x)是定义域内的单调递增函数.(3)∵f(x)为奇函数,∴f(1﹣x)+f(1﹣x2)>0∴f(1﹣x)>f(x2﹣1),又∵f(x)在定义域上单调递增,∴1﹣x>x2﹣1,x2+x﹣2<0,即(x+2)(x﹣1)<0,∴﹣2<x<1,而,解得:0<x<,综上:0<x<1.【点睛】本题考查了函数的单调性、奇偶性问题,考查导数的应用以及转化思想,是一道中档题.四、迁移应用21x,x1,【答案】[0,)【解析】x1时,f(x)21x2,1x1,x0,∴0x1,x1时,f(x)1log2x2,log2x1,x1,所以x1,综上,原不等式的解集为[0, ) .故答案为:[0,).217.设函数f(x) 则满足f(x) 2 的x 的取值范围是_______________.1log2x,x1,。
对数与对数函数重难点突破

专题 对数与对数函数(重难点突破)重难点一 对数的概念如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.重难点二 对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1). (2)对数的运算法则;如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ; ②log a MN=log a M -log a N ;③log a M n =n log a M (n ∈R); ④log a m M n =nm log a M (m ,n ∈R ,且m ≠0).(3)换底公式:log b N =log a Nlog a b (a ,b 均大于零且不等于1).重难点三 对数函数及其性质(1)概念:y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,定义域是(0,+∞). (2)一、重难点题型突破重难点1 对数与对数式的化简求值 如果a >0,且a ≠1,M >0,N >0,那么:(1)log a (MN )=log a M +log a N ;(2)log a MN =log a M -log a N ;(3)log a M n =n log a M (n ∈R ).例1.(1)(2017·全国高一课时练习)已知lg 9=a,10b =5,则用a ,b 表示log 3645为 .【解析】由已知得lg5b =,则36lg 45lg 5lg 9log 45lg 36lg 4lg 92lg 2b aa++===++, 因为10lg 2lg 1lg515b ==-=-,所以2lg 22(1)22b a a b a b a b a a b +++==+-+-+,即36log 4522a ba b +=-+.(2)求下列函数的定义域:(1)f (x )=lg(x -2)+1x -3;(2)f (x )=log (x +1)(16-4x ).【解析】 (1)要使函数有意义,需满足⎩⎪⎨⎪⎧x -2>0,x -3≠0,解得x >2且x ≠3,所以函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足⎩⎪⎨⎪⎧16-4x >0,x +1>0,x +1≠1,解得-1<x <0或0<x <4,所以函数定义域为(-1,0)∪(0,4).【变式训练】(1).(2017·全国高一单元测试)已知10m =2,10n =4,则3210m n -的值为( ) A.2【解析】3210m n -=3221010m n =()()32121010m n =321224答案:B(2).(2013·全国高一课时练习)已知2log (2)log log a a a M N M N -=+,则MN的值为( ) A .14B .4C .1D .4或1【解析】因为2log (2)log log a a a M N M N -=+,所以2log (2)log a a M N MN -=(),2(2)M N MN -=,2540M MN N-+=(),解得=1(舍去),=4,故选B.重难点2 对数函数的图像与性质 例2求下列函数的定义域: (1)f (x )=1log 12x +1;(2)f (x )=12-x +ln(x +1); 【解析】(1)要使函数f (x )有意义,则log 12x +1>0,即log 12x >-1,解得0<x <2,即函数f (x )的定义域为(0,2).(2)需满足⎩⎪⎨⎪⎧ x +1>0,2-x >0,即⎩⎪⎨⎪⎧x >-1,x <2,解得-1<x <2,故函数的定义域为(-1,2). 例3.(1)(2017·北京市第二中学分校高一)函数12log y x =,x ∈(0,8]的值域是( )A.[-3,+∞)B.[3,+∞)C.(-∞,-3]D.(-∞,3]【解析】∵12083x log x <≤∴≥,-,故选A.(2).下列函数中,其图象与函数ln y x =的图象关于直线1x =对称的是( )A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+【答案】B【解析】设所求函数图象上任一点的坐标为(,)x y ,则其关于直线1x =的对称点的坐标为(2,)x y -,由对称性知点(2,)x y -在函数()ln f x x =的图象上,所以ln(2)y x =-,故选B .(3).函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0【答案】D【解析】由于f (x )的图象单调递减,所以0<a <1,又0<f (0)<1,所以0<a -b <1=a 0,即-b >0,b <0,故选D.(4).当a >1时,在同一坐标系中,函数y =a -x 与y =log a x 的图象为( )A B C D【解析】∵a >1,∴0<1a <1,∴y =a -x 是减函数,y =log a x 是增函数,故选C.重难点3 对数函数的单调性与最值(比较大小) 例4.函数2()ln(28)f x x x =--的单调递增区间是( )A .(,2)-∞-B .(,1)-∞C .(1,)+∞D .(4,)+∞ 【解析】由2280x x -->,得2x <-或4x >,设228u x x =--,则(,2)x ∈-∞-,u 关于x 单调递减,(4,)x ∈+∞,u 关于x 单调递增,由对数函数的性质,可知ln y u =单调递增,所以根据同增异减,可知单调递增区间为(4,)+∞.选D . 例5.设,则( )A .B .C .D . 【解析】, 由下图可知D 正确.【变式训练】.(1)设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+【解析】由0.2log 0.3a =得0.31log 0.2a =,由2log 0.3b =得0.31log 2b=,357log 6,log 10,log 14a b c ===c b a >>b c a >>a c b >>a b c >>33log 61log 2,a ==+5577log 101log 2,log 141log 2b c ==+==+所以0.30.30.311log 0.2log 2log 0.4a b +=+=,所以1101a b <+<,得01a b ab+<<. 又0a >,0b <,所以0ab <,所以0ab a b <+<.故选B .(2)已知,则( ) A .B .C .D .【解析】 由题意,可知,,,所以最大,,都小于1,因为,所以,故选A . 重难点4 对数型复合函数的应用例6.(2017·山东滕州市第一中学新校高一课时练习)函数()()log 2a f x ax =-在[]0,1上是减函数,则a 的取值范围是( ) A .()0,1B .()0,2C .()1,2D .()2,+∞【解析】因为0a >,所以2y ax =-在[]0,1上是减函数,又因为()f x 在[]0,1上是减函数,所以log a y x =是增函数,所以1a >;又因为对数的真数大于零,则2020a >⎧⎨->⎩,所以2a <;则(1,2)a ∈.故选:C. 【变式训练】.(1)判断f (x )=⎝⎛⎭⎫13x 2-2x的单调性,并求其值域.(2)已知y =log a (2-ax )是[0,1]上的减函数,则a 的取值范围为( )A .(0,1)B .(1,2)C .(0,2)D .[2,+∞)(3)函数f (x )=log 12(x 2+2x +3)的值域是________.【解析】(1) 令u =x 2-2x ,则原函数变为y =⎝⎛⎭⎫13u.∵u =x 2-2x =(x -1)2-1在(-∞,1]上递减,在[1,+∞)上递增,又∵y =⎝⎛⎭⎫13u在(-∞,+0.20.32log 0.220.2a b c ===,,a b c <<a c b <<c a b <<b c a <<5log 21a =<115122221log 0.2log log 5log 5log 425b --====>=0.20.51c =<b a c 5log 2a ==150.210.52⎛⎫==== ⎪⎝⎭22log 5log 42>=>12⎛< ⎝c <a c b <<∞)上递减, ∴y =⎝⎛⎭⎫13x 2-2x在(-∞,1]上递增,在[1,+∞)上递减.∵u =x 2-2x =(x -1)2-1≥-1,∴y =⎝⎛⎭⎫13u ,u ∈[-1,+∞),∴0<⎝⎛⎭⎫13u≤⎝⎛⎭⎫13-1=3,∴原函数的值域为(0,3].(2)∵f (x )=log a (2-ax )在[0,1]上是减函数,且y =2-ax 在[0,1]上是减函数,∴⎩⎪⎨⎪⎧ f (0)>f (1),a >1,即⎩⎪⎨⎪⎧ log a 2>log a (2-a ),a >1,∴⎩⎪⎨⎪⎧a >1,2-a >0,∴1<a <2. (3)f (x )=log 12(x 2+2x +3)=log 12[(x +1)2+2],因为(x +1)2+2≥2。
人教版高一数学上学期精品讲义专题09 对数与对数函数(重难点突破)解析版

专题09 对数与对数函数(重难点突破)一、知识结构思维导图二、学法指导与考点梳理重难点一 对数的概念如果a x =N ( a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.重难点二 对数的性质、换底公式与运算性质 ( 1)对数的性质:①a log a N =N ;②log a a b =b ( a >0,且a ≠1). ( 2)对数的运算法则 如果a >0且a ≠1,M >0,N >0,那么①log a ( MN )=log a M +log a N ; ②log a MN=log a M -log a N ;③log a M n =n log a M ( n ∈R); ④log a m M n =nm log a M ( m ,n ∈R,且m ≠0).( 3)换底公式:log b N =log a Nlog a b ( a ,b 均大于零且不等于1).重难点三 对数函数及其性质( 1)概念:函数y =log a x ( a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是( 0,+∞).( 2)对数函数的图象与性质三、重难点题型突破重难点1 对数与对数式的化简求值 如果a >0,且a ≠1,M >0,N >0,那么:( 1)log a ( MN )=log a M +log a N ;( 2)log a MN =log a M -log a N ;( 3)log a M n =n log a M ( n ∈R ).例1.(1)(2017·全国高一课时练习)已知lg 9=a,10b =5,则用a,b 表示log 3645为 . 【正确答案】22a ba b +-+【详细解析】由已知得lg5b =,则36lg 45lg 5lg 9log 45lg 36lg 4lg 92lg 2b aa++===++, 因为10lg 2lg1lg515b ==-=-,所以2lg 22(1)22b a a b a b a b a a b +++==+-+-+, 即36log 4522a ba b +=-+.(2). 求下列函数的定义域:( 1)f ( x )=lg( x -2)+1x -3;( 2)f ( x )=log ( x +1)( 16-4x ).【详细解析】 ( 1)要使函数有意义,需满足⎩⎪⎨⎪⎧x -2>0,x -3≠0,解得x >2且x ≠3,所以函数定义域为( 2,3)∪( 3,+∞).( 2)要使函数有意义,需满足⎩⎪⎨⎪⎧16-4x >0,x +1>0,x +1≠1,解得-1<x <0或0<x <4,所以函数定义域为( -1,0)∪( 0,4).【变式训练】(1).(2017·全国高一单元测试)已知10m =2,10n =4,则3210m n-的值为( )A.2【正确答案】B【详细解析】3210m n -=3221010m n =()()32121010m n =321224.正确答案:B(2).(2013·全国高一课时练习)已知2log (2)log log a a a M N M N -=+,则MN的值为( ) A .14B .4C .1D .4或1【正确答案】B【详细解析】因为2log (2)log log a a a M N M N -=+,所以2log (2)log a a M N MN -=(),2(2)M N MN -=,2540M MN N-+=(), 解得=1(舍去),=4,故选B.重难点2 对数函数的图像与性质 例2求下列函数的定义域: ( 1)f ( x )=1log 12x +1;( 2)f ( x )=12-x +ln( x +1); 【详细解析】( 1)要使函数f ( x )有意义,则log 12x +1>0,即log 12x >-1,解得0<x <2,即函数f ( x )的定义域为( 0,2).( 2)函数式若有意义,需满足⎩⎪⎨⎪⎧ x +1>0,2-x >0,即⎩⎪⎨⎪⎧x >-1,x <2,解得-1<x <2,故函数的定义域为( -1,2).例3.(1)(2017·北京市第二中学分校高一课时练习)函数12log y x =,x ∈( 0,8]的值域是( ) A.[-3,+∞) B.[3,+∞) C.( -∞,-3] D.( -∞,3]【正确答案】A 【详细解析】∵12083x log x <≤∴≥,-,故选A.(2).下列函数中,其图象与函数ln y x =的图象关于直线1x =对称的是( )A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+【正确答案】B【详细解析】设所求函数图象上任一点的坐标为(,)x y ,则其关于直线1x =的对称点的坐标为(2,)x y - ,由对称性知点(2,)x y -在函数()ln f x x =的图象上,所以ln(2)y x =- ,故选B .(3).函数f ( x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0【正确答案】D【详细解析】由于f ( x )的图象单调递减,所以0<a <1,又0<f ( 0)<1,所以0<a -b <1=a 0,即-b >0,b <0,故选D.(4).当a >1时,在同一坐标系中,函数y =a -x 与y =log a x 的图象为( )A B C D【正确答案】C【详细解析】∵a >1,∴0<1a <1,∴y =a -x 是减函数,y =log a x 是增函数,故选C.重难点3 对数函数的单调性与最值(比较大小)例4.函数2()ln(28)f x x x =--的单调递增区间是( )A .(,2)-∞-B .(,1)-∞C .(1,)+∞D .(4,)+∞ 【正确答案】D【详细解析】由2280x x --> ,得2x <-或4x > ,设228u x x =-- ,则(,2)x ∈-∞- ,u 关于x 单调递减,(4,)x ∈+∞ ,u 关于x 单调递增,由对数函数的性质,可知ln y u =单调递增,所以根据同增异减,可知单调递增区间为(4,)+∞.选D . 例5.设,则( )A .B .C .D . 【正确答案】D【详细解析】, 由下图可知D 正确.【变式训练】.( 1)设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+【正确答案】B【详细解析】由0.2log 0.3a =得0.31log 0.2a =,由2log 0.3b =得0.31log 2b=,357log 6,log 10,log 14a b c ===c b a >>b c a >>a c b >>a b c >>33log 61log 2,a ==+5577log 101log 2,log 141log 2b c ==+==+所以0.30.30.311log 0.2log 2log 0.4a b +=+=,所以1101a b <+<,得01a b ab+<<. 又0a >,0b <,所以0ab <,所以0ab a b <+<.故选B .(2)已知,则( ) A . B .C .D .【正确答案】A【详细解析】 由题意,可知,, ,所以最大, ,都小于1,因为,,所以,故选A . 重难点4 对数型复合函数的应用例6.(2017·山东滕州市第一中学新校高一课时练习)函数()()log 2a f x ax =-在[]0,1上是减函数,则a 的取值范围是( ) A .()0,1 B .()0,2 C .()1,2 D .()2,+∞【正确答案】C【详细解析】因为0a >,所以2y ax =-在[]0,1上是减函数,又因为()f x 在[]0,1上是减函数,所以log a y x =是增函数,所以1a >;又因为对数的真数大于零,则2020a >⎧⎨->⎩,所以2a <;则(1,2)a ∈. 故选:C.【变式训练】..(1)判断f ( x )=⎝⎛⎭⎫13x 2-2x的单调性,并求其值域.(2)已知y =log a ( 2-ax )是[0,1]上的减函数,则a 的取值范围为( )A .( 0,1)B .( 1,2)C .( 0,2)D .[2,+∞)( 3)函数f ( x )=log 12( x 2+2x +3)的值域是________.0.20.32log 0.220.2a b c ===,,a b c <<a c b <<c a b <<b c a <<5log 21a =<115122221log 0.2log log 5log 5log 425b --====>=0.20.51c =<b a c 521log 2log 5a ==150.210.52c ⎛⎫==== ⎪⎝⎭22log 5log 42>=>12⎛< ⎝c <a c b <<【详细解析】(1) 令u =x 2-2x ,则原函数变为y =⎝⎛⎭⎫13u.∵u =x 2-2x =( x -1)2-1在( -∞,1]上递减,在[1,+∞)上递增,又∵y =⎝⎛⎭⎫13u在( -∞,+∞)上递减, ∴y =⎝⎛⎭⎫13x 2-2x在( -∞,1]上递增,在[1,+∞)上递减.∵u =x 2-2x =( x -1)2-1≥-1,∴y =⎝⎛⎭⎫13u ,u ∈[-1,+∞),∴0<⎝⎛⎭⎫13u ≤⎝⎛⎭⎫13-1=3, ∴原函数的值域为( 0,3].(2)∵f ( x )=log a ( 2-ax )在[0,1]上是减函数,且y =2-ax 在[0,1]上是减函数,∴⎩⎪⎨⎪⎧ f (0)>f (1),a >1,即⎩⎪⎨⎪⎧ log a 2>log a (2-a ),a >1,∴⎩⎪⎨⎪⎧a >1,2-a >0,∴1<a <2. ( 3)f ( x )=log 12( x 2+2x +3)=log 12[( x +1)2+2],因为( x +1)2+2≥2。
对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。
但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。
《对数函数的概念》《对数函数的图象和性质》指数函数与对数函数PPT

-1
2
2
1
化简可得 ≤x2≤2.
2
再由 x>0 可得 2≤x≤
2
2
答案:(1)A (2)
, 2
2
2
2
2
1
,
2,故函数 f(x)的定义域为
2
,
2
2 .
课堂篇
探究学习
探究一
探究二
探究三
探究四
探究五
思想方法
随堂演练
反思感悟 定义域问题注意事项
(1)要遵循以前已学习过的求定义域的方法,如分式分母不为零,
偶次根式被开方式大于或等于零等.
a>1
0<a<1
图象
性
质
定义域
值域
过定点
单调性
奇偶性
(0,+∞)
R
(1,0),即当 x=1 时,y=0
在(0,+∞)
在(0,+∞)
上是增函数
上是减函数
非奇非偶函数
课前篇
自主预习
一
二
三
3.做一做
(1)若函数y=logax的图象如图所示,则a的值可能是 (
)
A.0.5 B.2
C.e D.π
(2)下列函数中,在区间(0,+∞)内
.
2 -2-8 = 0,
解析:(1)由题意可知 + 1 > 0, 解得 a=4.
+ 1 ≠ 1,
(2)设对数函数为f(x)=logax(a>0,且a≠1).
则由题意可得f(8)=-3,即loga8=-3,
所以
a-3=8,即
1
3
-
对数函数(基础知识+基本题型)(含解析)

4.4对数函数(基础知识+基本题型)知识点一 对数函数的概念一般地,我们把函数log (0,a y x a =>且1)a ≠叫做对数函数,其中x 是自变量,函数的定义域是()0,.+∞辨析 (1)对数函数的特征:①log a x 的系数是1;②log a x 的底数是不等于1的正数; ③log a x 的真数仅含自变量.x(2)求对数函数的定义域时,应注意:①对数的真数大于0,底数大于0且不等于1;②对含有字母的式子要分类讨论;③使式子符合实际背景.知识点二 对数函数的图象和性质1.对数函数log (0,a y x a =>且1)a ≠的图象和性质()0,+∞.R 2.对数函数的图象与性质的对应关系①这些图象都位于y 轴右方 ①x 可取任意正数,函数值.y R ∈ ②这些图象都经过点(1,0)②无论a 为任何正数,总有log 10a =③图象可以分为两类:一类图象在区间(0,1)内纵坐标都小于0,在区间()1,+∞内的纵坐标都大于0;另一类图象正好相反③当1a >时01log 0,1log 0;a a x x x x <<⇒<⎧⎨>⇒>⎩ 当01a <<时01log 0,1log 0a a x x x x <<⇒>⎧⎨>⇒>⎩ ④自左向右看,当1a >时,图象逐渐上升;当01a <<时,图象逐渐下降 ④当1a >时,函数log a y x =是增函数; 当01a <<时,函数log a y x =是减函数3.底数对函数图象的影响(1)函数log (0,a y x a =>且1)a ≠的图象无限地靠近y 轴,但永远不会与y 轴相交;(2)在同一平面直角坐标系中,log (0,a y x a =>且1)a ≠的图象与1log (0,ay x a =>且1)a ≠的图象关于x 轴对称.(3)对数函数单调性的记忆口诀:对数增减有思路,函数图象看底数;底数要求大于0,但等于1却不行; 底数若是大于1,函数从左往右增;底数0到1之间,函数从左往右减; 无论函数增和减,图象都过点(1,0).在同一坐标系内,当a>1时,随a 的增大,对数函数的图像愈靠近x 轴;当0<a<1时,对数函数的图象随a 的增大而远离x 轴.(见下图)知识点三 指数函数与对数函数的关系指数函数对数函数解析式()10≠>=a a a y x 且)10(log ≠>=a a x y a 且R ()+∞,0①一般地,函数()y f x a b =±±(a 、b 为正数)的图象可由函数()y f x =的图象变换得到。
新人教A版必修一对数函数的概念对数函数图像和性质课件(22张)

(2)下列函数中,是对数函数的是
.(填序号)
①y=log4x;②y=log2(3x);③y=logx2;④y=log3(x-1);⑤y=log2x2;
1
⑥y= 2 log3x.
探究一
探究二
探究三
易错辨析
解析:(1)设 f(x)=logax(a>0,且 a≠1),
1
依题意有 loga4=-1,故 a=4,
探究三
易错辨析
对于含有偶次根式中被开方式为对数式时,要注意被开方的代数
式为非负,还要顾及对数式中本身的真数大于0这一隐含信息,错解
中显然忘记了真数大于0这一隐含条件.
1
2
3
4
5
6
1.下列函数中,是对数函数的是(
A.y=log2x-1
B.y=logx3x
C.y= log 1 x
D.y=3log5x
2
探究一
探究二
探究三
易错辨析
变式训练2函数f(x)=3x(0<x≤2)的反函数的定义域为(
A.(0,+∞)
B.(1,9]
C.(0,1)
D.[9,+∞)
解析:∵ 0<x≤2,∴1<3x≤9,
即函数f(x)的值域为(1,9].
故函数f(x)的反函数的定义域为(1,9].
答案:B
)
探究一
探究二
探究三
易错辨析
C.
2
D.x2
解析:由题意,知 f(x)=logax.∵f(x)的图像过点(√,a),
1
∴a=loga√.∴a=2.∴f(x)=log 1 x.故选 B.
2
答案:B
函数y=logax(a>0,且a≠1)的反函数是y=ax(a>0,且a≠1);函数
对数函数考点分析及经典例题讲解

对数函数考点分析及经典例题讲解1. 对数函数的定义:函数 x y log =)10(≠>a a 且叫做对数函数,定义域是 (0,)+∞a 的取值 0<a <1a >1定义域(0,)+∞图 象图像特征在y 轴的右侧,过定点(1,0)即x =1时,y =0当x>0且x →0时,图象趋近于 y 轴正半轴. 当x>0且x →0时,图象趋近于 y 轴负半轴.值域 R性 质 过定点(1,0),在(0,+∞)上是减函数在(0,+∞)上是增函数 函数值的变化规律当0<x<1时,y ∈(0,+∞)当x=1 时,y=0; 当x>1 时, y<0.当0<x<1时,y<0; 当x=1时, y=0 ; 当x>1时, y>0 .3.对数函数y=log a x(a>0,且a ≠1)与指数函数y=a x(a>0,且a ≠1)互为反函数 .它们的图象关于x y =对称.案例分析: 考点一、比较大小例1、比较下列各组数中两个值的大小:(1)log 23.4,log 23.8; (2)log 0.51.8,log 0.52.1;(3)log a 5.1,log a 5.9; (4)log 75,log 67.(5); (6)6log ,7log 768.0log ,log 23π变式训练:1、已知函数x y 2log =,则当1>x 时,∈y ;当10<<x 时,∈y .考点二、求定义域例2、求下列函数的定义域(1)0.2log (4);y x =-; (2)log ay =(0,1).a a >≠;(3)2(21)log (23)x y x x -=-++ (4)y =例3、选择题:若03log 3log <<n m 则m 、n 满足的条件是( )A 、m>n>1B 、n>m>1C 、0<m<n<1D 、0<n<m<1例4 、函数)352(log 221++-=x x y 在什么区间上是增函数?在什么区间上是减函数?1、函数f (x )=log a [(a -1)x +1]在定义域上( )A .是增函数B .是减函数C .先增后减D .先减后增 2、方程)13lg()3lg(222+-=x x 的解集是 .3、已知函数f (x )=⎩⎪⎨⎪⎧3x +1x ≤0log 2x x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是________.4、若0<)12(log )1(log 22-<+a a ,则实数a 的取值范围是 .5、方程()lg 3x +-()lg 3x -=()lg 1x -的解是 .考点三、求值域例1、(1)、12);4x -(-x log y 221+=(2)、3);-2x -(x log y 221=(3)y=log a (a-a x)(a>1).1、求下列函数的定义域、值域:⑴ ⑵⑶⑷41212-=--x y )52(log 22++=x x y )54(log 231++-=x x y )(log 2x x y a --=)10(<<a2、求函数y =log 2(x 2-6x +5)的定义域和值域.3、已知x 满足条件09log 9)(log 221221≤++x x ,求函数)4(log )3(log )(22xx x f ⋅=的最大值.4、已知)23lg(lg )23lg(2++=-x x x ,求222log x 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中对数函数有多难?图解概念加习题,让你轻松过关
对数函数可以说是高一学生的杀手函数,对于刚上高一的萌新童鞋来说,对数函数完全是一个崭新的领域。
对比于指数函数、幂函数,在初中阶段或多或少均有涉猎,而对于指数函数的反函数——对数函数来说,无论是定义,运算法则都是崭新的。
下面小编就和大家一起看一看,对数函数是啥子东东?
由定义可以看出指数函数和对数函数可以说是息息相关,那学好指数函数,就会对数函数了吗?答案是未必,首先看一下对数函数的运算法则(与指数函数对比一下)
可以看出二者的运算法则相差较多,因此对数函数的运算往往也是高考的考点之一,那么高考对于对数函数有什么要求呢?
其实对于对数函数的考纲归结起来无非两个词:计算、画图。
计算法则上面已经给出,计算方面就不多加叙述,下面来看一下,对数函数的图像到底有什么性质
可以看出函数的单调性主要与a的取值范围有关,定义域x恒大于0,值域F(x)为R,图像均经过点(1,0)。
以上便是对数函数的基本运算规律及图像,那么高考中到底常考哪些题型呢?
对数函数计算、图像一般出现在选择填空,化简求值无需多言,对于比较大小题型这里最常见的方法就是数形结合,首先根据函数解析式,画出函数图像,画图像要考虑以下四点:单调性、奇偶性、周期性、关键点。
之后对比较大小的式子进行估算,考虑其大致在函数上的位置然后进行判断(因为是选择填空,有时可以适当代入一些值)。
而对于综合题来说,题型比较宽泛,但无论如何可以保证,肯定是复合函数,那么就需要考虑对数函数在里面的意义,比如常见的二次函数,把x均换成对数函数,则难度一下子提高了很多。
如果熟练掌握函数意义的童鞋其实可以发现x,lgX无所谓,他们只不过是修改了一下定义域而已,所以仍按二次函数解,最后修改定义域值域即可。
看到这里童鞋们是不是已经跃跃欲试了?试试这道题:
下方评论即可知道最终结果哦。
“数学有多难”,致力于数学平民化。