初一数学五大类方程应用题归类含答案

合集下载

初一数学方程应用题(有详细解答)

初一数学方程应用题(有详细解答)

初一数学方程(组)的应用练习1、用如课本图4-10中的长方形和正方形纸板作侧面和底面,做成如课本图4-11的竖式和横式两种无盖纸盒.现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?解:由上图可知,做第一种无盖纸盒需要4块长方形,1个正方形;做第二种纸盒需要3个长方形,2个正方形;可以设做第一种纸盒x 个,第二种纸盒y 个,则有方程组①左右两边同时乘以4,可得4x+8y=4000,上下相减,可得5y=2000,y=400,则x=200解得:x=200,y=4002.某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?解:设安排生产甲、乙两种零件分别x 、y 天,则解得:x=16,y=13又因为x ,y 为整数,所以x=17,y=133、某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套? 解:设每天分别安排x ,y 名工人生产螺栓,螺母解得:x=34,y=85解:设成本价分别为x ,y 元解:设制作两种工艺品分别为.甲说:设七年级、八年级人数分别为方案三:设粗加工、精加工分别为解:A 村运往C 地x 吨,B 村运往C 地y 吨16、某文化用品商店计划同时购进一批A 、B 两种型号的计算器,若购进A 型计算器10只和B 型计算器8只,共需要资金880元;若购进A 型计算器2只和B 型计算器5只,共需要资金380元.(1) 求A 、B 两种型号的计算器每只进价各是多少元?(2) 该经销商计划购进这两种型号的计算器,根据市场行情,销售一只A 型计算器可获利10元,销售一只B 型计算器可获利15元.该经销商希望销售完这两种型号的计算器,所获利润为60元.则该经销商有哪几种进货方案?解:设A 、B 两种计算器的进价分别为x ,y 元(1)解得x=40,y=60(2)设进A 、B 计算器分别为z 、w 件,则 10z+15w=60,显然z 、w 必须为整数,因此 z=0,w=4;z=1,w 为非整数 z=2,w 为非整数 z=3,w=2z=4,w 为非整数 z=5,w 为非整数 z=6,w=0,所有有三种方案其实本题还可以进一步分析,由于15在60以内的整数倍只能是0、15、30、45、60,因此就要求(60-10z )/15必须为15、30、45或60,显然60-10z 的结果只可能为60、50、40、30、20、10、0,而只有60、30、0满足条件,在这三种情况下z 分别为0、3、6,w 则分别为4、2、0。

初一列方程解应用题练习及答案

初一列方程解应用题练习及答案

应用题练习一、填空题(每小题3分,共18分)1.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑8米,乙每秒钟跑6米.(1)当两人同时同地背向而行时,经过__________秒钟两人首次相遇;(2)两人同时同地同向而行时,经过__________秒钟两人首次相遇.2.为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树__________棵.3.用一根绳子围成一个正方形,又用这根绳子围成一个圆,已知圆的半径比正方形的边长少2(π-2)米,请问这根绳子的长度是__________米.4.某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为每枝多少元,若设标价为每枝x元,则可列方程为__________,解之得x=__________.5.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是__________.6.一种药品现在售价56.10元,比原来降低了15%,问原售价为__________元.二、选择题(每小题3分,共24分)7.李斌在日历的某列上圈出相邻的三个数,算出它们的和,其中肯定不对的是A.20B.33 C.45 D.548.一家三口准备参加旅行团外出旅行,甲旅行社告知“大人买全票,儿童按半价优惠”,乙旅行社告知“家庭旅行可按团体计价,即每人均按全票的8折优惠”,若这两家旅行社每人的原价相同,那么A.甲比乙更优惠B.乙比甲更优惠C.甲与乙同等优惠D.哪家更优惠要看原价9.飞机逆风时速度为x千米/小时,风速为y千米/小时,则飞机顺风时速度为A.(x+y)千米/小时B.(x-y)千米/小时C.(x+2y)千米/小时D.(2x+y)千米/小时10.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是A.a米B.(a+60)米C.60a米D.米11.一项工程甲独做10天完成,乙的工作效率是甲的2倍,两人合做了m天未完成,剩下的工作量由乙完成,还需的天数为A.1-(+ )m B.5-mC.m D.以上都不对12.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为A.x-1=5(1.5x) B.3x+1=50(1.5x)C.3x-1= (1.5x) D.180x+1=150(1.5x)13.某商品价格a元,降价10%后又降价10%,销售额猛增,商店决定再提价20%,提价后这种产品价格为A.a元B.1.08a元C.0.972a元D.0.96a元14.《个人所得税条例》规定,公民工资薪水每月不超过800元者不必纳税,超过800元的部分按超过金额分段纳税,详细税率如下图,某人12月份纳税80元,则该人月薪为全月应纳税金额税率(%)不超过500元 5超过500元到2000元 10超过2000元至5000元 15…………A.1900元B.1200元C.1600元D.1050元三、简答题(共58分)15.(13分)用一根长40 cm的铁丝围成一个平面图形,(1)若围成一个正方形,则边长为__________,面积为__________,此时长、宽之差为__________.(2)若围成一个长方形,长为12 cm,则宽为______,面积为______,此时长、宽之差为____.(3)若围成一个长方形,宽为5 cm,则长为______,面积为______,此时长、宽之差为______.(4)若围成一个圆,则圆的半径为________,面积为______(π取3.14,结果保留一位小数).(5)猜想:①在周长不变时,如果围成的图形是长方形,那么当长宽之差越来越小时,长方形的面积越来越______(填“大”或“小”),②在周长不变时,所围成的各种平面图形中,______的面积最大.16.(9分)某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场?17.(9分)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出去的吗?”小王说:“我假期到舅舅家去住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的?”试试看,列出方程,解决小赵与小王的问题.18.(9分)一批树苗按下列方法依次由各班领取:第一班取100棵和余下的,第二班取200棵和余下的,第三班取300棵和余下的,……最后树苗全部被取完,且各班的树苗数都相等,求树苗总数和班级数.19.(9分)李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.20.(9分)初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.参考答案一、1.(1)25(2)2002.9603.8π4.80%x=5+3105.366.66二、7.A8.B9.C10.B11.B12.D13.C14.C三、15.(1)101000(2)8964(3)157510(4)6.4128.6(5)大圆四、16.设胜了x场,可列方程:2x+(8-x)=13,解之得x=517.小赵是9号出去的,小王是7月15号回家的(提示:可设七天的中间一天日期数是x,则其余六天分别为x-3,x-2,x-1,x+1,x+2,x+3,由题意列方程,易求得中间天数,对小王的情形,由于七天的日期数之和是7的倍数,因为84是7的倍数,所以月份数也是7的倍数,可知月份数是7,且在8号至14号在舅舅家.故于7月15号回家.18.树苗共8100棵,有9个班级(提示:本题的设元列方程有多种方法,可以设树苗总数x 棵,由第一、第二两个班级的树苗数相等可列方程:100+ (x-100)=200+ [x-200-100-•(x-100)],也可设有x个班级,则最后一个班级取树苗100x棵,倒数第二个班级先取100(x-1)棵,又取“余下的”也是最后一个班级的树苗数的,由最后两班的树苗相等,可得方程:100(x-1)+ x=100x若注意到倒数第二个班级先取的100(x-1)棵比100x棵少100棵,即得=100,还可以设每班级取树苗x棵,得=100.19.购买单价1.80元的笔记本24本,单价2.60元的笔记本12本.如果按李红原来报的价格,那么设购买单价1.80元的笔记本x本,列方程可得:1.8x+2.6•(36-x)=100-27.60,解之得x=2.60不符合实际问题的意义,所以没有可能找回27.60元.。

七年级数学一元一次方程应用题归类汇集(含答案)

七年级数学一元一次方程应用题归类汇集(含答案)

七年级数学一元一次方程应用题归类聚集(含答案)一元一次方程应用题归类聚集一、列方程解应用题的一般步骤〔解题思路〕〔1〕审—审题:认真审题,弄清题意,找出能够表示此题含义的相等关系〔找出等量关系〕.〔2〕设—设出未知数:根据提问,巧设未知数.〔3〕列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.〔4〕解——解方程:解所列的方程,求出未知数的值.〔5〕答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.〔注意带上单位〕二、一般行程问题〔相遇与追击问题〕1.行程问题中的三个根本量及其关系:路程=速度时间时间=路程速度速度=路程时间〔1〕相遇问题:快行距+慢行距=原距〔2〕追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,那么列方程为。

解:等量关系步行时间-乘公交车的时间=3.6小时列出方程是:xx 3.6 840 2、某人从家里骑自行车到学校。

假设每小时行15千米,可比预定时间早到15分钟;假设每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系⑴速度15千米行的总路程=速度9千米行的总路程⑵速度15千米行的时间+15分钟=速度9千米行的时间-15分钟提醒:速度时,设时间列路程等式的方程,设路程列时间等式的方程。

方法一:设预定时间为x小/时,那么列出方程是:15〔x-0.25〕=9〔x+0.25〕方法二:设从家里到学校有x千米,那么列出方程是:x15x15 15609603、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。

初一七年级数学上册列方程解应用题练习题(附答案)

初一七年级数学上册列方程解应用题练习题(附答案)

初一七年级数学上册列方程解应用题练习题(附答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初一数学上学期列方程解应用题练习题班级:__学号:__姓名:______得分:__列方程解应用题(每题10分)1.甲、乙两汽车,甲从A 地去B 地,乙从B 地去A 地,同时相向而行,1.5小时后两车相遇.相遇后,甲车还需要2小时到达B 地,乙车还需要89小时到达A 地.若A 、B 两地相距210千米,试求甲乙两车的速度.2.先读懂古诗,然后回答诗中问题.巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧.3.牛奶和鸡蛋所含各种主要成分的百分比如下表.又知每1g 蛋白质、脂肪、碳水化合物产生和热量分别为16.8J 、37.8J 、16.8J .当牛奶和鸡蛋各取几克时,使它们质量之比为3:2,且产生1260J 的热量?4.某学校社会实践小分队走访100户家庭,发现一般洗衣水的浓度以0.2%-0.5%为合适,即100kg洗衣水里含200-500g的洗衣粉比较合适,因为这时表面活性最大,去污效果最好.现有一个洗衣缸可容纳15kg洗衣水(包括衣服),已知缸中的已有衣服重4kg,所需洗衣水的浓度为0.4%,已放了两匙洗衣粉(1匙洗衣粉约为0.02kg)问还需加多少kg洗衣粉,添多少kg水比较合适?5.“利海”通讯器材市场,计划用60000元从厂家购进若干部新型手机,以满足市场需求.已知该厂家生产三种不一同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买?(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号的手机购买数量不少于6部且不多于8部,请你求出每种型号手机的购买数量.6.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别是:甲种电视机每台1500元,乙种电视机每台2100元,丙种电视机每台2500元.(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案,(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售进获利最多,你会选择哪种进货方案?(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案.7.防汛指挥部决定冒雨开水泵排水,假设每小时雨水增加量相同,每台水泵排水量也相同.若开一台水泵10小时可排完积水,开两台水泵3小时排完积水,问开三台水泵多少小时可排完积水?8.某人沿公路匀速前进,每隔4min就遇到迎面开来的一辆公共汽车,每隔6min就有一辆公共汽车从背后超过他.假定汽车速度不变,而且迎面开来相邻两车的距离和从背后开来相邻两车的距离都是1200m,求某人前进的速度和公共汽车的速度,汽车每隔几分钟开出一辆?9.某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元.为了减少环境污染,市场推出一种叫“CNG ” 改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的203,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的52.问: (1)公司共改装了多少辆出租车改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少(2)若公司一次性全部出租车改装,多少天后就可以从节省的燃料费中收回成本?10.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元.当地一家农工商公司收购这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果进行精加工,每天可加工6吨,但两种加工方式不能赔不是进行.受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研究了三种加工方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能多地进行精加工,来不及加工的蔬菜在市场上全部销售;方案三:将部分蔬菜进行粗加工,其余蔬菜进行精加工,并恰好在15天完成. 你认为哪种方案获利最多为什么参考答案:1. 解:设甲车的速度为x 千米/时,乙车的速度为y 千米/时,由题意得x yy x 892= 得x y 34=210)(5.1=+y x210)34(5.1=+x x8060343460=⨯===x y x答:甲车的速度为60千米/时,乙车的速度为80千米/时.2. 解:设寺内有x 名僧人,由题意得62436443==+x xx答:寺内有624名僧人.3. 解:设取牛奶3x 克,取鸡蛋2x 克,由题意得12060221806033601260)2%8.13%9.4(8.16)2%7.103%8.3(8.37)2%2.133%5.3(8.16=⨯==⨯=≈=⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯x x x x x x x x x答:约取牛奶180g ,鸡蛋120g .4. 解:设还需加洗衣粉xkg,由题意得996.0%4.0202.0415004.0154%4.0202.0%4.0=-⨯--==+⨯+x x x答:还需加0.004kg 的洗衣粉,添加0.996kg 的水.5. 解:(1)分甲乙组合;乙丙组合;甲丙组合三种情况.方案一:甲乙组合:设买甲种手机x 部,则买乙种手机(40-x )部,由题意得10403060000)40(6001800=-==-+x x x x方案二:乙丙组合:设买乙种手机y 部,则买丙种手机(40-y )部,由题意得)(2060000)40(1200600舍去不合题意,y y y -==-+方案三:甲丙组合:设买甲种手机z 部,则买丙种手机(40-z )部,由题意得20402060000)40(12001800=-==-+z z z z综上所述,可以买甲种手机30部,乙种手机10部或买甲种手机和丙种手机各20部.(2)分乙种手机买6部、7部、8部三种情况买乙种手机6部:设买甲种手机x 部,则买丙种手机(40-6-x )部,由题意得186402660000)640(120060061800=--==--+⨯+x x x x买乙种手机7部:设买甲种手机x 部,则买丙种手机(40-7-x )部,由题意得167402760000)740(120060071800=--==--+⨯+x x x x买乙种手机8部:设买甲种手机x 部,则买丙种手机(40-8-x )部,由题意得148402860000)840(120060081800=--==--+⨯+x x x x综上所述,可以买甲乙丙三种型号的手机的数量分别为26部,6部,18部或27部,7部,16部或28部,8部,14部.6. 解:(1)分三种情况讨论:方案一:甲乙组合:设买甲种电视机x 台,则买乙种电视机(50-x )台,由题意得25502590000)50(21001500=-==-+x x x x方案二:乙丙组合:设买乙种电视机y 台,则买丙种电视机(50-y )台,由题意得)(5.8790000)50(25002100舍去不合题意,y y y ==-+方案三:甲丙组合:设买甲种电视机z 台,则买丙种电视机(50-z )台,由题意得15503590000)50(25001500=-==-+z z z z综上所述可以买甲乙两种电视机各25台或甲种电视机35台和丙种电视机15台.(2)方案一:)(100002525025150元=⨯+⨯方案三:)(90001525035150元=⨯+⨯为了获得最大利润应该买进甲乙两种型号的电视机各25台.(3)设买甲种型号的电视机x 台,甲种型号的电视机y 台,甲种型号的电视机(50-x -y)台,由题意得y x y x y x y x 523535041090000)50(250021001500-==+=--++易知y 为5的倍数,25,253,27,206,29,159,31,1012,33,515,35,0==================z x y z x y z x y z x y z x y z x y 因此有以上六种符合条件的方案.7. 解:设每小时雨水增加量为a ,每台水泵每小时的排水量为b ,则根据积水量相同得a b ab a b 473321010=-⨯=-设用三台水泵需要x 小时将积水排尽,由题意得173010471047310103=-⨯=-⨯-=-x a a ax ax ab ax bx 答:用三台水泵需要1730小时将积水排尽. 8. 解:设人前进的速度为am/min ,公共汽车的速度为xm/min ,由题意得 )(8.42501200503002501200)300(66120066300120044分===-===--=--==+t x a x x x a x xa x a答:人前进的速度为50m/min ,公共汽车的速度为250m/min ,公共汽车每隔4.8分发一班.9. 解:(1)出租车公司每次改装x 辆出租车,改装后每辆的燃料费为y元,由题意得,- 11 - %40804880)(4840220)2100(8052)100(802032)2100(80522)100(80203=-===-⨯=-⨯⨯⎪⎩⎪⎨⎧-⨯=-⨯=元用整体代换得y x x x x x xy x xy (2)设全部改装需要z 天收回成本,由题意得1251004000100)4880(=⨯=⨯-z z 答:公司共改装了40辆出租车,改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了40%.全部改装需要125天收回成本.10. 解:方案一:)(1400001000140元=⨯方案二:)(725000)615140(10007500615元=⨯-+⨯⨯方案三:设这批蔬菜中有 x 吨进行精加工,则有(140-x )吨进行粗加工,由题意得)(810000450080750060)(801406015161406元吨=⨯+⨯=-==-+x x x x答:由此可以看出,方案三获利最多.。

初一数学应用题归类(十到十七类)

初一数学应用题归类(十到十七类)

第十类分段计算的问题分段型一元一次方程的应用是指同一个未知量在不同的范围内的限制条件不同的一类应用题。

解决这类问题的时候,我们先要确定所给的数据所处的分段,然后要根据它的分段合理地解决。

应用最广泛的问题是,网费,电费、水费、打的费、上税费等。

例题1、某地上网有两种收费方式,用户可以任意选择其一:A.计时制:1.5元/时;B.包月制:45元/月;此外,每种上网方式都要加收通信费1元/时。

(1)某用户平均每月的上网时间为20小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(2)某用户平均每月的上网时间为30小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(3)某用户平均每月的上网时间为40小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(4)某用户发现他家10月份的上网费,按方案A与方案B的缴费一样;求他家10月份的上网时间?(5)根据用户上网时间的不同,请你为用户选择省钱收费方式(选择方案A或选择方案B)?练习:昆明市出租车计价规则如下:行程不超过3千米,收起步价8元;超过3公里的部分每公里加收1.8元。

(1)、若乘坐出租车2.5公里,则应缴元车费;(2)、若乘坐出租车8公里,则应缴元车费;(3)、小明从学校坐出租车到家,共付出租车车费为26 元,求学校到小明家的路程?例2、电话计费问题下表有两种移动电话计费方式:月使用费固定收,主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费(1)一个月内用移动电话主叫为t min(t是正整数).根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费.(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.例3:某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付出264元,请问张强第一次、第二次分别购买香蕉多少千克?例4. 依法纳税是每个公民的义务,《中华人民共和国个人所得税法》规定,有收入的公民依照下表中的规定的税率交纳个人所得税。

初一数学一元一次方程应用题的各种类型

初一数学一元一次方程应用题的各种类型

初一数学一元一次方程应用题的各种类型一、行程问题:包括相遇、追击、环形跑道和飞行、航行的速度问题其基本关系是:路程=时间×速度(一)相遇问题的等量关系:甲行距离+乙行距离=总路程(二)追击问题的等量关系:(1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离(2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间(三)环形跑道常用等量关系:(1)同时同向出发:快的走的路程-环行跑道周长=慢的走的路程(第一次相遇) (2)同时反向出发:甲走的路程+乙走的路程=环行周长(第一次相遇)(四)航行问题常用的等量关系:(1)顺水速度=静水速度+水流速度(2)逆水速度=静水速度-水流速度(3)顺速–逆速 = 2水速;顺速 + 逆速 = 2船速(4)顺水的路程 = 逆水的路程例题1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1)两列火车同时相向而行,多少时间可以相遇?2)两车同时反向而行,几小时后两车相距270公里?3)若两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?4)若两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇?5)两车同时同向而行(快车在后面),几小时后快车可以追上慢车?6)两车同时同向而行(慢车在后面),几小时后两车相距200公里?例题2、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?练习:1、小明每天早上要在7:20之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。

问:(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?2、一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,已知风速为每小时24公里,求两城之间的距离和无风时飞机的速度?3、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么过2分钟他们两人就要相遇。

七年级上学期:一元一次方程应用题归类汇总含答案解析

一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x千米,则列方程为。

2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

⑴行人的速度为每秒多少米?⑵这列火车的车长是多少米?6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。

汽车速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。

出发地到目的地的距离是60千米。

初一解方程考试题及答案

初一解方程考试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是方程x+2=5的解?A. x=3B. x=2C. x=4D. x=1答案:A2. 解方程2x-3=7,x的值是多少?A. 5B. 10C. 3D. 2答案:A3. 已知x-4=8,那么x的值是:A. 12B. 2C. 4D. 0答案:A4. 以下哪个方程的解是x=5?A. 5x+2=27B. 5x-2=27C. 5x+2=22D. 5x-2=22答案:A5. 解方程3x+6=18,x的值是多少?A. 4B. 5C. 6D. 3答案:A6. 如果方程2x-5=9的解是x=7,那么方程2x-5=19的解是:A. x=12B. x=14C. x=11D. x=10答案:A7. 以下哪个方程的解是x=-3?A. -3x+1=8B. -3x-1=8C. -3x+1=-8D. -3x-1=-8答案:A8. 解方程4x-2=14,x的值是多少?A. 4B. 3C. 2D. 1答案:A9. 已知方程x+7=14,那么x的值是:A. 7B. 14C. 21D. 0答案:A10. 以下哪个方程的解是x=-2?A. -2x-3=-7B. -2x+3=-7C. -2x-3=7D. -2x+3=7答案:A二、填空题(每题4分,共20分)11. 方程3x-5=10的解是x=______。

答案:512. 解方程5x+3=18,得到x=______。

答案:313. 如果方程x-6=9的解是x=15,那么方程x-6=12的解是x=______。

答案:914. 方程2x+4=16的解是x=______。

答案:615. 解方程4x-7=9,得到x=______。

答案:4三、解答题(每题5分,共50分)16. 解方程:7x-2=23。

答案:x=417. 已知方程3x+4=19,求x的值。

答案:x=518. 计算方程5x-6=14的解。

答案:x=419. 解方程:2x+3=11。

初一数学一元一次方程应用题的各种类型

初一数学一元一次方程应用题的各种类型一、行程问题:包括相遇、追击、环形跑道和飞行、航行的速度问题其基本关系是:路程=时间×速度(一)相遇问题的等量关系:甲行距离+乙行距离=总路程(二)追击问题的等量关系:(1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离(2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间(三)环形跑道常用等量关系:(1)同时同向出发:快的走的路程-环行跑道周长=慢的走的路程(第一次相遇) (2)同时反向出发:甲走的路程+乙走的路程=环行周长(第一次相遇)(四)航行问题常用的等量关系:(1)顺水速度=静水速度+水流速度(2)逆水速度=静水速度-水流速度(3)顺速–逆速 = 2水速;顺速 + 逆速 = 2船速(4)顺水的路程 = 逆水的路程例题1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1)两列火车同时相向而行,多少时间可以相遇?2)两车同时反向而行,几小时后两车相距270公里?3)若两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?4)若两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇?5)两车同时同向而行(快车在后面),几小时后快车可以追上慢车?6)两车同时同向而行(慢车在后面),几小时后两车相距200公里?例题2、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?练习:1、小明每天早上要在7:20之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。

问:(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?2、一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,已知风速为每小时24公里,求两城之间的距离和无风时飞机的速度?3、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么过2分钟他们两人就要相遇。

(完整版)初一数学列方程解应用题归类含答案

应用题提高练习训练一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h=πr2h②长方体的体积 V=长×宽×高=abc1.把一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm.求所围成的长方形的长和宽各是多少?2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成.现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14).5.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm、高是10cm的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.二、打折销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润×100%商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如打8折出售,即按原标价的80%出售.1.随着计算机技术的迅猛发展,电脑价格大幅度下降,某品牌电脑今年每台售出价格为4200元,比去年降低了30%,问去年该品牌电脑每台售出价为多少元?2、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少?3、某种商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文心教育七年上册数学应用题提高练习训练一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h=πr2h②长方体的体积 V=长×宽×高=abc1.把一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm.求所围成的长方形的长和宽各是多少?2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成.现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米.你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14).5.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm、高是10cm的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水还剩多高?若未能装满,求杯内水面离杯口的距离.二、打折销售问题×100%(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如打8折出售,即按原标价的80%出售.1.随着计算机技术的迅猛发展,电脑价格大幅度下降,某品牌电脑今年每台售出价格为4200元,比去年降低了30%,问去年该品牌电脑每台售出价为多少元?2、东方商场把进价为1890元的某商品按标价的8折出售,仍获利10%,则该商品的标价为多少?3、某种商品的进价是1000元,售价为1500元,由于销售情况不好,商店决定降价出售,但又要保证利润不低于5%,那么商店最多降多少元出售此商品。

4、某种商品的进价为800元,出售时标价为1200元,后来由于该项商品积压,商品准备打折出售,但要保持利润不低于5%,则至多可打多少折?5.某商店出售甲、乙两种成衣,其中甲种成衣卖价120元盈利20% ,乙种成衣卖价也是120元但亏损20% ,问该商店在本次销售中实际上是盈还是亏,盈或亏多少钱?6.某商店的冰箱先按原价提高40% ,然后在广告中写上大酬宾八折优惠,结果每台冰箱反而多赚了270元,试问冰箱的原标价是多少元?现售价是多少元?7.某种商品的进价为100元,若要使利润率达20% ,则该商品的销售价格应为多少元?此时每件商品可获利润多少元?三.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度1.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.2.从甲地到乙地,公共汽车原需行驶7时,开通高速公路后,车速平均每时增加了20千米,只需5时即可到达.求甲、乙两地的路程.3.一架飞机往返于两城之间,顺风需要5小时30分,逆风时需6小时,已知风速是每小时24千米,求两城之间的距离.4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路上去,只用了10分钟就追上了学生队伍,通讯员出发前,学生走了多少时间?5.一队学生从学校步行前往工厂参观,速度为5千米/时,当走了1时后,一名学生回校取东西,他以7.5千米/时的速度回学校,取了东西后(取东西的时间不算)立即以同样的速度追赶队伍,结果在离工厂2.5千米处追上队伍.求该校到工厂的路程.四、工程问题.工程问题:工作量=工作效率×工作时间 完成某项任务的各工作量的和=总工作量=11、一 件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙合做,需要几小时完成?2、一项工程A 、B 两人合作6天可以完成。

如果A 先做3天,B 再接着做7天,可以完成,B 单独完成这项工程需要多少天?3.要加工200个零件,甲先单独加工了5小时,然后又与乙一起加工了4小时,完成了任务已知甲每小时比乙多加工2个零件,求甲、乙两人每小时各加工多少个零件?4.一件工作,甲单独完成需7.5小时, 乙单独完成需5小时,先由甲、乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务?5.一项工程,甲,乙两队合作30天完成.如果甲队单独做24天后,乙队再加入合作,两队合作12天后,甲队因事离去,由乙队继续做了15天才完成.这项工程如果由甲队单独完成,需要多少天五、人员调配、配套问题1、某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?2、在甲处劳动的有27人,在乙处劳动的有19人.现在另调20人去支援,使在甲处的人数为在乙处的人数的2倍,应调往甲、乙两处各多少人?3.某车间有60名工人,生产某种由一个螺栓与两个螺母为一套的配套产品,每人每天平均生产螺栓14个或螺母20个,问应分配多少人生产螺母,多少人生产螺栓,才能使每天生产出的螺栓与螺母恰好配套?4.某车间有技工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配 一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?一、等积变形问题:1.设所围成的长方形宽是x cm ,则长是(x +2)cm ,由题意,得2[x +(x +2)]=4×4,x =3,围成的长方形的长是5cm ,宽是3cm .2.设大玻璃杯的高是x mm ,1012040π)10(100π22⨯⨯⨯=-⨯⨯x ,x =202(mm).3.设鸡场的宽为x 米.则按小王的设计,其长应为(x +5)米,得2x +x +5=35,x =10,x +5>14;按小赵的设计,其长应为(x +2)米,由题意,得2x +x +2=35,x =11,x +2=13<14.所以,小王的设计不符合实际条件,应按小赵的设计来建.鸡场的面积为11×13=143(2米).4.解:设圆柱形水桶的高为x 毫米,π ·(2002)2x=300×300×80 x ≈229.3 5.因为π5.1121852π2=⨯⎪⎭⎫ ⎝⎛=瓶V ,π90103π2=⨯⨯=杯V ,杯瓶>V V ,所以装不下;设瓶内剩余水面的高x cm ,则90π-π5.11252π2=⨯⎪⎭⎫ ⎝⎛⨯x ,x =3.6,这时瓶内剩余水面高为3.6cm . 二、销售问题1.解:设该品牌电脑每台售价x 元。

x (1-0.3)=4200 x=6000 答:去年台电脑价6000元。

2.解:设该商品的进价为x 元。

1890*0.8-x=10%x3.解:设最多降x 元出售此商品。

(1500-x )-1000=1000*5%4.解:设至多打x 折。

1200*0.1x -800=800*5%5.解:设甲种成衣的成本为x 元,乙种成衣的成本为y 元 x(1+20%)=120 x=100y(1-20%)=120 y=150 ∵ x+y=250 实际的销售价为120×2=240(元)240-250=-10 ∴在这次销售中亏了10元钱.6.解:设原标价为x 元,则现售价为(x+270)元 x (1+40%)×80%-x=270x=2250 x+270=2520 答:7.解:设售价为x 元。

x-100=20%*100 x=120 120-100=20元答:商品售价为120元,每件商品可获利20元。

三.行程问题1.解:设第一铁桥的长为x 米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为600x 分. 过完第二铁桥所需的时间为250600x -分. 600x +560=250600x - 得x=100 答:第一铁桥长100米,第二铁桥长150米.2.设公共汽车原车速为x 千米/时,7x =5(20+x ),x =50,7x =350(千米).3. 3168千米4. 18分5.设学校离工厂x 千米,5.755.255.25+-=--x x ,x =27.5(千米). 工程问题1.解:设甲乙合作x 小时完成。

2.解:设B 的工作效率为x 。

则A 的工作效率为x -61。

3(x -61)+7x=1 x=81 答:B 单独完成这项工作需要8天。

3.设乙每小时加工x 个零件4x+9(x+2)=200 x=14 x+2=164. 设完成任务共需x 小时155.71=+x x=313 5.设甲要X 天 那么甲每天能做1/x. 甲加乙一天能做1/30 所以乙一天能做1/30-1/x24/x+12/30+15*(1/30-1/x)=1 x=90人员调配、配套问题1.解:设分配 x人生产螺钉,则生产螺母的有(22-x)人。

提示:螺母数量=2倍螺钉数量2000(22-x)=2*1200x2.解:设调往甲处x人,则调往乙处(27-x)人。

甲=2倍乙27+x=2[19+(27-x)]3.解:设应分配x人生产螺母14×(60-x)×2=20x x=35 60-x=254.解:设安排x人生产甲部件,则生产乙部件的有(85-x)人。

提示:3倍甲部件数量=2倍乙部件数量3*16*x=2*10*(85-x)。

相关文档
最新文档