高一数学指数函数与对数函数图象PPT教学课件 (2)
合集下载
《指数函数》指数函数与对数函数PPT演示课件

过一个虚拟的人进行洗钱,当然,这一切只有他一个人知道。在监狱中,他因为冒死替狱友争取到了啤酒,从而赢得了狱友们的尊重
和友谊,从那些无所不能的狱友们弄到一把铁捶和一张明星的海报。一年又一年的监狱生活,带走了
对他来说,简直就是希望和救星,他找到监狱长,救他,说这是他可以翻案的机会,只要找到那名犯人,再加上他的学生做证,他就
讨论:
1
1
(1)如果 a<0,如 y=(-4)x,这时对于 x=4,x=2等,在实数范围内函数值
不存在;
(2)如果 a=0,
当 > 0 时, 恒等于 0,
当 ≤ 0 时, 无意义;
(3)如果a=1,y=1x=1,是个常数函数,没有研究的必要;
(4)如果0<a<1或a>1,即a>0且a≠1,x可以是任意实数.
指数函数与对数函数
4.2 指数函数
-1-
首页
课标阐释
思维脉络
1.理解指数函数的概念和意义,
能画出具体指数函数的图象.
2.初步掌握指数函数的性质,并
能解决与指数函数有关的定义
域、值域、定点问题.
3.逐步体会指数函数在实际问
题中的应用.
课前篇
自主预习
整部片子比较压抑,可能因为是讲述在监狱里发生的事情吧,但看完后心情却久久不能平静,那样的荡气回肠,那样的震憾人心!一
一
二
个年轻有为的银行家安迪,因为与妻子发生口角气跑了妻子,而当天妻子与她的情人双双被枪杀在床上,他成为最有杀人动机的嫌疑
犯,加上口吐莲花的律师,就这样,一个年轻有为的银行家被送了肖申克监狱。在监狱里发生了许多的事情,先是被老犯人们打赌,
第一晚谁会扛不住最先哭泣,最有权威的老犯人阿瑞看他白白净净,瘦瘦弱弱的样子,押了他两盒烟的赌注,第一次就让阿瑞输了赌
和友谊,从那些无所不能的狱友们弄到一把铁捶和一张明星的海报。一年又一年的监狱生活,带走了
对他来说,简直就是希望和救星,他找到监狱长,救他,说这是他可以翻案的机会,只要找到那名犯人,再加上他的学生做证,他就
讨论:
1
1
(1)如果 a<0,如 y=(-4)x,这时对于 x=4,x=2等,在实数范围内函数值
不存在;
(2)如果 a=0,
当 > 0 时, 恒等于 0,
当 ≤ 0 时, 无意义;
(3)如果a=1,y=1x=1,是个常数函数,没有研究的必要;
(4)如果0<a<1或a>1,即a>0且a≠1,x可以是任意实数.
指数函数与对数函数
4.2 指数函数
-1-
首页
课标阐释
思维脉络
1.理解指数函数的概念和意义,
能画出具体指数函数的图象.
2.初步掌握指数函数的性质,并
能解决与指数函数有关的定义
域、值域、定点问题.
3.逐步体会指数函数在实际问
题中的应用.
课前篇
自主预习
整部片子比较压抑,可能因为是讲述在监狱里发生的事情吧,但看完后心情却久久不能平静,那样的荡气回肠,那样的震憾人心!一
一
二
个年轻有为的银行家安迪,因为与妻子发生口角气跑了妻子,而当天妻子与她的情人双双被枪杀在床上,他成为最有杀人动机的嫌疑
犯,加上口吐莲花的律师,就这样,一个年轻有为的银行家被送了肖申克监狱。在监狱里发生了许多的事情,先是被老犯人们打赌,
第一晚谁会扛不住最先哭泣,最有权威的老犯人阿瑞看他白白净净,瘦瘦弱弱的样子,押了他两盒烟的赌注,第一次就让阿瑞输了赌
高中数学指数函数与对数函数课件PPT

2-9 指数函数与对数函数
1.掌握指数函数与对数函数的概念,图象和性 质.能利用指数函数和对数函数的性质解决某些简 单的实际问题。 2.理解指数函数y=ax(a>0且a≠1)与对数函数y=logax (a>0且a≠1)互为反函数,灵活运用指数函数、对数 函数的图象和性质,会用数形结合、分类讨论、函 数与方程(不等式)等数学思想方法解决一些综合 问题。
-3 x -2或 - 2 x 1. 函数定义域为(-3, -2)( -2, 1].
变式1.(1) 解:
求函数y loga [loga (loga x) ]的定义域(a 0且a 1). (loga x) 0 loga 1 loga log x 0 a x0
变式1.(2)
已知2
x2 x
1 x2 2 ( ) , 求函数y log 2 (3 x 6 x 4) 4
的值域. 解: 2x2 x 22( x2) , x2 x 2( x 2),
即x 2 3 x-4 0,
2
-4 x 1.
2
令u 3 x 6 x 4 3( x 1) 1 x [-4,1], u是减函数, 1 u 76. 又y log u是增函数, log2 1 log2 u log2 76.
考点梳理
1.指数函数与对数函数的概念: 指数函数: y=ax(a>0且a≠1) 对数函数: y=logax (a>0且a≠1)
2.指数、对数函数的图象与性质 根据图象写出函数的定义域、 值域、单调性、定点等性质.
y=ax的图象 0<a<1 a>1 y (0,1)
0
x
y=logax 的图象 3.指数函数与对数函数互为反函数. a>1 y 图象关于y=x对称,定义域、值域互换. 指数函数过点(0,1),(1,a),(-1,1/a)
1.掌握指数函数与对数函数的概念,图象和性 质.能利用指数函数和对数函数的性质解决某些简 单的实际问题。 2.理解指数函数y=ax(a>0且a≠1)与对数函数y=logax (a>0且a≠1)互为反函数,灵活运用指数函数、对数 函数的图象和性质,会用数形结合、分类讨论、函 数与方程(不等式)等数学思想方法解决一些综合 问题。
-3 x -2或 - 2 x 1. 函数定义域为(-3, -2)( -2, 1].
变式1.(1) 解:
求函数y loga [loga (loga x) ]的定义域(a 0且a 1). (loga x) 0 loga 1 loga log x 0 a x0
变式1.(2)
已知2
x2 x
1 x2 2 ( ) , 求函数y log 2 (3 x 6 x 4) 4
的值域. 解: 2x2 x 22( x2) , x2 x 2( x 2),
即x 2 3 x-4 0,
2
-4 x 1.
2
令u 3 x 6 x 4 3( x 1) 1 x [-4,1], u是减函数, 1 u 76. 又y log u是增函数, log2 1 log2 u log2 76.
考点梳理
1.指数函数与对数函数的概念: 指数函数: y=ax(a>0且a≠1) 对数函数: y=logax (a>0且a≠1)
2.指数、对数函数的图象与性质 根据图象写出函数的定义域、 值域、单调性、定点等性质.
y=ax的图象 0<a<1 a>1 y (0,1)
0
x
y=logax 的图象 3.指数函数与对数函数互为反函数. a>1 y 图象关于y=x对称,定义域、值域互换. 指数函数过点(0,1),(1,a),(-1,1/a)
《指数与指数函数》指数函数、对数函数与幂函数PPT(指数函数的性质与图像)演示课件

看完的感悟是,社会真的有很黑暗的一面,人性也有很丑恶的一面,比如自私,贪婪,脆弱,不敢面对现实,没有目标,没有希望,
失去恿气等等。但更多的是人性伟大的一面,那就是无论身处的环境多么黑暗,甚至是肮脏,始终不放纵自己、相信美好的东西,比
课前篇自主预习
如希望、友谊、坚持原则、坚定自己的信念,不灰心、不丧气、不放弃、不抛弃,有目标,有希望,有远景,有规划,一步一步的实
值at.指数函数y=ax(0<a<1)在R上为减函数,在闭区间[s,t]上存在最
大值、最小值,当x=s时,函数有最大值as;当x=t时,函数有最小值at.
课前篇自主预习
一
二
4.做一做:(1)函数 y=( 3-1) 在R上是(
)
A.增函数
B.奇函数 C.偶函数 D.减函数
(2)如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图像,则a,b,c,d
1
(a>0,且
a≠1)的图像关于 y 轴对
称,分析指数函数 y=ax(a>0,且 a≠1)的图像时,需找三个关键
点:(1,a),(0,1),
1
-1,
.
③指数函数的图像永远在 x 轴的上方.当 a>1 时,图像越接近于
y 轴,底数 a 越大;当 0<a<1 时,图像越接近于 y 轴,底数 a 越小.
现自己的理想!这样的人生就是平凡而有伟大的一生!想起了一位讲师的名言:人逢盛世需警醒,境当逆处要从容!
作为一名教育工作者,肩负的教育责任是天命不可违,符合时代精神的教育理念,充满智慧的管理策略,彰显魅力的价值追求,定是
一
二
完善自我的核心要素,这本书用事件描述灵魂,用幽默启迪心智,用历史洗刷情理,尤如在我们面前放了一面镜子:正心、正形。当
失去恿气等等。但更多的是人性伟大的一面,那就是无论身处的环境多么黑暗,甚至是肮脏,始终不放纵自己、相信美好的东西,比
课前篇自主预习
如希望、友谊、坚持原则、坚定自己的信念,不灰心、不丧气、不放弃、不抛弃,有目标,有希望,有远景,有规划,一步一步的实
值at.指数函数y=ax(0<a<1)在R上为减函数,在闭区间[s,t]上存在最
大值、最小值,当x=s时,函数有最大值as;当x=t时,函数有最小值at.
课前篇自主预习
一
二
4.做一做:(1)函数 y=( 3-1) 在R上是(
)
A.增函数
B.奇函数 C.偶函数 D.减函数
(2)如图是指数函数①y=ax,②y=bx,③y=cx,④y=dx的图像,则a,b,c,d
1
(a>0,且
a≠1)的图像关于 y 轴对
称,分析指数函数 y=ax(a>0,且 a≠1)的图像时,需找三个关键
点:(1,a),(0,1),
1
-1,
.
③指数函数的图像永远在 x 轴的上方.当 a>1 时,图像越接近于
y 轴,底数 a 越大;当 0<a<1 时,图像越接近于 y 轴,底数 a 越小.
现自己的理想!这样的人生就是平凡而有伟大的一生!想起了一位讲师的名言:人逢盛世需警醒,境当逆处要从容!
作为一名教育工作者,肩负的教育责任是天命不可违,符合时代精神的教育理念,充满智慧的管理策略,彰显魅力的价值追求,定是
一
二
完善自我的核心要素,这本书用事件描述灵魂,用幽默启迪心智,用历史洗刷情理,尤如在我们面前放了一面镜子:正心、正形。当
《对数》指数函数与对数函数PPT教学课件(第二课时对数的运算)

4.3 对 数
第二课时 对数的运算
第四章 指数函数与对数函数
考点
学习目标
核心素养
对数的运算 掌握对数的运算性质,能运用运算性 数学运算
性质 质进行对数的有关计算
了解换底公式,能用换底公式将一般
换底公式
数学运算
对数化为自然对数或常用对数
能灵活运用对数的基本性质、对数的 对数运算的
运算性质及换底公式解决对数运算 综合问题
栏目 导引
第四章 指数函数与对数函数
■名师点拨 对数的这三条运算性质,都要注意只有当式子中所有的对数都有意 义时,等式才成立.例如,log2[(-3)·(-5)]=log2(-3)+log2(-5) 是错误的. 2.换底公式
logcb logab=__l_o_g_ca_____ (a>0,且 a≠1;c>0,且 c≠1;b>0).
栏目 导引
第四章 指数函数与对数函数
2. 1 1+ 1 1=________. log149 log513 11
解析:log14119+log11513=llgg419+llgg513=- -22llgg23+- -llgg53=llgg23+llgg53=lg13= log310. 答案:log310
)
A.8
B.6
C.-8
D.-6
解析:选 C.log219·log3215·log514=log23-2·log35-2·log52-2= -8log23·log35·log52=-8.
栏目 导引
第四章 指数函数与对数函数
4.已知
a2=1861(a>0),则
log2a=________. 3
解析:由 a2=1861(a>0)得 a=49, 所以 log3249=log23232=2. 答案:2
第二课时 对数的运算
第四章 指数函数与对数函数
考点
学习目标
核心素养
对数的运算 掌握对数的运算性质,能运用运算性 数学运算
性质 质进行对数的有关计算
了解换底公式,能用换底公式将一般
换底公式
数学运算
对数化为自然对数或常用对数
能灵活运用对数的基本性质、对数的 对数运算的
运算性质及换底公式解决对数运算 综合问题
栏目 导引
第四章 指数函数与对数函数
■名师点拨 对数的这三条运算性质,都要注意只有当式子中所有的对数都有意 义时,等式才成立.例如,log2[(-3)·(-5)]=log2(-3)+log2(-5) 是错误的. 2.换底公式
logcb logab=__l_o_g_ca_____ (a>0,且 a≠1;c>0,且 c≠1;b>0).
栏目 导引
第四章 指数函数与对数函数
2. 1 1+ 1 1=________. log149 log513 11
解析:log14119+log11513=llgg419+llgg513=- -22llgg23+- -llgg53=llgg23+llgg53=lg13= log310. 答案:log310
)
A.8
B.6
C.-8
D.-6
解析:选 C.log219·log3215·log514=log23-2·log35-2·log52-2= -8log23·log35·log52=-8.
栏目 导引
第四章 指数函数与对数函数
4.已知
a2=1861(a>0),则
log2a=________. 3
解析:由 a2=1861(a>0)得 a=49, 所以 log3249=log23232=2. 答案:2
高中数学必修一课件:第四章对数函数的图象和性质(第2课时)

A.y=3-x
1 B.y=3x
C.y=log3x
D.y=log1x
3
解析 函数y=ax和y=logax(a>0,且a≠1)互为反函数.
2.已知y=14x的反函数为y=f(x),若f(x0)=-12,则x0等于( C )
A.-2
B.-1
C.2
1 D.2
解析
由题意知f(x)=log
1 4
x,f(x0)=-
C.(2,+∞)
D.[2,+∞)
解析 若函数f(x)有意义,则xlo>g02,x-1>0,
∴x>2.
∴函数f(x)的定义域为(2,+∞).
(2)函数y=f(x)是g(x)=log 2x的反函数,则f(2)=___2_____.
2
题型二 解对数型不等式
例2 解下列不等式.
(1)log1x>log1(4-x);
7
7
(2)logx12>1;
(3)loga(2x-5)>loga(x-1),其中a>0,且a≠1.
x>0, 【解析】 (1)由题意可得4-x>0,解得0<x<2.
互为反函数的两个函数y=ax(a>0,且a≠1)与y=logax(a>0,且a≠1)的单调 性相同吗?单调区间相同吗?
答:相同;不相同.
课时学案
题型一 反函数
例1 已知f(x)=(22 021)x,x<0,求f(x)的反函数g(x)及其定义域、值域. 【解析】 ∵f(x)=(22 021)x,x<0, ∴f(x)的反函数g(x)=log22 021x=2 0121log2x, 当x<0时,0<f(x)<1,即f(x)的值域为(0,1), 从而g(x)的定义域为(0,1),值域为(-∞,0).
指数函数课件(共16张PPT)

问题情境: 一种放射性物质不断变化为其他物质,毎经过一
年剩留的质量约是原来的84%.试写出这种物质的剩 留量随时间变化的函数解析式。
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
我们设最初的质量为1,经过x年,剩留量是y.则 经过1年,y=1×84%=0.84; 经过2年,y=1×0.84×0.84=0.84; 经过3年,y=1×0.84×0.84×0.84=0.84; …… 一般地,经过x年,
y=0.84x.
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
用描点法画出图象(图4-2).
从这个函数的对应值表和图象,可看到
y=2x在(-
,+
)上是增函数,y
1 2
x
在(-,+ )上是减函数.这两个函数
的任意函数值y都大于0,且它们的图象
都经过点(0,1).
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
1.02365≈? 1.01365≈? 0.99365≈? 借助计算器,我们可以算得: 1.02365≈1377.41 1.01365≈37.78 0.99365≈0.03 1.02365×1.01365≈52043.22 1.01365×0.99365≈0.96 对比上述计算结果,你能感受到指数运算的“威力”吗?
年剩留的质量约是原来的84%.试写出这种物质的剩 留量随时间变化的函数解析式。
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
我们设最初的质量为1,经过x年,剩留量是y.则 经过1年,y=1×84%=0.84; 经过2年,y=1×0.84×0.84=0.84; 经过3年,y=1×0.84×0.84×0.84=0.84; …… 一般地,经过x年,
y=0.84x.
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
用描点法画出图象(图4-2).
从这个函数的对应值表和图象,可看到
y=2x在(-
,+
)上是增函数,y
1 2
x
在(-,+ )上是减函数.这两个函数
的任意函数值y都大于0,且它们的图象
都经过点(0,1).
调动思维,探究新知 在在活初初动中中2,,我我们们用用过过““自自然然数数集集””““有有理理数数集集””等等表表述述,,这这里里的的““集集””就就是是集集合合的的简简称称,,那那么么什什么么是是集集合合呢呢??
巩固练习,提升素养 在活初动中3,我们用过“自然数集”“有理数集”等表述,这里的“集”就是集合的简称,那么什么是集合呢?
1.02365≈? 1.01365≈? 0.99365≈? 借助计算器,我们可以算得: 1.02365≈1377.41 1.01365≈37.78 0.99365≈0.03 1.02365×1.01365≈52043.22 1.01365×0.99365≈0.96 对比上述计算结果,你能感受到指数运算的“威力”吗?
《对数函数》指数函数与对数函数PPT教学课件(第2课时对数函数及其性质的应用)

解下列不等式:
(1)log1x>log1(4-x);
7
7
(2)logx12>1;
(3)loga(2x-5)>loga(x-1).
栏目 导引
【解】
(1)由题意可得4x->x0>,0, x<4-x,
解得 0<x<2.
所以原不等式的解集为(0,2).
(2)当 x>1 时,logx12>1=logxx,
解得 x<12,此时不等式无解.
栏目 导引
第四章 指数函数与对数函数
2.已知 a=30.5,b=log312,c=log32,则(
)
A.a>c>b
B.a>b>c
C.c>a>b
D.b>a>cog312<0,0<c=log32<1,所以
a>c>b.
栏目 导引
解对数不等式
第四章 指数函数与对数函数
栏目 导引
第四章 指数函数与对数函数
与对数函数有关的值域与最值问题 已知函数 f(x)=loga(1+x)+loga(3-x)(a>0,且 a≠1). (1)求函数 f(x)的定义域; (2)若函数 f(x)的最小值为-2,求实数 a 的值.
栏目 导引
【解】
第四章 指数函数与对数函数
(1)由题意得31-+xx>>00,,解得-1<x<3.
栏目 导引
第四章 指数函数与对数函数
(3)因为 0>log0.23>log0.24, 所以 1 < 1 ,
log0.23 log0.24 即 log30.2<log40.2. (4)因为函数 y=log3x 是增函数,且 π>3,所以 log3π>log33=1, 同理,1=logππ>logπ3,即 log3π>logπ3.
人教A版高中数学必修第一册精品课件 第4章 指数函数与对数函数 第2课时对数函数及其图象、性质(二)

所以当a>1时,f(x)在区间(0,+∞)内单调递增.
同理可得,当0<a<1时,f(x)在区间(-∞,0)内单调递增.
(3)由f(2x)=loga(ax+1),得loga(a2x-1)=loga(ax+1),即a2x-1=ax+1,
即a2x-ax-2=0,即ax=2(舍去ax=-1).所以x=loga2.
由 x∈[1,3],可知 t∈[2,8].
令 u=4 -2 =t -t= -
x
x
2
− ,
因此当 t=8,即 x=3 时,umax=56.
故 f(x)的最大值为 log256.
思 想 方 法
对数函数问题中的转化与化归思想
【典例】 求函数f(x)=log2(4x)·log2(2x)在区间 , 上的最值,
-
解:(1)由+>0 可得-2<x<2,所以函数的定义域为(-2,2).
(方法一)∀x∈(-2,2),有-x∈(-2,2),且
-
+
=ln +
f(-x)=ln
-
-
-
=-ln+=-f(x),
所以函数 f(x)是奇函数.
(方法二)∀x∈(-2,2),有-x∈(-2,2),且
以函数y=logau在定义域上单调递增.所以a>1.又当x=2时,u=6ax取得最小值,所以6-2a>0,解得a<3,所以1<a<3.
答案:B
探究三 对数函数与指数函数的综合问题
【例3】 已知f(x)=loga(ax-1)(a>0,且a≠1).
(1)求f(x)的定义域;
同理可得,当0<a<1时,f(x)在区间(-∞,0)内单调递增.
(3)由f(2x)=loga(ax+1),得loga(a2x-1)=loga(ax+1),即a2x-1=ax+1,
即a2x-ax-2=0,即ax=2(舍去ax=-1).所以x=loga2.
由 x∈[1,3],可知 t∈[2,8].
令 u=4 -2 =t -t= -
x
x
2
− ,
因此当 t=8,即 x=3 时,umax=56.
故 f(x)的最大值为 log256.
思 想 方 法
对数函数问题中的转化与化归思想
【典例】 求函数f(x)=log2(4x)·log2(2x)在区间 , 上的最值,
-
解:(1)由+>0 可得-2<x<2,所以函数的定义域为(-2,2).
(方法一)∀x∈(-2,2),有-x∈(-2,2),且
-
+
=ln +
f(-x)=ln
-
-
-
=-ln+=-f(x),
所以函数 f(x)是奇函数.
(方法二)∀x∈(-2,2),有-x∈(-2,2),且
以函数y=logau在定义域上单调递增.所以a>1.又当x=2时,u=6ax取得最小值,所以6-2a>0,解得a<3,所以1<a<3.
答案:B
探究三 对数函数与指数函数的综合问题
【例3】 已知f(x)=loga(ax-1)(a>0,且a≠1).
(1)求f(x)的定义域;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是所求的反函数.
y (1)x 及 y0.3x
7反函数的定义
做课上练习
9
7. 对数函数的图象和性质
新课
定义域 (0,+∞) 值 域 (-∞,+∞)
y +∞
yloag x (a1)
1.过点(1,0)
即x=1时,y=0;
性
0
2. 在(0,+∞)上
·(1, 0)
质 是 增函数; 3. 当 x>1时, y>0; 当 0<x<1时, y<0. - ∞
+∞ x
10
7. 对数函数的图象和性质
新课
定义域 (0,+∞)
y
yloax g (0a1 )
值 域 (-∞,+∞)
1.过点(1,0)
性
即x=1时,y=0; 0
·(1, 0)
x
2. 在(0,+∞)上
质 是 减函数; 3. 当 x>1时, y< 0;
当 0<x<1时, y>0.
11
小结
8. 小 结
1. 通过关联及比较、对照的方法, 认识理解 对数函数及图象和性质。
指数函数与对数函数图象
1. 反 函 数
yf(x) 复习
y1 . 反3x函数2
概念
y 2 3x 32.x 求 反y 函2数
值定 义
x
域域 x
AA
确定
唯一
1. 反函数y
y
值定 义 域
确定 唯一 概 念C
x 1 y 2
2. 求反函数
yf 1(x)
33
交
y换x,1
y.
x
2
方法:反解 逆运算
33
2
3. 指数式与对数式 的 关系
5及
即 ylo5gx ylo反g1函x数的y定义lo0g.1x
是所求的反函数.
5
8
3. 应用练习
新课
例2 写出下列各对数函数的反函数
( 1 )y lo 7 xg ( 2 )y lo 1 xg ( 3 )y lo 0 .3 xg
解 x7y据7指数与对数的关系
即 y 7x
ylogx a
(a0, a1)
y ax (a0, a0)
定义域是 (-∞,+∞) 值 域是 (0, +∞)
7
叫做 对数函数
3. 应用练习
新课
例1 写出下列各指数函数的反函数
( 1 )y 5 x ( 2 )y ( 1 ) x ( 3 )y 0 .1 x 5
解
xlo5gy x根l据o指g1数y与对x数的关l系o0g.1y
2. 对数函数是指数函数的反函数(互为反函数)。 3. 对数函数与指数函数的图象关于直线 y=x 对称。 4. 对数函数的性质(首先搞清指数函数性质)。
12
9. 作 业
课本
P126 A 1. 2
学生练习册 P88 A 1. 2
13
y ax
定义域是 (-∞,+∞)
(a0, a1) 值域 是(0, +∞)
互 为 反 函
lxogalyoagxy根据指数与对数的关系
数 指数函数的定义域、
及
ylogx 值域分别是什么? a
反函数的定义 (a0, a1)
6
2. 对 数 函 数 定义
函数
新课 定义域是 (0, +∞) 值 域 是 (-∞,+∞)
复习
ab指数 N幂
底数
e0 1
可互化
真数
loge10
简记 ln10
loagNb
b 叫底以 a数为 底 N 对的 数对数
4
指数式与对数式 的互换
复习
例如
32 9
lo3g92
102 100
lo1g01002
lg1002
lo1g 0 0.0 12 1020.01
lg0.01 2
5
在1.定指义数域函上是数单的调反(函增数加是、什减少么)?的。 新课
y (1)x 及 y0.3x
7反函数的定义
做课上练习
9
7. 对数函数的图象和性质
新课
定义域 (0,+∞) 值 域 (-∞,+∞)
y +∞
yloag x (a1)
1.过点(1,0)
即x=1时,y=0;
性
0
2. 在(0,+∞)上
·(1, 0)
质 是 增函数; 3. 当 x>1时, y>0; 当 0<x<1时, y<0. - ∞
+∞ x
10
7. 对数函数的图象和性质
新课
定义域 (0,+∞)
y
yloax g (0a1 )
值 域 (-∞,+∞)
1.过点(1,0)
性
即x=1时,y=0; 0
·(1, 0)
x
2. 在(0,+∞)上
质 是 减函数; 3. 当 x>1时, y< 0;
当 0<x<1时, y>0.
11
小结
8. 小 结
1. 通过关联及比较、对照的方法, 认识理解 对数函数及图象和性质。
指数函数与对数函数图象
1. 反 函 数
yf(x) 复习
y1 . 反3x函数2
概念
y 2 3x 32.x 求 反y 函2数
值定 义
x
域域 x
AA
确定
唯一
1. 反函数y
y
值定 义 域
确定 唯一 概 念C
x 1 y 2
2. 求反函数
yf 1(x)
33
交
y换x,1
y.
x
2
方法:反解 逆运算
33
2
3. 指数式与对数式 的 关系
5及
即 ylo5gx ylo反g1函x数的y定义lo0g.1x
是所求的反函数.
5
8
3. 应用练习
新课
例2 写出下列各对数函数的反函数
( 1 )y lo 7 xg ( 2 )y lo 1 xg ( 3 )y lo 0 .3 xg
解 x7y据7指数与对数的关系
即 y 7x
ylogx a
(a0, a1)
y ax (a0, a0)
定义域是 (-∞,+∞) 值 域是 (0, +∞)
7
叫做 对数函数
3. 应用练习
新课
例1 写出下列各指数函数的反函数
( 1 )y 5 x ( 2 )y ( 1 ) x ( 3 )y 0 .1 x 5
解
xlo5gy x根l据o指g1数y与对x数的关l系o0g.1y
2. 对数函数是指数函数的反函数(互为反函数)。 3. 对数函数与指数函数的图象关于直线 y=x 对称。 4. 对数函数的性质(首先搞清指数函数性质)。
12
9. 作 业
课本
P126 A 1. 2
学生练习册 P88 A 1. 2
13
y ax
定义域是 (-∞,+∞)
(a0, a1) 值域 是(0, +∞)
互 为 反 函
lxogalyoagxy根据指数与对数的关系
数 指数函数的定义域、
及
ylogx 值域分别是什么? a
反函数的定义 (a0, a1)
6
2. 对 数 函 数 定义
函数
新课 定义域是 (0, +∞) 值 域 是 (-∞,+∞)
复习
ab指数 N幂
底数
e0 1
可互化
真数
loge10
简记 ln10
loagNb
b 叫底以 a数为 底 N 对的 数对数
4
指数式与对数式 的互换
复习
例如
32 9
lo3g92
102 100
lo1g01002
lg1002
lo1g 0 0.0 12 1020.01
lg0.01 2
5
在1.定指义数域函上是数单的调反(函增数加是、什减少么)?的。 新课