广东省佛山市九年级上学期期末数学试题
广东省佛山市九年级上学期期末数学试卷

广东省佛山市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列图形即使轴对称图形又是中心对称图形的有:()①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形A . 1个B . 2个C . 3个D . 4个2. (2分)下列事件中,是必然发生的事件是()A . 打开电视机,正在播放新闻B . 父亲的年龄比儿子的年龄大C . 通过长期努力学习,你会成为数学家D . 下雨天,每个人都打着雨伞3. (2分)用因式分解法解方程,下列方法中正确的是()A . (2x-2)(3x-4)=0 , ∴2x-2=0或3x-4=0B . (x+3)(x-1)=1 ,∴x+3=0或x-1=1C . (x-2)(x-3)=2×3 , ∴x-2=2或x-3=3D . x(x+2)=0 ,∴x+2=04. (2分)(2017·兰州模拟) 若点(x1 , y1)、(x2 , y2)、(x3 , y3)都是反比例函数y= 的图象上的点,并且x1<0<x2<x3 ,则下列各式中正确的是()A . y1<y3<y2B . y2<y3<y1C . y3<y2<y1D . y1<y2<y35. (2分)(2017·义乌模拟) 将二次函数y=x2的图象向下平移1个单位,则平移后的二次函数的解析式为()A . y=x2﹣1B . y=x2+1C . y=(x﹣1)2D . y=(x+1)26. (2分)下列说法正确的是()A . 事件“如果a是实数,那么|a|<0”是必然事件;B . 在一次抽奖活动中,“中奖的概率是”表示抽奖100次就一定会中奖;C . 随机抛一枚均匀硬币,落地后正面一定朝上;D . 在一副52张扑克牌(没有大小王)中任意抽一张,抽到的牌是6的概率是.7. (2分)(2017·江东模拟) 已知:点P到直线l的距离为3,以点P为圆心,r为半径画圆,如果圆上有且只有两点到直线L的距离均为2,则半径r的取值范围是()A . r>1B . r>2C . 2<r<2D . 1<r<58. (2分) (2018九上·翁牛特旗期末) 如图,A、B、C为⊙O上的任意三点,若∠BOC=100°,则∠BAC的度数为()A . 50°B . 80°C . 100°D . 130°9. (2分)已知a,b,c是△ABC的三条边长,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,那么这个三角形是()A . 等边三角形B . 等腰三角形C . 不等边三角形D . 直角三角形10. (2分)市场调查表明:某种一周内水果的销售率y(销售率= )与价格倍数x(价格倍数=)的关系满足函数关系y=﹣ x+ (1≤x≤5.5).根据有关规定,该商品售价不得超过进货价格的2倍,同时,一周内未售出的水果直接废弃.某商场希望通过销售该种水果可获取的最大利润率是()A . 120%B . 80%C . 60%D . 40%二、填空题 (共6题;共6分)11. (1分)(2017·朝阳模拟) 如图,AB切⊙O于点B,BC∥OA,交⊙O于点C,若∠OAB=30°,BC=6,则劣弧BC的长为________.12. (1分)下列函数(其中n为常数,且n>1)① y=(x>0);② y=(n﹣1)x;③ y=(x>0);④ y=(1﹣n)x+1;⑤ y=﹣x2+2nx(x<0)中,y 的值随 x 的值增大而增大的函数有________个.13. (1分) (2017八下·莒县期中) 已知关于x的一元二次方程x2﹣2 x+1=0的实数根是x1、x2 ,则代数式x12+x22﹣x1x2________.14. (1分)(2017·成都) 在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y= 的图象上.若AB=2 ,则k=________.15. (1分)(2016·温州) 如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=________度.16. (1分) (2018九上·云梦期中) 如图,在直角坐标系中,已知点 A(﹣3,0),B(0,4),对△OAB 连续作旋转变换,依次得到三角形(1),(2),(3),(4)…,则三角形(2019)的直角顶点的坐标为________.三、解答题 (共9题;共80分)17. (10分) (2017九上·孝义期末) 解下列方程。
广东省佛山市九年级上学期数学期末考试试卷

广东省佛山市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019八下·瑞安期末) 二次根式在实数范围内有意义,则x应满足的条件是()A . x≥1B . x>1C . x>﹣1D . x≥﹣12. (2分) (2019七上·渝中期中) 若多项式的值是7,则多项式的值是()A .B . 10C .D . 23. (2分)设a=−1 ,则代数式a2+2a-12的值为()A . -6B . 24C . +10D . +124. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①b2-4ac>0;②abc>0;③8a+c >0;④9a+3b+c<0其中,正确结论的个数是()A . 1B . 2C . 3D . 45. (2分)将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为().A . y=3(x+2)2-1B . y=3(x-2)2+1C . y=3(x-2)2-1D . y=3(x+2)2+l6. (2分)(2020·玉林模拟) 如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处已知AB=8,BC=10,则tan∠EFC的值为()A .B .C .D .7. (2分) (2019九上·绍兴月考) 某班在参加校接力赛时,安排了甲、乙、丙、丁四位选手,他们的顺序由抽签随机决定,则甲跑第一棒的概率是()A . 1B .C .D .8. (2分)(2018·嘉定模拟) 下列四个命题中,真命题是()A . 相等的圆心角所对的两条弦相等;B . 圆既是中心对称图形也是轴对称图形;C . 平分弦的直径一定垂直于这条弦;D . 相切两圆的圆心距等于这两圆的半径之和.9. (2分)(2011·台州) 如图,双曲线y= 与直线y=kx+b交于点M、N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x的方程 =kx+b的解为()A . ﹣3,1B . ﹣3,3C . ﹣1,1D . ﹣1,310. (2分) (2016九上·庆云期中) 如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A . 45°B . 30°C . 75°D . 60°11. (2分) (2017九上·龙岗期末) cos60°=().A .B .C .D .12. (2分)某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x名学生,根据题意,列出方程为()A .B .C .D .二、填空题 (共6题;共7分)13. (1分) (2019八上·清镇期中) 若一个正数a的两个平方根分别是2m-3和5-m,则a的值是________14. (2分)(2018·洪泽模拟) 如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时(指针落在分界线上时,我们规定算指针落在顺时针临近扇形区域),指针指向区域是5的概率为________.15. (1分) (2018九上·崇明期末) 如图,在中,,点D,E分别在上,且,将沿DE折叠,点C恰好落在AB边上的点F处,如果,,那么CD的长为________.16. (1分) (2018九上·内黄期中) 如下图,在边长为3的正方形ABCD中,圆O1与圆O2外切,且圆O1分别与DA、DC边相切,圆O2分别与BA、BC边相切,则圆心距O1O2为________.17. (1分) (2017八下·东营期末) 对于函数y=x2+2x+1,当1<x<2时,y随x的增大而________(填写“增大”或“减小”).18. (1分)如图,正方形ABCD可以看作由什么“基本图形”经过怎样的变化形成的?________ .三、解答题 (共8题;共49分)19. (5分)(2017·丹阳模拟) 计算题(1)计算:(﹣2)﹣1﹣(2017﹣π)0+sin30°;(2)化简:﹣.20. (5分) (2019九下·武冈期中) 先化简,再求值:,其中满足.21. (5分) (2018九上·汉阳期中) 如图,是等边三角形.(1)作的外接圆;(2)在劣弧上取点,分别连接,并将绕点逆时针旋转;(3)若,直接写出四边形的面积.22. (10分) (2016九下·广州期中) 小强的钱包内有10元钱、20元钱和50元钱的纸币各1张.(1)若从中随机取出1张纸币,求取出纸币的金额是20元的概率;(2)若从中随机取出2张纸币,求取出纸币的总额可购买一件51元的商品的概率.23. (6分)(2018·福田模拟) 如图,在△ABC 中,AB=AC,AE 是∠BAC 的平分线,∠ABC 的平分线 BM 交 AE 于点 M,点 O在 AB 上,以点O 为圆心,OB 的长为半径的圆经过点 M,交 BC 于点G,交 AB 于点 F.(1)求证:AE 为⊙O 的切线.(2)当 BC=8,AC=12 时,求⊙O 的半径.(3)在(2)的条件下,求线段 BG 的长.24. (6分) (2020八上·乌拉特前旗期末) 在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?25. (10分)如图,△ABC与△AED中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE垂足为F,DE交CB的延长线于点G,连接AG.(1)求证:GA平分∠DGB;(2)若S四边形DGBA=6,AF= ,求FG的长.26. (2分)(2016·枣庄) 如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A (1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共49分)19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
广东省佛山市九年级上学期数学期末考试试卷

广东省佛山市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共11分)1. (2分)若关于x的一元二次方程kx2-4x+3=0有实数根,则k的非负整数值是()A . 1B . 0,1C . 1,2D . 1,2,32. (2分)数学老师为了估计全班每位同学数学成绩的稳定性,要求每位同学对自己最近4次的数学测试成绩进行统计分析,那么小明需要求出自己这4次成绩的()A . 平均数B . 众数C . 频率D . 方差3. (2分)在Rt△ABC中,∠C=90°,AB=13,AC=12,则sinB的值是A .B .C .D .4. (2分)如图,在6×6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则tan∠BAC的值是()A .B .C .D .5. (2分)如图,E是正方形ABCD的边BC延长线上一点,且BC=CE,若CE=5cm,则CF的长为()A . cmB . 3cmC . cmD . 5cm6. (1分) (2019九上·汉滨月考) 若关于x 的方程(a-1)x2-2x-1=0有实数根,则实数a的取值范围是________.二、填空题 (共10题;共10分)7. (1分) (2019九上·上海月考) 在比例尺为1:20 000的地图上,相距4厘米的两地A、B的实际距离为________米.8. (1分)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为________ m.9. (1分)在我市开展的“好书伴我成长”读书活动中,某中学为了解七年级300名学生读书情况,随机调查了七年级50各学生读书的册数,统计数据如下表所示,则这50个样本数据的中位数是________ .册数01234人数213922410. (1分) (2019七上·沭阳期末) 按照如图所示的操作步骤,若输入的值为4,则输出的值为________.11. (1分)(2017·祁阳模拟) 一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为________.12. (1分)(2018·江苏模拟) 反比例函数的图像经过点(2,3),则的值等于________.13. (1分)(2017·微山模拟) 计算×()﹣1+(sin60°+π)0的结果等于________.14. (1分)(2017·锦州) 如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①abc>0;②a=b;③a=4c﹣4;④方程ax2+bx+c=1有两个相等的实数根,其中正确的结论是________.(只填序号即可).15. (1分)(2019·萧山模拟) 如图,直线l与x轴、y轴分别交于点A、B,且OB=4,∠ABO=30°,一个半径为1的⊙C,圆心C从点(0,1)开始沿y轴向下运动,当⊙C与直线l相切时,⊙C运动的距离是________16. (1分)(2017·兰州模拟) 如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是________.三、解答题 (共10题;共100分)17. (5分)(2018·常州) 计算:|﹣1|﹣﹣(1﹣)0+4sin30°.18. (15分) (2020八下·卫辉期末)(1)计算(2)解方程(3)已知直线与直线平行,求直线与x轴、y轴的交点坐标.19. (10分) (2017九上·东丽期末) 如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.20. (12分)(2012·扬州) 扬州市中小学全面开展“体艺2+1”活动,某校根据学校实际,决定开设A:篮球,B:乒乓球,C:声乐,D:健美操等四中活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有________人.(2)请你将统计图1补充完整.(3)统计图2中D项目对应的扇形的圆心角是________度.(4)已知该校学生2400人,请根据调查结果估计该校最喜欢乒乓球的学生人数.21. (10分)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高0.2米,且AC=17.2米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取1.73)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.22. (15分)(2020·新泰模拟) 如图,在△ABC中,AD是BC边上的中线,且AD=AC,DE⊥BC,DE与AB相交于点E,EC与AD相交于点F。
【初三数学】佛山市九年级数学上期末考试测试卷及答案

九年级上学期期末考试数学试题(答案)一.填空题(满分18分,每小题3分)1.下列事件:①打开电视机,它正在播广告;②从一只装有红球的口袋中,任意摸出一个球,恰是白球;③两次抛掷正方体骰子,掷得的数字之和<13;④抛掷硬币1000次,第1000次正面向上,其中为随机事件的有个.2.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为.3.一元二次方程2x2﹣4x+1=0有个实数根.4.为响应“足球进校园”的号召,我县教体局在今年11月份组织了“县长杯”校园足球比赛.在某场比赛中,一个球被从地面向上踢出,它距地面的高度h(m)可用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果足球的最大高度到20m,那么足球被踢出时的速度应达到m/s.5.已知圆锥的底面半径为3,母线长为6,则此圆锥侧面展开图的圆心角是.6.为庆祝祖国华诞,某单位排练的节目需用到如图所示的扇形布扇,布扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,贴布部分BD的长为20cm,则贴布部分的面积约为cm2.二.选择题(满分32分,每小题4分)7.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2B.(x﹣1)2=4C.(x+1)2=2D.(x+1)2=4 9.如图的四个转盘中,C,D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A.B.C.D.10.函数y=(m+2)x+2x+1是二次函数,则m的值为()A.﹣2B.0C.﹣2或1D.111.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.5cm C.5cm D.6cm12.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A.50(1+x)2=182B.50+50(1+x)2=182C.50+50(1+x)+50(1+2x)=182D.50+50(1+x)+50(1+x)2=18213.已知△ABC中,∠C=90°,BC=a,CA=b,AB=c,⊙O与三角形的边相切,下列选项中,⊙O的半径为的是()A.B.C.D.14.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=三.解答题(共9小题,满分70分)15.(8分)(1)解方程:x(x﹣2)+x﹣2=0;(2)用配方法解方程:x2﹣10x+22=016.(8分)(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2.(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).17.(8分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.18.(6分)在平面直角坐标系中,抛物线y=x2﹣2x+c(c为常数)的对称轴如图所示,且抛物线过点C(0,c).(1)当c=﹣3时,点(x1,y1)在抛物线y=x2﹣2x+c上,求y1的最小值;(2)若抛物线与x轴有两个交点,自左向右分别为点A、B,且OA=OB,求抛物线的解析式;(3)当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求c的取值范围.19.(6分)如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?20.(6分)已知,如图:AB为⊙O直径,D为弧AC中点,DE⊥AB于E,AC交OD于点F,(1)求证:OD∥BC;(2)若AB=10cm,BC=6cm,求DF的长;(3)探索DE与AC的数量关系,直接写出结论不用证明.21.(8分)某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?22.(8分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①,AB是直径,要使EF是⊙O的切线,还须添加一个条件是(只需写出三种情况).(ī)(īī)(īīī)(2)如图(2),若AB为非直径的弦,∠CAE=∠B,则EF是⊙O的切线吗?为什么?23.(12分)已知,抛物线y=mx2+(1﹣2m)x+1﹣3m(m是常数).(Ⅰ)当m=1时,求该抛物线与x轴的公共点的坐标;(Ⅱ)抛物线与x轴相交于不同的两点A,B.①求m的取值范围;②无论m取何值,该抛物线都经过非坐标轴上的定点P,当<m≤8时,求△P AB面积的最大值,并求出相对应的m的值.参考答案一.填空题1.解:①打开电视机,它正在播广告是随机事件;②从一只装有红球的口袋中,任意摸出一个球,恰是白球是不可能事件;③两次抛掷正方体骰子,掷得的数字之和<13是必然事件;④抛掷硬币1000次,第1000次正面向上是随机事件;故答案为:2.2.解:∵∠ACB=90°,∠ABC=30°,∴∠A=60°,∵△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,∴CA′=CA,∠ACA′等于旋转角,∴△ACA′为等边三角形,∴∠ACA′=60°,即旋转角度为60°.故答案为60°.3.解:∵a=2,b=﹣4,c=1,∴△=(﹣4)2﹣4×2×1=8>0,∴此一元二次方程有两个实数根,故答案为:两.4.解:h=﹣5t2+v0•t,其对称轴为t=,=﹣5×()2+v0•=20,当t=时,h最大解得:v0=20,v0=﹣20(不合题意舍去),答:足球被踢出时的速度应达到20m/s.5.解:∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,=6π,故答案为180°.6.解:贴布部分的面积=S扇形BAC ﹣S扇形DAE=﹣=(cm2).故答案为.二.选择题(共8小题,满分32分,每小题4分)7.解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.8.解:∵x2+2x﹣3=0∴x2+2x=3∴x2+2x+1=1+3∴(x+1)2=4故选:D.9.解:A、如图所示:指针落在阴影区域内的概率为:=;B、如图所示:指针落在阴影区域内的概率为:=;C、如图所示:指针落在阴影区域内的概率为:;D、如图所示:指针落在阴影区域内的概率为:,∵>>>,∴指针落在阴影区域内的概率最大的转盘是:.故选:A.10.解:∵函数y=(m+2)x+2x+1是二次函数,∴m2+m=2,m+2≠0,故选:D.11.解:连接EC,由圆周角定理得,∠E=∠B,∠ACE=90°,∵∠B=∠EAC,∴∠E=∠EAC,∴CE=CA,∴AC=AE=5(cm),故选:B.12.解:设该厂八、九月份平均每月生产零件的增长率均为x,根据题意得:50+50(1+x)+50(1+x)2=182.故选:D.13.解:①∵⊙O是△ABC的内切圆,∴⊙O的半径=,∴A不正确;②∵⊙O与AB,BC相切,∴r2+(c﹣a)2=(b﹣r)2∴r=,∴B不正确;③∵⊙O与AC,BC相切,圆心在AB上,∴=,∴r=,∴C正确,④∵⊙O与AB,AC相切,圆心在BC上,∴(a﹣r)2=r2+(c﹣b)2,∴r=,∴D不正确.14.解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x2﹣3x+c与y轴的交点为(0,2),∴c=2,∴抛物线的解析式为y=x2﹣3x+2.当y=0时,有x2﹣3x+2=0,解得:x1=1,x2=2,∴抛物线与x轴的交点为(1,0)、(2,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x2﹣3x+2,∴抛物线的对称轴为直线x=﹣=﹣=,D选项正确.故选:D.三.解答题(共9小题,满分70分)15.解:(1)∵x(x﹣2)+x﹣2=0,∴(x﹣2)(x+1)=0,则x﹣2=0或x+1=0,解得:x1=2,x2=﹣1;(2)∵x2﹣10x+22=0,∴x2﹣10x+25﹣3=0,则x2﹣10x+25=3,即(x﹣5)2=3,∴x﹣5=±,∴x=5±,即x1=5+,x2=5﹣.16.解:(1)如图,△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)如图,△A2BC2为所作;(3)∵BC==,∴C点旋转到C2点所经过的路径长为=π.17.解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为=;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为.18.解:(1)当c=﹣3时,抛物线为y=x2﹣2x﹣3,∴抛物线开口向上,有最小值,===﹣4,∴y最小值∴y1的最小值为﹣4;(2)抛物线与x轴有两个交点,①当点A、B都在原点的右侧时,如解图1,设A(m,0),∵OA=OB,∴B(2m,0),∵二次函数y=x2﹣2x+c的对称轴为x=1,由抛物线的对称性得1﹣m=2m﹣1,解得m=,∴A(,0),∵点A在抛物线y=x2﹣2x+c上,∴0=﹣+c,解得c=,此时抛物线的解析式为y=x2﹣2x+;②当点A在原点的左侧,点B在原点的右侧时,如解图2,设A(﹣n,0),∵OA=OB,且点A、B在原点的两侧,∴B(2n,0),由抛物线的对称性得n+1=2n﹣1,解得n=2,∴A(﹣2,0),∵点A在抛物线y=x2﹣2x+c上,∴0=4+4+c,解得c=﹣8,此时抛物线的解析式为y=x2﹣2x﹣8,综上,抛物线的解析式为y=x2﹣2x+或y=x2﹣2x﹣8;(3)∵抛物线y=x2﹣2x+c与x轴有公共点,∴对于方程x2﹣2x+c=0,判别式b2﹣4ac=4﹣4c≥0,∴c≤1.当x=﹣1时,y=3+c;当x=0时,y=c,∵抛物线的对称轴为x=1,且当﹣1<x<0时,抛物线与x轴有且只有一个公共点,∴3+c>0且c<0,解得﹣3<c<0,综上,当﹣3<c<0时,抛物线与x轴有且只有一个公共点.19.解:设道路的宽为xm,由题意得:(30﹣2x)(20﹣x)=6×78,整理得:(x﹣2)(x﹣33)=0,解得x=2或x=33舍去),答:通道应设计成2米.20.(1)证明:∵AB为直径,∴∠ACB=90°,∵D为弧AC中点,∴OD⊥AC,∴∠AFO=90°,∴OD⊥BC;(2)解:∵OF∥BC,而OA=OB,∴OF为△ACB的中位线,∴OF=BC=3cm,∴DF=OD﹣OF=5cm﹣3cm=2cm;(3)解:DE=AC.21.解:(1)由题意得:y=(40+x﹣30)(180﹣5x)=﹣5x2+130x+1800(0≤x≤10)(2)对称轴:x=﹣=﹣=13,∵13>10,a=﹣5<0,∴在对称轴左侧,y随x增大而增大,=﹣5×102+130×10+1800=2600,∴当x=10时,y最大值∴售价=40+10=50元答:当售价为50元时,可获得最大利润2600元.(3)由题意得:﹣5x2+130x+1800=2145解之得:x=3或23(不符合题意,舍去)∴售价=40+3=43元.答:售价为43元时,每周利润为2145元.22.(1)解:如图1中,当AB⊥EF或∠BAE=90°可判断EF为⊙O的切线;当∠ABC=∠EAC,∵AB为直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∴∠EAC+∠CAB=90°,∴AB⊥EF,∴EF为⊙O的切线;故答案为AB⊥EF、∠BAE=90°、∠ABC=∠EAC;(2)证明:如图2,作直径AD,连结CD,∵AD为直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∵∠D=∠B,∠CAE=∠B,∴∠CAE=∠D,∴∠EAC+∠CAD=90°,∴AD⊥EF,∴EF为⊙O的切线;23.解:(Ⅰ)把m=1,y=0代入抛物线可得x2﹣x﹣2=0,解得x1=﹣1,x2=2,故该抛物线与x轴的公共点的坐标为(﹣1,0)或(2,0);(Ⅱ)①当m=0时,函数为一次函数,不符合题意,舍去;当m≠0时,∵抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,∴△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,∴1﹣4m≠0,∴m≠,∴m的取值范围为m≠0且m≠;②|AB|=|x A﹣x B|=====||=|﹣4|,∵<m≤8,∴≤<4,∴﹣≤﹣4<0,∴0<|﹣4|≤,∴|AB|最大时,||=,解得:m=8,或m=(舍去),∴当m=8时,|AB|有最大值,此时△ABP的面积最大,没有最小值,则面积最大为:|AB|y P=××4=.九年级上学期期末考试数学试题(答案)一.填空题(满分18分,每小题3分)1.下列事件:①打开电视机,它正在播广告;②从一只装有红球的口袋中,任意摸出一个球,恰是白球;③两次抛掷正方体骰子,掷得的数字之和<13;④抛掷硬币1000次,第1000次正面向上,其中为随机事件的有个.2.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为.3.一元二次方程2x2﹣4x+1=0有个实数根.4.为响应“足球进校园”的号召,我县教体局在今年11月份组织了“县长杯”校园足球比赛.在某场比赛中,一个球被从地面向上踢出,它距地面的高度h(m)可用公式h=﹣5t2+v0t表示,其中t(s)表示足球被踢出后经过的时间,v0(m/s)是足球被踢出时的速度,如果足球的最大高度到20m,那么足球被踢出时的速度应达到m/s.5.已知圆锥的底面半径为3,母线长为6,则此圆锥侧面展开图的圆心角是.6.为庆祝祖国华诞,某单位排练的节目需用到如图所示的扇形布扇,布扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为30cm,贴布部分BD的长为20cm,则贴布部分的面积约为cm2.二.选择题(满分32分,每小题4分)7.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2B.(x﹣1)2=4C.(x+1)2=2D.(x+1)2=4 9.如图的四个转盘中,C,D转盘分成8等分,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A.B.C.D.10.函数y=(m+2)x+2x+1是二次函数,则m的值为()A.﹣2B.0C.﹣2或1D.111.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.5cm C.5cm D.6cm12.某机械厂七月份生产零件50万个,第三季度生产零件182万个.若该厂八、九月份平均每月生产零件的增长率均为x,则下面所列方程正确的是()A.50(1+x)2=182B.50+50(1+x)2=182C.50+50(1+x)+50(1+2x)=182D.50+50(1+x)+50(1+x)2=18213.已知△ABC中,∠C=90°,BC=a,CA=b,AB=c,⊙O与三角形的边相切,下列选项中,⊙O的半径为的是()A.B.C.D.14.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=三.解答题(共9小题,满分70分)15.(8分)(1)解方程:x(x﹣2)+x﹣2=0;(2)用配方法解方程:x2﹣10x+22=016.(8分)(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2.(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π).17.(8分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.18.(6分)在平面直角坐标系中,抛物线y=x2﹣2x+c(c为常数)的对称轴如图所示,且抛物线过点C(0,c).(1)当c=﹣3时,点(x1,y1)在抛物线y=x2﹣2x+c上,求y1的最小值;(2)若抛物线与x轴有两个交点,自左向右分别为点A、B,且OA=OB,求抛物线的解析式;(3)当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求c的取值范围.19.(6分)如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?20.(6分)已知,如图:AB为⊙O直径,D为弧AC中点,DE⊥AB于E,AC交OD于点F,(1)求证:OD∥BC;(2)若AB=10cm,BC=6cm,求DF的长;(3)探索DE与AC的数量关系,直接写出结论不用证明.21.(8分)某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?22.(8分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①,AB是直径,要使EF是⊙O的切线,还须添加一个条件是(只需写出三种情况).(ī)(īī)(īīī)(2)如图(2),若AB为非直径的弦,∠CAE=∠B,则EF是⊙O的切线吗?为什么?23.(12分)已知,抛物线y=mx2+(1﹣2m)x+1﹣3m(m是常数).(Ⅰ)当m=1时,求该抛物线与x轴的公共点的坐标;(Ⅱ)抛物线与x轴相交于不同的两点A,B.①求m的取值范围;②无论m取何值,该抛物线都经过非坐标轴上的定点P,当<m≤8时,求△P AB面积的最大值,并求出相对应的m的值.参考答案一.填空题1.解:①打开电视机,它正在播广告是随机事件;②从一只装有红球的口袋中,任意摸出一个球,恰是白球是不可能事件;③两次抛掷正方体骰子,掷得的数字之和<13是必然事件;④抛掷硬币1000次,第1000次正面向上是随机事件;故答案为:2.2.解:∵∠ACB=90°,∠ABC=30°,∴∠A=60°,∵△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,∴CA′=CA,∠ACA′等于旋转角,∴△ACA′为等边三角形,∴∠ACA′=60°,即旋转角度为60°.故答案为60°.3.解:∵a=2,b=﹣4,c=1,∴△=(﹣4)2﹣4×2×1=8>0,∴此一元二次方程有两个实数根,故答案为:两.4.解:h=﹣5t2+v0•t,其对称轴为t=,=﹣5×()2+v0•=20,当t=时,h最大解得:v0=20,v0=﹣20(不合题意舍去),答:足球被踢出时的速度应达到20m/s.5.解:∵圆锥底面半径是3,∴圆锥的底面周长为6π,设圆锥的侧面展开的扇形圆心角为n°,=6π,故答案为180°.6.解:贴布部分的面积=S扇形BAC ﹣S扇形DAE=﹣=(cm2).故答案为.二.选择题(共8小题,满分32分,每小题4分)7.解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.8.解:∵x2+2x﹣3=0∴x2+2x=3∴x2+2x+1=1+3∴(x+1)2=4故选:D.9.解:A、如图所示:指针落在阴影区域内的概率为:=;B、如图所示:指针落在阴影区域内的概率为:=;C、如图所示:指针落在阴影区域内的概率为:;D、如图所示:指针落在阴影区域内的概率为:,∵>>>,∴指针落在阴影区域内的概率最大的转盘是:.故选:A.10.解:∵函数y=(m+2)x+2x+1是二次函数,∴m2+m=2,m+2≠0,故选:D.11.解:连接EC,由圆周角定理得,∠E=∠B,∠ACE=90°,∵∠B=∠EAC,∴∠E=∠EAC,∴CE=CA,∴AC=AE=5(cm),故选:B.12.解:设该厂八、九月份平均每月生产零件的增长率均为x,根据题意得:50+50(1+x)+50(1+x)2=182.故选:D.13.解:①∵⊙O是△ABC的内切圆,∴⊙O的半径=,∴A不正确;②∵⊙O与AB,BC相切,∴r2+(c﹣a)2=(b﹣r)2∴r=,∴B不正确;③∵⊙O与AC,BC相切,圆心在AB上,∴=,∴r=,∴C正确,④∵⊙O与AB,AC相切,圆心在BC上,∴(a﹣r)2=r2+(c﹣b)2,∴r=,∴D不正确.14.解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x2﹣3x+c与y轴的交点为(0,2),∴c=2,∴抛物线的解析式为y=x2﹣3x+2.当y=0时,有x2﹣3x+2=0,解得:x1=1,x2=2,∴抛物线与x轴的交点为(1,0)、(2,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x2﹣3x+2,∴抛物线的对称轴为直线x=﹣=﹣=,D选项正确.故选:D.三.解答题(共9小题,满分70分)15.解:(1)∵x(x﹣2)+x﹣2=0,∴(x﹣2)(x+1)=0,则x﹣2=0或x+1=0,解得:x1=2,x2=﹣1;(2)∵x2﹣10x+22=0,∴x2﹣10x+25﹣3=0,则x2﹣10x+25=3,即(x﹣5)2=3,∴x﹣5=±,∴x=5±,即x1=5+,x2=5﹣.16.解:(1)如图,△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)如图,△A2BC2为所作;(3)∵BC==,∴C点旋转到C2点所经过的路径长为=π.17.解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为=;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为.18.解:(1)当c=﹣3时,抛物线为y=x2﹣2x﹣3,∴抛物线开口向上,有最小值,===﹣4,∴y最小值∴y1的最小值为﹣4;(2)抛物线与x轴有两个交点,①当点A、B都在原点的右侧时,如解图1,设A(m,0),∵OA=OB,∴B(2m,0),∵二次函数y=x2﹣2x+c的对称轴为x=1,由抛物线的对称性得1﹣m=2m﹣1,解得m=,∴A(,0),∵点A在抛物线y=x2﹣2x+c上,∴0=﹣+c,解得c=,此时抛物线的解析式为y=x2﹣2x+;②当点A在原点的左侧,点B在原点的右侧时,如解图2,设A(﹣n,0),∵OA=OB,且点A、B在原点的两侧,∴B(2n,0),由抛物线的对称性得n+1=2n﹣1,解得n=2,∴A(﹣2,0),∵点A在抛物线y=x2﹣2x+c上,∴0=4+4+c,解得c=﹣8,此时抛物线的解析式为y=x2﹣2x﹣8,综上,抛物线的解析式为y=x2﹣2x+或y=x2﹣2x﹣8;(3)∵抛物线y=x2﹣2x+c与x轴有公共点,∴对于方程x2﹣2x+c=0,判别式b2﹣4ac=4﹣4c≥0,∴c≤1.当x=﹣1时,y=3+c;当x=0时,y=c,∵抛物线的对称轴为x=1,且当﹣1<x<0时,抛物线与x轴有且只有一个公共点,∴3+c>0且c<0,解得﹣3<c<0,综上,当﹣3<c<0时,抛物线与x轴有且只有一个公共点.19.解:设道路的宽为xm,由题意得:(30﹣2x)(20﹣x)=6×78,整理得:(x﹣2)(x﹣33)=0,解得x=2或x=33舍去),答:通道应设计成2米.20.(1)证明:∵AB为直径,∴∠ACB=90°,∵D为弧AC中点,∴OD⊥AC,∴∠AFO=90°,∴OD⊥BC;(2)解:∵OF∥BC,而OA=OB,∴OF为△ACB的中位线,∴OF=BC=3cm,∴DF=OD﹣OF=5cm﹣3cm=2cm;(3)解:DE=AC.21.解:(1)由题意得:y=(40+x﹣30)(180﹣5x)=﹣5x2+130x+1800(0≤x≤10)(2)对称轴:x=﹣=﹣=13,∵13>10,a=﹣5<0,∴在对称轴左侧,y随x增大而增大,=﹣5×102+130×10+1800=2600,∴当x=10时,y最大值∴售价=40+10=50元答:当售价为50元时,可获得最大利润2600元.(3)由题意得:﹣5x2+130x+1800=2145解之得:x=3或23(不符合题意,舍去)∴售价=40+3=43元.答:售价为43元时,每周利润为2145元.22.(1)解:如图1中,当AB⊥EF或∠BAE=90°可判断EF为⊙O的切线;当∠ABC=∠EAC,∵AB为直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∴∠EAC+∠CAB=90°,∴AB⊥EF,∴EF为⊙O的切线;故答案为AB⊥EF、∠BAE=90°、∠ABC=∠EAC;(2)证明:如图2,作直径AD,连结CD,∵AD为直径,∴∠ACD=90°,∴∠D+∠CAD=90°,∵∠D=∠B,∠CAE=∠B,∴∠CAE=∠D,∴∠EAC+∠CAD=90°,∴AD⊥EF,∴EF为⊙O的切线;23.解:(Ⅰ)把m=1,y=0代入抛物线可得x2﹣x﹣2=0,解得x1=﹣1,x2=2,故该抛物线与x轴的公共点的坐标为(﹣1,0)或(2,0);(Ⅱ)①当m=0时,函数为一次函数,不符合题意,舍去;当m≠0时,∵抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B,∴△=(1﹣2m)2﹣4×m×(1﹣3m)=(1﹣4m)2>0,∴1﹣4m≠0,∴m≠,∴m的取值范围为m≠0且m≠;②|AB|=|x A﹣x B|=====||=|﹣4|,∵<m≤8,∴≤<4,∴﹣≤﹣4<0,∴0<|﹣4|≤,∴|AB|最大时,||=,解得:m=8,或m=(舍去),∴当m=8时,|AB|有最大值,此时△ABP的面积最大,没有最小值,则面积最大为:|AB|y P=××4=.人教版九年级(上)期末模拟数学试卷【答案】一、选择题(每小题3分,共30分)1.(2018·齐齐哈尔)下列成语中,表示不可能事件的是(A)A.缘木求鱼B.杀鸡取卵C.探囊取物D.日月经天,江河行地2.一元二次方程x2-4x=12的根是(B)A .x 1=2,x 2=-6B .x 1=-2,x 2=6C .x 1=-2,x 2=-6D .x 1=2,x 2=63.已知点A(a ,1)与点B(-4,b)关于原点对称,则a +b 的值为(C )A .5B .-5C .3D .-34.(2018·张家界)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5 cm ,CD =8 cm ,则AE =(A )A .8 cmB .5 cmC .3 cmD .2 cm,第4题图) ,第7题图) ,第8题图) ,第9题图)5.若关于x 的一元二次方程x 2+2(k -1)x +k 2-1=0有实数根,则k 的取值范围是(D )A .k ≥1B .k >1C .k <1D .k ≤16.一个袋中里有4个小球,其中2个红色,2个蓝色,除颜色外其余特征均相同,若从这个袋中任取2个小球,都是蓝色小球的概率是(D )A .12B .13C .14D .167.(2018·陇南)如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转90°到△ABF 的位置,若四边形AECF 的面积为25,DE =2,则AE 的长为(D )A .5B .23C .7D .298.如图,△ABC 为直角三角形,∠C =90°,AC =6,BC =8,以点C 为圆心,以CA 为半径作⊙C ,则△ABC 斜边的中点D 与⊙C 的位置关系是(B )A .点D 在⊙C 上B .点D 在⊙C 内 C .点D 在⊙C 外 D .不能确定9.(2018·宜宾)在△ABC 中,若O 为BC 边的中点,则必有:AB 2+AC 2=2AO 2+2BO 2成立.依据以上结论,解决如下问题:如图,在矩形DEFG 中,已知DE =4,EF =3,点P 在以DE 为直径的半圆上运动,则PF 2+PG 2的最小值为(D )A .10B .192C .34D .1010.(2018·随州)如图所示,已知二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,对称轴为直线x =1.直线y =-x +c 与抛物线y =ax 2+bx +c 交于C ,D 两点,D 点在x 轴下方且横坐标小于3,则下列结论:①2a +b +c >0;②a -b +c <0;③x(ax +b)≤a +b ;④a <-1.其中正确的有(A )A .4个B .3个C .2个D .1个二、填空题(每小题3分,共24分)11.将抛物线y =6x 2向左平移2个单位后所得到的抛物线为y =6(x +2)2.12.(2018·湘潭)如图,AB 是⊙O 的切线,点B 为切点,若∠A =30°,则∠AOB =60°.,第12题图) ,第15题图) ,第17题图) ,第18题图)13.在△ABC 中,BC =2,AB =23,AC =b ,且关于x 的方程x 2-4x +b =0有两个相等的实数根,则AC 边上的中线长为2.14.(2018·内江)有五张卡片(形状、大小、质地都相同),上面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是25. 15.如图,线段AB 是圆O 的直径,弦CD ⊥AB 于点E ,∠CAB =30°,BE =1,则CD 的长为2 3.16.(2018·巴中)对于任意实数a ,b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)-5=0的两根记为m ,n ,则m 2+n 2=6.17.如图,⊙O 的半径为2,点A ,B 在⊙O 上,∠AOB =90°,则阴影部分的面积为π-2.18.如图,将半径4 cm 的半圆围成一个圆锥,在圆锥内接一个圆柱,当圆柱的底面半径长为1cm 时,圆柱的侧面面积最大.三、解答题(共66分)19.(6分)解方程:(1)x 2+4x -1=0; (2)(x -2)2-3x(x -2)=0.(1)x 1=-2+5,x 2=-2- 5 解:(2)x 1=2,x 2=-120.(6分)在边长为1个单位长度的正方形网格中建立如图的平面直角坐标系xOy ,△ABC 的顶点都在格点上,请解答下列问题:(1)将△ABC 向下平移5个单位长度,画出平移后的△A 1B 1C 1;(2)若点M 是△ABC 内一点,其坐标为(a ,b),点M 在△A 1B 1C 1内的对应点为M 1,则点M 1的坐标为 ;(3)画出△ABC 关于原点O 的中心对称图形△A 2B 2C 2.(1)如图所示:△A 1B 1C 1即为所求 (2)∵点M 是△ABC 内一点,其坐标为(a ,b),点M 在△A 1B 1C 1内的对应点为M 1,∴点M 1的坐标为(a ,b -5);故答案为:(a ,b -5) (3)如图所示:△A 2B 2C 2,即为所求21.(6分)如图,在△ABC 中,∠ACB =90°,AC =BC ,D 是AB 边上一点(点D 与A ,B 不重合),连接CD ,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE ,连接DE 交BC 于点F ,连接BE.(1)求证:△ACD ≌△BCE ;(2)当AD =BF 时,求∠BEF 的度数.(1)由题意可知:CD =CE ,∠DCE =90°,∵∠ACB =90°,∴∠ACD =∠ACB -∠DCB ,∠BCE =∠DCE -∠DCB ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,⎩⎨⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE(SAS ) (2)∵∠ACB =90°,AC =BC ,∴∠A =45°,由(1)可知:∠A =∠CBE =45°,∵AD =BF ,∴BE =BF ,∴∠BEF =67.5°22.(8分)(2018·湖北)已知关于x 的一元二次方程x 2+(2m +1)x +m 2-2=0.(1)若该方程有两个实数根,求m 的最小整数值;(2)若方程的两个实数根为x 1,x 2,且(x 1-x 2)2+m 2=21,求m 的值.(1)根据题意得Δ=(2m +1)2-4(m 2-2)≥0,解得m ≥-94,所以m 的最小整数值为-2 (2)根据题意得x 1+x 2=-(2m +1),x 1x 2=m 2-2,∵(x 1-x 2)2+m 2=21,∴(x 1+x 2)2-4x 1x 2+m 2=21,∴(2m +1)2-4(m 2-2)+m 2=21,整理得m 2+4m -12=0,解得m 1=2,m 2=-6,∵m ≥-94,∴m 的值为2 23.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.D 90≤x <100 8 0.08请根据所给信息,解答以下问题:(1)表中a = ,b = ;(2)请计算扇形统计图中B 组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.(1)0.3 45 (2)360°×0.3=108°,答:扇形统计图中B 组对应扇形的圆心角为108°(3)将同一班级的甲、乙学生记为A ,B ,另外两学生记为C ,D ,画树形图得:人教版数学九年级上册期末考试试题(答案)一、选择题(本大题共小10题,每小题3分,共30分)1.(3分)下列各数中与4相等的是( )A .22-B .2(2)-C .|4|--D .(4)-+2.(3分)2017年成都市经济呈现活力增强,稳重向好的发展态势,截止2017年12月,全市实现地区总值约13900亿元,将13900亿元用科学记数法表示是( )亿元.A .213910⨯B .313.910⨯C .41.3910⨯D .51.3910⨯3.(3分)下列计算正确的是( )A .326a a a ⨯=B .32a a a -=C .22a b ab +=D .123--=-4.(3分)下列说法不正确的是( )A .两组对边分别相等的四边形是平行四边形B .当a c b +=时,一元二次方程20ax bx c ++=必有一根为1C .若点P 是线段AB 的黄金分割点()PA PB >,则PA AB =D .23410x x -+=的两根之和为43 5.(3分)已知52x y =,则x y y -的值为( ) A .35 B .32 C .23 D .35-6.(3分)如图,线段AB 两个端点的坐标分别为(2,2)A 、(3,1)B ,以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(3,1)B .(3,3)C .(4,4)D .(4,1)7.(3分)如图,在菱形ABCD 中,2AB =,120ABC ∠=︒,则对角线BD 等于( )A .2B .4C .6D .88.(3分)如图,A 、B 、C 三点在正方形网格线的交点处,若将ABC ∆绕着点A 逆时针旋转得到△AC B '',则tan B '的值为( )A .12B .13C .14D 9.(3分)关于x 的一元二次方程220x x m ++=有实数根,则m 的取值范围是( )A .1m <B .1m <且0m ≠C .1m …D .1m … 且0m ≠10.(3分)如图,菱形OBAC 的边OB 在x 轴上,点(8,4)A ,4tan 3COB ∠=,若反比例函数(0)k y k x=≠的图象经过点C ,则k 的值为( )A .6B .12C .24D .32二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)已知a 为锐角,且满足tan(10)a +︒=,则a 为 度.12.(4分)已知关于x 的一元二次方程20x x m -+=有一个根为2,则m 的值为 ,它的另一个根为 .13.(4分)反比例函数||2m y mx -=,当0x >时,y 随x 的增大而增大,则m =14.(4分)如图,AB 和DE 是直立在地面上的两根立柱,5AB =米,某一时刻AB 在阳光下的投影3BC =米,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6米,则DE 的长为 .三、解答题(本大题共6小题,共54分)15.(12分)计算(1)计算:03(3)(1)3tan 30π--+--⨯︒+(2)解方程:(3)2x x x -=16.(6分)先化简再求值:213(1)22a a a a +++--,其中12a = 17.(8分)如图,大楼AD 高50米,和大楼AD 相距90米的C 处有一塔BC ,某人在楼顶D 处测得塔顶B 的仰角30BDE ∠=︒,求塔高.(结果保留整数,参考数据:1.73)≈≈18.(8分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t (单位:小时),将学生分成五类:A 类(02)t 剟,B 类(24)t <…,C 类(46)t <…,D 类(68)t <…,E 类(8)t >.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有 人,补全条形统计图;(2)D 类学生人数占被调查总人数的 %;(3)从该班做义工时间在04t 剟的学生中任选2人,求这2人做义工时间都在24t <…中的概率.19.(10分)如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象与反比例函数6y x=的图象相交于点(,3)A m ,(6,1)B --,与x 轴交于点(,0)C n(1)求一次函数y kx b =+的关系式;(2)求BOC ∆的面积;(3)若点P 在x 轴上,且32ACP BOC S S ∆∆=,求点P 的坐标。
广东省佛山市九年级(上)期末数学试卷

A.
B.
C.
D.
二、填空题(本大题共 6 小题,共 24.0 分) 11. 已知 xy=74,则 x−yy=______. 12. 若∠A 是锐角,sinA=12,则∠A=______. 13. 如图,点 P 在反比例函数 y=kx 的图象上.若矩形 PMON
的面积为 4,则 k=______.
14. 如图,小明站在地面 D 处,刚好离路灯 AB 的距离为 4 米.已 知小明身高为 1.6 米,它的影长 CD 为 2 米,那么路灯 AB 的 高为______米.
【解析】
解:∵AD=OD,BE=OE, ∴DE 是△OAB 的中位线, ∴AB=2DE=4, 故选:C. 根据三角形的中位线定理即可解决问题. 本题考查三角形中位线定理,解题的关键是熟练掌握基本知识,属于中考常 考题型. 4.【答案】B
【解析】
解:x2-6x=11,
x2-6x+9=20,
(x-3)2=20.
25. 在△ABC 中,∠ACB=90°,AB=25,BC=15. (1)如图 1,折叠△ABC 使点 A 落在 AC 边上的点 D 处,折痕交 AC、AB 分别于 Q、H,若 S△ABC=9S△DHQ,则 HQ=______. (2)如图 2,折叠△ABC 使点 A 落在 BC 边上的点 M 处,折痕交 AC、AB 分别于 E、F.若 FM∥AC,求证:四边形 AEMF 是菱形; (3)在(1)(2)的条件下,线段 CQ 上是否存在点 P,使得△CMP 和△HQP 相 似?若存在,求出 PQ 的长;若不存在,请说明理由.
第 2 页,共 16 页
四、解答题(本大题共 8 小题,共 60.0 分) 18. 解方程:x(x-3)=2(x-3)
19. 已知线段 AC. (1)尺规作图:作菱形 ABCD,使 AC 是菱形的一条对角线(保留作图痕迹,不要 求写作法); (2)若 AC=8,BD=6,求菱形的边长.
广东省佛山市九年级上学期期末数学试卷

广东省佛山市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2018九下·厦门开学考) 二次函数y=(x﹣1)2+2,它的图象顶点坐标是()A . (﹣2,1)B . (2,1)C . (2,﹣1)D . (1,2)2. (2分) (2018九下·尚志开学考) 下列图形中,是中心对称图形但不是轴对称图形的是()A .B .C .D .3. (2分)下列事件发生的概率为0的是()A . 射击运动员只射击1次,就命中靶心B . 任取一个实数x,都有|x|≥0C . 画一个三角形,使其三边的长分别为8cm,6cm,2cmD . 抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为64. (2分)若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A .B .C .D .5. (2分)已知⊙O的半径为3,圆心O到直线l的距离PO=2,则直线l与⊙O的位置关系是()A . 相切B . 相离C . 相交D . 无法判断6. (2分) (2017九上·孝义期末) 已知二次函数y=ax2+bx+c的x、y的部分对应值如下表:X…-10123…y…51-1-11…则该函数的对称轴为()A . y轴B . 直线x=C . 直线x=2D . 直线x=二、填空题 (共8题;共8分)7. (1分)(2020·长宁模拟) 已知抛物线y=(1+a)x2的开口向上,则a的取值范围是________.8. (1分) (2017九上·钦州月考) 已知关于x的方程是此方程的两个实数根,先给出三个结论:① ② ③ ;则正确的结论序号是________9. (1分) (2018九上·濮阳期末) 反比例函数中,k值满足方程k2﹣k﹣2=0,且当x>0时,y随x 的增大而增大,则k=________10. (1分) (2017八下·东台开学考) 在一个不透明的袋子中有10个除颜色外其余均相同的小球,通过多次摸球实验后,发现摸到白球的频率约为40%,估计袋子中白球有________个。
佛山市九年级上学期数学期末考试试卷

佛山市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2017·泰州) 如图,P为反比例函数y= (k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A,B.若∠AOB=135°,则k的值是()A . 2B . 4C . 6D . 82. (2分) (2016九上·朝阳期末) 在平面直角坐标系中,点B的坐标为(3,1),则点B关于原点的对称点的坐标为()A . (3,-1)B . (-3,1)C . (-1,-3)D . (-3,-1)3. (2分) (2016九上·朝阳期末) 如图,AC与BD相交于点E,AD∥BC.若AE=2,CE=3,AD=3,则BC的长度是()A . 2B . 3C . 4.5D . 64. (2分) (2016九上·朝阳期末) 如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA的值是()A .B .C .D .5. (2分) (2016九上·朝阳期末) 如图,反比例函数的图象上有一点A,过点A作AB⊥x轴于B,则是()A .B . 1C . 2D . 46. (2分) (2016九上·朝阳期末) 如图,在⊙O中,∠BOC=100°,则∠A等于()A . 100°B . 50°C . 40°D . 25°7. (2分) (2016九上·朝阳期末) 如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③ ,④ ,⑤ ,使△ADE与△ACB一定相似的有()A . ①②④B . ②④⑤C . ①②③④D . ①②③⑤8. (2分) (2016九上·朝阳期末) 小阳在如图所示的扇形舞台上沿O-M-N匀速行走,他从点O出发,沿箭头所示的方向经过点M再走到点N,共用时70秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为t(单位:秒),他与摄像机的距离为y(单位:米),表示y与t的函数关系的图象大致如图②,则这个固定位置可能是图①中的()A . 点QB . 点PC . 点MD . 点N二、填空题 (共6题;共10分)9. (4分)某校团委为了了解学生孝敬父母的情况,在全校范围内随机抽取n名学生进行问卷调查.问卷中孝敬父母方式包括:A.为父母洗一次脚;B.帮父母做一次家务;C.给父母买一件礼物;D.其他.每位学生在问卷调查时都按要求只选择了其中一种方式,该校团委收回全部问卷后,将收集到的数据整理并绘制成如下的统计图.(1)求n的值________(2)四种方式中被选择次数最多的方式为________ (用A、B、C、D作答);选择该种方式的学生人数占被调查的学生人数的百分比为________(3)根据统计结果,估计该校1600名学生中选择B方式的学生比选择A方式的学生多的人数________10. (1分)小明把如图所示的矩形纸板ABCD挂在墙上,E为AD中点,且∠ABD=60°,并用它玩飞镖游戏(每次飞镖均落在纸板上),击中阴影区域的概率是________.11. (1分) (2016九上·朝阳期末) 已知y是x的反比例函数,且在每个象限内,y随x的增大而减小.请写出一个满足以上条件的函数表达式________.12. (1分) (2016九上·朝阳期末) 如图,矩形ABCD中,点E是边AD的中点,BE交对角线AC于点F ,则△AFE与△BCF面积比等于________.13. (1分) (2016九上·朝阳期末) 如图,⊙O的半径为6,OA与弦AB的夹角是30°,则弦AB的长度是________.14. (2分) (2016九上·朝阳期末) 如图,已知反比例函数的图象上有一组点B1,B2,…,Bn,它们的横坐标依次增加1,且点B1横坐标为1.“①,②,③…”分别表示如图所示的三角形的面积,记S1=①-②,S2=②-③,…,则S7的值为________ ,S1+S2+…+Sn=________(用含n的式子表示),.三、解答题 (共13题;共113分)15. (5分)计算:16. (5分) (2016九上·朝阳期末) 如图,在Rt△ABC中,∠C=90°,D是AC边上一点,DE⊥AB于点E.若DE=2,BC=3,AC=6,求AE的长.17. (6分) (2016九上·朝阳期末) 如图,点A的坐标为(3,2),点B的坐标为(3,0).作如下操作:①以点A为旋转中心,将△ABO顺时针方向旋转90°,得到△AB1O1;②以点O为位似中心,将△ABO放大,得到△A2B2O,使相似比为1∶2,且点A2在第三象限.(1)在图中画出△AB1O1和△A2B2O;(2)请直接写出点A2的坐标:________.18. (6分) (2016九上·朝阳期末) 党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.小光同学将其中的“文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如右图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片.(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是________;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率(卡片名称可用字母表示).19. (10分)(2016九上·朝阳期末) 如图,在平面直角坐标系中,正比例函数与反比例函数的图象交于A,B两点,点A的横坐标为2,AC⊥x轴于点C,连接BC.(1)求反比例函数的表达式;(2)若点P是反比例函数图象上的一点,且满足△OPC的面积是△ABC面积的一半,请直接写出点P的坐标.20. (3分) (2016九上·朝阳期末) 《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.《九章算术》中记载:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,间径几何?”(如图①)阅读完这段文字后,小智画出了一个圆柱截面示意图(如图②),其中BO⊥CD于点A,求间径就是要求⊙O的直径.再次阅读后,发现AB=________寸,CD=________寸(一尺等于十寸),通过运用有关知识即可解决这个问题.请你补全题目条件,并帮助小智求出⊙O的直径.________21. (5分) (2016九上·朝阳期末) 如图,在一次户外研学活动中,老师带领学生去测一条东西流向的河流的宽度(把河两岸看做平行线,河宽即两岸之间的垂线段的长度).某同学在河南岸A处观测到河对岸水边有一棵树P,测得P在A北偏东60°方向上,沿河岸向东前行20米到达B处,测得P在B北偏东45°方向上.求河宽(结果保留一位小数.,).22. (10分) (2016九上·朝阳期末) 如图,已知△ABC是等边三角形,以AB为直径作⊙O,交BC边于点D,交AC边于点F,作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若△ABC的边长为4,求EF的长度.23. (10分) (2016九上·朝阳期末) 如图①,在Rt△ABC中,∠C=90°.将△ABC绕点C逆时针旋转得到△A’B’C,旋转角为,且0°< <180°.在旋转过程中,点B’可以恰好落在AB的中点处,如图②.(1)求∠A的度数;(2)当点C到AA’的距离等于AC的一半时,求的度数.24. (9分) (2016九上·朝阳期末) 有这样一个问题:探究函数的图象与性质.小慧根据学习函数的经验,对函数的图象与性质进行了探究.下面是小慧的探究过程,请补充完成:(1)函数的自变量x的取值范围是________;(2)列出y与x的几组对应值.请直接写出m的值,m=________;x…-3-2011.52.5m467…y…2.42.5346-2011.51.6…(3)请在平面直角坐标系,描出以上表中各对对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出该函数的两条性质:①________;②________.25. (15分) (2016九上·朝阳期末) 我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆.例如线段的最小覆盖圆就是以线段为直径的圆.(1)请分别作出图①中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)三角形的最小覆盖圆有何规律?请直接写出你所得到的结论(不要求证明);(3)某城市有四个小区(其位置如图②所示),现拟建一个手机信号基站,为了使这四个小区居民的手机都能有信号,且使基站所需发射功率最小(距离越小,所需功率越小),此基站应建在何处?请写出你的结论并说明研究思路.26. (15分) (2016九上·朝阳期末) 如图①,在平面直角坐标系中,直径为的⊙A经过坐标系原点O (0,0),与x轴交于点B,与y轴交于点C(0,).(1)求点B的坐标;(2)如图②,过点B作⊙A的切线交直线OA于点P,求点P的坐标;(3)过点P作⊙A的另一条切线PE,请直接写出切点E的坐标.27. (14分) (2016九上·朝阳期末) 在数学活动课上,老师提出了一个问题,希望同学们进行探究.在平面直角坐标系中,若一次函数的图象与x轴交于点A,与y轴交于点B,与反比例函数的图象交于C、D两点,则AD和BC有怎样的数量关系?同学们通过合作讨论,逐渐完成了对问题的探究.(1)小勇说:我们可以从特殊入手,取进行研究(如图①),此时我发现AD=BC.小攀说:在图①中,分别从点C、D两点向两条坐标轴作垂线,根据所学知识可以知道有两个图形的面积是相等的,并能求出确定的值,而且在图②中,此时,这一结论仍然成立,即________ 的面积=________ 的面积,此面积的值为________ .小高说:我还发现,在图①或图②中连接某两个已知点,得到的线段与AD和BC都相等,这条线段是________ .请完成以上填空;(2)请结合以上三位同学的讨论,对图②所示的情况下,证明AD=BC;小峰突然提出一个问题:通过刚才的证明,我们可以知道当直线与双曲线的两个交点都在第一象限时,总是成立的,但我发现当k的取值不同时,这两个交点有可能在不同象限,结论还成立吗?(3)请你结合小峰提出的问题,在图③中画出示意图,并判断结论是否成立.若成立,请写出证明过程;若不成立,请说明理由.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共13题;共113分)15-1、16-1、17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、24-4、25-1、25-2、25-3、26-1、26-2、26-3、27-1、27-2、27-3、。
广东省佛山市九年级上学期期末数学试卷

广东省佛山市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共18分)1. (2分) (2016七上·蕲春期中) 下列各数中互为相反数的是()A . ﹣25与(﹣5)2B . 7与|﹣7|C . (﹣2)2与4D . 3与2. (2分)下列说法正确的是()A . 两个全等的三角形合在一起是轴对称图形B . 两个轴对称的三角形一定是全等的C . 线段不是轴对称图形D . 三角形的一条高线就是它的对称轴3. (2分)(2019·南浔模拟) 如图,已知在平面直角坐标系xOy中,抛物线y= 与y轴交于点A,顶点为B,直线l:y=- x+b经过点A,与抛物线的对称轴交于点C,点P是对称轴上的一个动点,若AP+ PC 的值最小,则点P的坐标为()A . (3,1)B . (3,)C . (3,)D . (3,)4. (2分)下列运算正确的是()A . a2•a2=a4B . (a﹣b)2=a2﹣b2C . 2+=2D . (﹣a3)2=﹣a65. (2分)如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A . rB .C .D . 3r6. (2分) (2019七下·常熟期中) 下列长度的三条线段能组成三角形的是()A . 5cm,6cm,11cmB . 1cm,3cm,5cmC . 2cm,3cm,6cmD . 3cm,4cm,5cm7. (2分) (2017八下·南通期末) 若点A(1,y1)、B(2,y2)在反比例函数y=的图像上,则y1、y2的大小关系为()A . y1>y2;B . y1<y2 ;C . y1=y2;D . 不能确定8. (2分) (2020九上·温州期末) 如图,在5×6的方格纸中,画有格点△EFG,下列选项中的格点,与E,G两点构成的三角形中和△EFG相似的是()A . 点AB . 点BC . 点CD . 点D9. (2分) (2017九上·点军期中) 在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A .B .C .D .二、填空题 (共6题;共6分)10. (1分)化简:=________ .11. (1分) (2017七上·马山期中) 2017中国﹣东盟山地马拉松赛(马山站)赛道全长42000米,将数据42000用科学记数法表示为________.12. (1分) (2019八上·台安月考) 把多项式分解因式的结果是________.13. (1分)已知直角三角形的两条直角边的长恰好是方程2x2-8x+7=0的两个根,则这个直角三角形的斜边长是________14. (1分) (2016七上·湖州期中) 任何一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q).如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q(p≤q)是n的最佳分解,并规定F(n)= .例如:18可以分解成1×18,2×9,3×6,这时就有F(18)= = .结合以上信息,给出下列关于F(n)的说法:①F(2)= ;②F(24)= ;③F(27)= ;④若n是一个整数的平方,则F(n)=1.其中正确的说法有________.(只填序号)15. (1分)在平面直角坐标系中,将点A向左平移1个单位长度,再向下平移4个单位长度得点B,点B的坐标是(2,﹣2),则A点的坐标是________三、解答题 (共10题;共108分)16. (10分) (2020九下·宝应模拟)(1)计算:|﹣ |+(﹣1)2019+2sin30°+()0(2)解方程:17. (5分)(2018·珠海模拟) 先化简,再求值:(﹣)÷ ,其中x= .18. (5分) (2018八上·浏阳期中) 如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,求线段DF 的长度.19. (10分) (2018九下·游仙模拟) 如图,矩形ABCD的顶点A在坐标原点,顶点C在y轴上,OB=2 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省佛山市九年级上学期期末数学试题
姓名:________ 班级:________ 成绩:________
一、单选题 (共12题;共24分)
1. (2分) (2019九下·江阴期中) 下面四个图形分别是节能、节水、绿色食品和低碳标志,是轴对称图形的是()
A .
B .
C .
D .
2. (2分) (2016九上·夏津期中) 下列方程中,是关于x的一元二次方程的为()
A . 2x2=0
B . 4x2=3y
C . x2+ =﹣1
D . x2=(x﹣1)(x﹣2)
3. (2分) (2015九上·平邑期末) 抛物线y=2(x﹣3)2+1的顶点坐标是()
A . (3,1)
B . (3,﹣1)
C . (﹣3,1)
D . (﹣3,﹣1)
4. (2分)(2019·河南) 一元二次方程的根的情况是()
A . 有两个不相等的实数根
B . 有两个相等的实数根
C . 只有一个实数根
D . 没有实数根
5. (2分) (2018九上·金华期中) 小东是一名职业足球队员,根据以往比赛数据统计,小东进球率为8%,他明天将参加一场比赛,下面几种说法正确的是()
A . 小东明天每射球8次必进球1次
B . 小东明天的进球率为8%
C . 小东明天肯定进球
D . 小东明天有可能进球
6. (2分) (2016九上·利津期中) 如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=12,CD=5,则⊙O的直径的长是()
A . 5
B . 12
C . 13
D . 20
7. (2分)袋中装有大小一样的白球和黑球各3个,从中任取2个球,则两个均为黑球的概率是()
A .
B .
C .
D .
8. (2分)如图,若将△ABC绕点C顺时针旋转90°后得到△A'B'C',则A点的对应点A'的坐标是
()
A . (3,0)
B . ( 2,2 )
C . (2,1)
D . (-3,-2)
9. (2分) (2017九上·桂林期中) 已知函数的图象过点(1,-2),则该函数的图象必在()
A . 第二、三象限
B . 第二、四象限
C . 第一、三象限
D . 第三、四象限
10. (2分)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()
A . 2010
B . 2011
C . 2012
D . 2013
11. (2分)若,则以a、b为边长的等腰三角形的周长为()
A . 6
B . 7
C . 8
D . 7或8
12. (2分)(2019·广西模拟) 如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()
A . 2 015
B . 3 019.5
C . 3 018
D . 3 024
二、填空题 (共6题;共6分)
13. (1分)如果抛物线y=(2+k)x2﹣k的开口向下,那么k的取值范围是________ .
14. (1分)(2017·眉山) 已知反比例函数y= ,当x<﹣1时,y的取值范围为________.
15. (1分) 2016年2月上旬福州地区空气质量指数(AQI)如下表所示,空气质量指数不大于100表示空气质量优良,
2016年2月上旬福州地区空气质量指数(AQI)
日期12345678910
ug/m326344341344878 1 155945
如果小王该月上旬来福州度假三天那么他在福州度假期间空气质量都是优良的概率是________ .
16. (1分)(2019·鱼峰模拟) 如图,B、C、D依次为一直线上4个点,BC=3,△BCE为等边三角形,⊙O过
A、D、E三点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为________.
17. (1分) (2019九上·江油月考) 已知关于x的方程有两个相同的实数根,则a的值是________.
18. (1分)在Rt△ABC中,∠C=90,AC=4cm,BC=3cm,则以2.4cm为半径的⊙C与直线AB的关系是________.
三、解答题 (共8题;共56分)
19. (2分) (2019八上·泰州月考) 如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.
(1)在图(1)中以格点为顶点画一个面积为10的正方形;
(2)在图(2)中以格点为顶点画一个三角形,使三角形三边长分别为2,, .
20. (10分)如图,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E。
求证:
(1) DE是⊙O的切线;
(2)作DG⊥AB交⊙O于G,垂足为F,若∠A=30°,AB=8,求弦DG的长。
21. (10分)如今,优学派电子书包通过将信息技术与传统教学深度结合,让智能科技在现代教育中发挥了重要作用.某优学派公司筹集资金12.8万元,一次性购进两种新型电子书包访问智能终端:平板电脑和PC机共30台.根据市场需要,这些平板电脑、PC机可以全部销售,全部销售后利润不少于1.5万元,其中平板电脑、PC机的进价和售价见如下表格:
平板电脑PC机
进价(元/台)54003500
售价(元/台)61003900
设该公司计划购进平板电脑x台,平板电脑和PC机全部销售后该公司获得的利润为y元.
(1)试写出y与x的函数关系式;
(2)该公司有哪几种进货方案可供选择?请写出具体方案;
(3)选择哪种进货方案,该公司获利最大?最大利润是多少元?
22. (2分)(2017·抚州模拟) 如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).
(1)求反比例函数的解析式和点B的坐标;
(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?
23. (10分)(2016·凉山) 为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,以便国家精准扶贫政策有效落实.统计发现班上贫困家庭学生人数分别有2名、3名、4名、5名、6名,共五种情况.并将其制成了如下两幅不完整的统计图:
(1)求该校一共有多少个班?并将条形图补充完整;
(2)某爱心人士决定从2名贫困家庭学生的这些班级中,任选两名进行帮扶,请用列表法或树状图的方法,求出被选中的两名学生来自同一班级的概率.
24. (5分)在平面直角坐标系中,O为原点,点A(1,0),点B(0,),把△ABO绕点O顺时针旋转,得A′B′O,记旋转角为α.
(Ⅰ)如图①,当α=30°时,求点B′的坐标;
(Ⅱ)设直线AA′与直线BB′相交于点M.
①如图②,当α=90°时,求点M的坐标;
②点C(﹣1,0),求线段CM长度的最小值.(直接写出结果即可)
25. (15分) (2019九上·鼓楼期中) 如图,已知平行四边形ABCD,∠ABC=120°,点E为线段BC上的动点,连接AE,将线段AE绕点A逆时针旋转60°得到线段AF,点E的对应点是点F,连接EF.
(1)当点E与点B重合时,在图1中将图补充完整,并求出∠CEF的度数;
(2)如图2,求证:点F在∠ABC的平分线上.
26. (2分) (2020八下·泰兴期末) 如图,在平面直角坐标系中,直线l与反比例函数y= (x 0)的图象交于点A(a,6-a),点B(b,6-b),其中a b,与坐标轴的交点分别为C,D,AE⊥x轴,垂足为E.
(1)求a+b的值;
(2)求直线l的函数表达式;
(3)若AD=OD,求k的值;
(4)若P为x轴上一点,BP OA,若a,b均为整数,求点P的坐标.
参考答案一、单选题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共6题;共6分)
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共8题;共56分)
19-1、19-2、
20-1、
20-2、21-1、
21-2、21-3、
22-1、
22-2、
23-1、
23-2、
25-1、
25-2、26-1、
26-2、26-3、
26-4、。