数字信号处理实验

合集下载

数字信号处理实验报告 3

数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。

二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。

2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。

实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。

由此讨论原时域信号不失真地由频域抽样恢复的条件。

实验三:由X32(k)恢复X(z)和X(e jw)。

四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理实验

数字信号处理实验

数字信号处理实验实验一信号、系统及系统响应1、实验目的认真复习采样理论、离散信号与系统、线性卷积、序列的z 变换及性质等有关内容;掌握离散时间序列的产生与基本运算,理解离散时间系统的时域特性与差分方程的求解方法,掌握离散信号的绘图方法;熟悉序列的z 变换及性质,理解理想采样前后信号频谱的变化。

2、实验内容a. 产生长度为500 的在[0,1]之间均匀分布的随机序列,产生长度为500 的均值为0 单位方差的高斯分布序列。

b. 线性时不变系统单位脉冲响应为h(n)=(0.9)nu(n),当系统输入为x(n)=R10(n)时,求系统的零状态响应,并绘制波形图。

c. 描述系统的差分方程为:y(n)-y(n-1)+0.9y(n-2)=x(n),其中x(n)为激励,y(n)为响应。

计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位脉冲响应h(n);计算并绘制n=20,30,40,50,60,70,80,90,100 时的系统单位阶跃响应s(n);由h(n)表征的这个系统是稳定系统吗?d. 序列x(n)=(0.8)nu(n),求DTFT[x(n)],并画出它幅度、相位,实部、虚部的波形图。

观察它是否具有周期性?e. 线性时不变系统的差分方程为y(n)=0.7y(n-1)+x(n),求系统的频率响应H(ejω),如果系统输入为x(n)=cos(0.05πn)u(n),求系统的稳态响应并绘图。

f. 设连续时间信号x(t)=e-1000|t|,计算并绘制它的傅立叶变换;如果用采样频率为每秒5000 样本对x(t)进行采样得到x1(n),计算并绘制X1(ejω),用x1(n)重建连续信号x(t),并对结果进行讨论;如果用采样频率为每秒1000 样本对x(t)进行采样得到x2(n),计算并绘制X2(ejω),用x2(n)重建连续信号x(t),并对结果进行讨论。

加深对采样定理的理解。

g. 设X1(z)=z+2+3z-1,X2(z)=2z2+4z+3+5z-1,用卷积方法计算X1(z)X2(z)。

数字信号处理实验(民航无线电监测关键技术研究)

数字信号处理实验(民航无线电监测关键技术研究)

《数字信号处理》实验报告实验名称数字信号处理实验(民航无线电监测关键技术研究)实验时间一、实验目的:通过实验,理解和掌握民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术,培养学生对数字信号处理技术的兴趣,并提高学生基于数字信号处理技术的工程应用能力。

二、实验环境:Matlab三、实验原理、内容与分析(包括实验内容、MATLAB程序、实验结果与分析)实验总体框图如上图所示,主要实现民航无线电监测关键技术中调制解调、FIR 数字滤波器、多采样率数字信号处理、FFT、语音数字信号处理、静噪等技术。

1.有限长单位脉冲(FIR)滤波器的设计FIR 数字滤波器是一种非递归系统,其冲激响应h(n)是有限长序列,其差分方程表达式为:系统传递函数可表达为:N-1 为FIR 滤波器的阶数。

在数字信号处理应用中往往需要设计线性相位的滤波器,FIR 滤波器在保证幅度特性满足技术要求的同时,很容易做到严格的线性相位特性。

为了使滤波器满足线性相位条件,要求其单位脉冲响应h(n)为实序列,且满足偶对称或奇对称条件,即h(n)=h(N-1-n)或h(n)=-h(N-1-n)。

这样,当N 为偶数时,偶对称线性相位FIR 滤波器的差分方程表达式为:由上可见FIR 滤波器不断地对输入样本x(n)延时后,再做乘法累加算法,将滤波器结果y(n)输出,因此,FIR 实际上是一种乘法累加运算。

而对于线性相位FIR 而言,利用线性相位FIR 滤波器系数的对称特性,可以采用结构精简的FIR 结构将乘法器数目减少一半。

2.AM 调制解调AM 调制解调过程如下:3.多采样率数字信号处理一般认为,在满足采样定理的前提下,首先将以采样率F1 采集的数字信号进行D/A 转换, 变成模拟信号,再按采样率F2 进行A/D 变换,从而实现从F1 到F2 的采样率转换。

但这样较麻烦,且易使信号受到损伤,所以实际上改变采样率是在数字域实现的。

数字信号处理实验报告_五个实验

数字信号处理实验报告_五个实验

实验一 信号、系统及系统响应一、 实验目的1、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;2、熟悉时域离散系统的时域特性;3、利用卷积方法观察分析系统的时域特性;4、掌握序列傅立叶变换的计算机实现方法,利用序列的傅立叶变换对连续信号、离散信号及系统响应进行频域分析。

二、 实验原理及方法采样是连续信号数字处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生变化以及信号信息不丢失的条件,而且可以加深对傅立叶变换、Z 变换和序列傅立叶变换之间关系式的理解。

对一个连续信号)(t x a 进行理想采样的过程可用下式表示:)()()(^t p t t xx aa=其中)(^t x a 为)(t x a 的理想采样,p(t)为周期脉冲,即∑∞-∞=-=m nT t t p )()(δ)(^t x a的傅立叶变换为)]([1)(^s m a m j X T j a XΩ-Ω=Ω∑∞-∞=上式表明^)(Ωj Xa为)(Ωj Xa的周期延拓。

其延拓周期为采样角频率(T /2π=Ω)。

只有满足采样定理时,才不会发生频率混叠失真。

在实验时可以用序列的傅立叶变换来计算^)(Ωj X a 。

公式如下:Tw jw ae X j X Ω==Ω|)()(^离散信号和系统在时域均可用序列来表示。

为了在实验中观察分析各种序列的频域特性,通常对)(jw e X 在[0,2π]上进行M 点采样来观察分析。

对长度为N 的有限长序列x(n),有:n jw N n jw k ke m x eX--=∑=)()(1其中,k Mk πω2=,k=0,1,……M-1 时域离散线性非移变系统的输入/输出关系为 ∑∞-∞=-==m m n h m x n h n x n y )()()(*)()(上述卷积运算也可在频域实现)()()(ωωωj j j e H e X eY =三、 实验程序s=yesinput(Please Select The Step Of Experiment:\n 一.(1时域采样序列分析 s=str2num(s); close all;Xb=impseq(0,0,1); Ha=stepseq(1,1,10);Hb=impseq(0,0,3)+2.5*impseq(1,0,3)+2.2*impseq(2,0,3)+impseq(3,0,3); i=0;while(s);%时域采样序列分析 if(s==1) l=1; k=0;while(1)if(k==0)A=yesinput('please input the Amplitude:\n',...444.128,[100,1000]); a=yesinput('please input the Attenuation Coefficient:\n',...222.144,[100,600]); w=yesinput('please input the Angle Frequence(rad/s):\n',...222.144,[100,600]); end k=k+1;fs=yesinput('please input the sample frequence:\n',...1000,[100,1200]); Xa=FF(A,a,w,fs); i=i+1;string+['fs=',num2str(fs)]; figure(i)DFT(Xa,50,string); 1=yesinput 1=str2num(1); end%系统和响应分析else if(s==2)kk=str2num(kk);while(kk)if(kk==1)m=conv(Xb,Hb);N=5;i=i+1;figure(i)string=('hb(n)');Hs=DFT(Hb,4,string);i=i+1;figure(i)string('xb(n)');DFT(Xb,2,string);string=('y(n)=xb(n)*hb(n)');else if (kk==2)m=conv(Ha,Ha);N=19;string=('y(n)=ha(n)*(ha(n)');else if (kk==3)Xc=stepseq(1,1,5);m=conv(Xc,Ha);N=14;string=('y(n)=xc(n)*ha(n)');endendendi=i+1;figure(i)DFT(m,N,string);kk=yesinputkk=str2num(kk);end卷积定理的验证else if(s==3)A=1;a=0.5;w=2,0734;fs=1;Xal=FF(A,a,w,fs);i=i+1;figure(i)string=('The xal(n)(A=1,a=0.4,T=1)'); [Xa,w]DFT(Xal,50,string);i=i+1;figure(i)string =('hb(n)');Hs=DFT(Hb,4,string);Ys=Xs.*Hs;y=conv(Xal,Hb);N=53;i=i+1;figure(i)string=('y(n)=xa(n)*hb(n)');[yy,w]=DFT(y,N,string);i=i+1;figure(i)subplot(2,2,1)plot(w/pi,abs(yy));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title(FT[x(n)*h(n)]');subplot(2,2,3)plot(w/pi,abs(Ys));axis([-2 2 0 2]);xlabel('w/pi');ylabel('|Ys(jw)|');title('FT[xs(n)].FT[h(n)]');endendend子函数:离散傅立叶变换及X(n),FT[x(n)]的绘图函数function[c,l]=DFT(x,N,str)n=0:N-1;k=-200:200;w=(pi/100)*k;l=w;c=x*Xc=stepseq(1,1,5);子函数:产生信号function c=FF(A,a,w,fs)n=o:50-1;c=A*exp((-a)*n/fs).*sin(w*n/fs).*stepseq(0,0,49); 子函数:产生脉冲信号function [x,n]=impseq(n0,n1,n2)n=[n1:n2];x=[(n-n0)==0];子函数:产生矩形框信号function [x,n]=stepseq(n0,n1,n2) n=[n1:n2];x=[(n-n0>=0)];四、 实验内容及步骤1、认真复习采样理论,离散信号与系统,线性卷积,序列的傅立叶变换及性质等有关内容,阅读本实验原理与方法。

数字信号处理实验报告_完整版

数字信号处理实验报告_完整版

实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。

2.应用DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。

2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。

由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。

如果没有更多的数据,可以通过补零来增加数据长度。

3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。

对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。

数字信号处理实验报告

数字信号处理实验报告

一、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握离散时间信号的基本运算和变换方法。

3. 熟悉数字滤波器的设计和实现。

4. 培养实验操作能力和数据分析能力。

二、实验原理数字信号处理(Digital Signal Processing,DSP)是利用计算机对信号进行采样、量化、处理和分析的一种技术。

本实验主要涉及以下内容:1. 离散时间信号:离散时间信号是指时间上离散的信号,通常用序列表示。

2. 离散时间系统的时域分析:分析离散时间系统的时域特性,如稳定性、因果性、线性等。

3. 离散时间信号的变换:包括离散时间傅里叶变换(DTFT)、离散傅里叶变换(DFT)和快速傅里叶变换(FFT)等。

4. 数字滤波器:设计、实现和分析数字滤波器,如低通、高通、带通、带阻滤波器等。

三、实验内容1. 离散时间信号的时域运算(1)实验目的:掌握离散时间信号的时域运算方法。

(2)实验步骤:a. 使用MATLAB生成两个离散时间信号;b. 进行时域运算,如加、减、乘、除等;c. 绘制运算结果的时域波形图。

2. 离散时间信号的变换(1)实验目的:掌握离散时间信号的变换方法。

(2)实验步骤:a. 使用MATLAB生成一个离散时间信号;b. 进行DTFT、DFT和FFT变换;c. 绘制变换结果的频域波形图。

3. 数字滤波器的设计和实现(1)实验目的:掌握数字滤波器的设计和实现方法。

(2)实验步骤:a. 设计一个低通滤波器,如巴特沃斯滤波器、切比雪夫滤波器等;b. 使用MATLAB实现滤波器;c. 使用MATLAB对滤波器进行时域和频域分析。

4. 数字滤波器的应用(1)实验目的:掌握数字滤波器的应用。

(2)实验步骤:a. 采集一段语音信号;b. 使用数字滤波器对语音信号进行降噪处理;c. 比较降噪前后的语音信号,分析滤波器的效果。

四、实验结果与分析1. 离散时间信号的时域运算实验结果显示,通过MATLAB可以方便地进行离散时间信号的时域运算,并绘制出运算结果的时域波形图。

数字信号处理实验要点提示

数字信号处理实验要点提示

实验报告思考题要点提示数字信号处理实验一:信号、系统及系统响应1、简述线性卷积结果y (n)的非零区间与x (n )、h (n )非零区间的关系?激励x (n )延时时输出如何变化?由线性移不变系统特性可知,当激励x (n )延时n 0时,输出y (n )也延时n 0。

2、 简述系统函数零极点分布与系统幅频特性间的对应关系。

(1) 位于原点处的零、极点对幅频特性没有影响,只影响相频特性。

(2) 极点位置主要影响幅频特性峰值的位置及尖锐程度,极点越靠近单位圆,所对应的峰值越尖锐。

(3) 零点位置主要影响幅频特性谷值的位置及形状,零点越靠近单位圆,谷值越小。

3、 y (n )=x (n )*h (n ),当输入x (n )有一时移时y (n )与)e (Y j ω有无变化,并说明为什么?由线性移不变系统特性可知,当激励x (n )延时n 0时,输出y (n )也延时n 0。

所以当输入x (n )有一时移时,y(n )也有同样的时移。

)()]([)()]([00ωωωj j e Y e n n y DTFT DTFT e Y n y DTFT n j -=-=的时移特性可知,由设,即时域位移,频域相移,所以幅频特性)e(Y j ω无变化。

数字信号处理实验二:信号的谱分析1、 描述随着DFT 变换点数N 的增加,X (k )的幅度谱的变化并解释原因。

随着DFT 变换点数N 的增加,X (k )的幅度谱序列间隔越来越密,其包络逐渐逼近x (n )的幅度谱)(ωj e X 。

这是因为M 点有限长序列x (n )的N 点DFT 是对有限长序列x (n )的频谱)(ωj e X 在频域0~2π区间内的N 点等间隔抽样。

即: k Nj e X n x DFT k X πωω2)()]([)(=== 因此变换点数越多,抽样间隔越小。

2、 用DFT 对连续非周期信号进行谱分析,试分析(1)采样点数足够多(即数据截断长度足够长)的情况下,采样频率对谱分析的影响;(2)采样频率足够高(即无明显的频域混叠现象)时,采样点数N (相应地时窗截断长度NT s )对谱分析的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理实验实验一 自适应滤波器一、实验目的1、掌握功率谱估计方法2、会用matlab 对功率谱进行仿真 二、实验原理功率谱估计方法有很多种,一般分成两大类,一类是经典谱估计;另一类是现代谱估计。

经典谱估计可以分成两种,一种是BT 法,另一种是周期法;BT 法是先估计自相关函数,然后将相关函数进行傅里叶变换得到功率谱函数。

相应公式如下所示:||1*01ˆ()()()(11)ˆˆ()(12)N m xx n jwn BTxx m rm x n x n m N P rm e --=∞-=-∞=+-=-∑∑周期图法是采用功率谱的另一种定义,但与BT 法是等价的,相应的功率谱估计如下所示:211ˆ()()01(13)N jw jwnxx n P e x n en N N--==≤≤--∑其计算框图如下所示:观测数据x(n)FFT取模的平方1/N)(jw xx e ∧图1.1周期图法计算用功率谱框图由于观测数据有限,所以周期图法估计分辨率低,估计误差大。

针对经典谱估计的缺点,一般有三种改进方法:平均周期图法、窗函数法和修正的周期图平均法。

三、实验要求信号是正弦波加正态零均值白噪声,信噪比为10dB,信号频率为2kHZ,取样频率为100kHZ。

四、实验程序与实验结果(1)用周期图法进行谱估计A、实验程序:%用周期法进行谱估计clear all;N1=128;%数据长度N2=256;N3=512;N4=1024;f=2;%正弦波频率,单位为kHZfs=100;%抽样频率,单位为kHZn1=0:N1-1;n2=0:N2-1;n3=0:N3-1;n4=0:N4-1;a=sqrt(20);%由信噪比为10dB计算正弦信号的幅度wn1=randn(1,N1);xn1=a*sin(2*pi*f*n1./fs)+wn1; Pxx1=10*log10(abs(fft(xn1).^2)/N1);%周期法求功率谱f1=((0:length(Pxx1)-1))/length(Pxx1);wn2=randn(1,N2);xn2=a*sin(2*pi*f*n2./fs)+wn2; Pxx2=10*log10(abs(fft(xn2).^2)/N2);f2=((0:length(Pxx2)-1))/length(Pxx2);wn3=randn(1,N3);xn3=a*sin(2*pi*f*n3./fs)+wn3; Pxx3=10*log10(abs(fft(xn3).^2)/N3);f3=((0:length(Pxx3)-1))/length(Pxx3);wn4=randn(1,N4);xn4=a*sin(2*pi*f*n4./fs)+wn4; Pxx4=10*log10(abs(fft(xn4).^2)/N4);f4=((0:length(Pxx4)-1))/length(Pxx4);subplot(2,2,1);plot(f1,Pxx1);xlabel('频率');ylabel('功率(dB)'); title('功率谱Pxx,N=128');subplot(2,2,2);plot(f2,Pxx2);xlabel('频率');ylabel('功率(dB)'); title('功率谱Pxx,N=256');subplot(2,2,3);plot(f3,Pxx3);xlabel('频率');ylabel('功率(dB)'); title('功率谱Pxx,N=512');subplot(2,2,4);plot(f4,Pxx4);xlabel('频率');ylabel('功率(dB)'); title('功率谱Pxx,N=1024');B、实验仿真结果:(2)采用汉明窗,分段长度L=32,用修正的周期图求平均法进行谱估计A:实验程序:clear all;N=512;%数据长度Ns=32;%分段长度f1=2;%正弦波频率,单位为kHZfs=100;%抽样频率,单位为kHZn=0:N-1;a=sqrt(20);%由信噪比为10dB计算正弦信号的幅度wn=randn(1,N);xn=a*sin(2*pi*f1*n./fs)+wn;w=hamming(32)';%汉明窗Pxx1=abs(fft(w.*xn(1:32),Ns).^2)/norm(w)^2;Pxx2=abs(fft(w.*xn(33:64),Ns).^2)/norm(w)^2;Pxx3=abs(fft(w.*xn(65:96),Ns).^2)/norm(w)^2;Pxx4=abs(fft(w.*xn(97:128),Ns).^2)/norm(w)^2;Pxx5=abs(fft(w.*xn(129:160),Ns).^2)/norm(w)^2;Pxx6=abs(fft(w.*xn(161:192),Ns).^2)/norm(w)^2;Pxx7=abs(fft(w.*xn(193:224),Ns).^2)/norm(w)^2;Pxx8=abs(fft(w.*xn(225:256),Ns).^2)/norm(w)^2;Pxx9=abs(fft(w.*xn(257:288),Ns).^2)/norm(w)^2;Pxx10=abs(fft(w.*xn(289:320),Ns).^2)/norm(w)^2;Pxx11=abs(fft(w.*xn(321:352),Ns).^2)/norm(w)^2;Pxx12=abs(fft(w.*xn(353:384),Ns).^2)/norm(w)^2;Pxx13=abs(fft(w.*xn(385:416),Ns).^2)/norm(w)^2;Pxx14=abs(fft(w.*xn(417:448),Ns).^2)/norm(w)^2;Pxx15=abs(fft(w.*xn(449:480),Ns).^2)/norm(w)^2;Pxx16=abs(fft(w.*xn(481:512),Ns).^2)/norm(w)^2;Pxx=10*log10((Pxx1+Pxx2+Pxx3+Pxx4+Pxx5+Pxx6+Pxx7+Pxx8+Px x9+Pxx10+Pxx11+Pxx12+Pxx13+Pxx14+Pxx15+Pxx16)/16);f=((0:length(Pxx)-1))/length(Pxx);plot(f,Pxx);xlabel('频率');ylabel('功率(dB)');title('加窗平均周期图法功率谱Pxx,N=512');grid on;B:实验仿真结果:五.参考文献:[1]丁玉美,阔永红,高新波.数字信号处理-时域离散随机信号处理[M].西安:西安电子科技大学出版社,2002.[2]万建伟,王玲.信号处理仿真技术[M].长沙:国防科技大学出版社,2008.实验二 卡尔曼滤波器的设计一.实验目的1.熟悉并掌握卡尔曼滤波、自适应滤波和谱估计的原理。

2.可以仿真符合要求的卡尔曼滤波器、自适应滤波器和各种谱估计方法。

3.掌握卡尔曼滤波器的递推公式和仿真方法。

4.熟悉matlab 的用法。

二.实验原理卡尔曼滤波是用状态空间法描述系统的,由状态方程和测量方程所组成。

卡尔曼滤波用前一个状态的估计值和最近一个观测数据来估计状态变量的当前值,并以状态变量的估计值的形式给出。

其状态方程和量测方程如下所示:1(11)(12)k k k k k k k kx A x w y C x v +=+-=+-其中,k 表示时间,输入信号k w 是一白噪声,输出信号的观测噪声k v 也是一个白噪声,输入信号到状态变量的支路增益等于1,即B=1;A 表示状态变量之间的增益矩阵,可随时间变化,k A 表示第k 次迭代的取值,C 表示状态变量与输出信号之间的增益矩阵,可随时间变化,其信号模型如图1.1所示(k 用1k -代替)。

+Z-1A k-1+C kW k-1X kX k-1v ky k图1.1 卡尔曼滤波器的信号模型卡尔曼滤波是采用递推的算法实现的,其基本思想是先不考虑输入信号k w 和观测噪声k v 的影响,得到状态变量和输出信号的估计值,再用输出信号的估计误差加权矫正状态变量的估计值,使状态变量估计误差的均方值最小。

其递推公式如下所示:0.020.021110.040.041ˆˆ(y x )(112)(1)(112)1(112)(I )(112)k k k k k k k kk k k k k x e x H e a H P P b P e P e c P H P d --------⎧=+--⎪''=+-⎪⎨'=+--⎪⎪'=--⎩ 假设初始条件11,,,,,,-∧-k k k k k k k P x y R Q C A 已知,其中]var[],[0000x P x E x ==∧,那么递推流程见图1.2所示。

-k P k式(1-3)kH 式(1-6)k x ∧kP图1.2 卡尔曼滤波递推流程图三.实验要求一连续平稳的随机信号x(t),自相关()x r eττ-=,信号x(t)为加性噪声所干扰,噪声是白噪声,测量值的离散值y(k)为已知。

Matlab仿真程序如下:%编卡尔曼滤波递推程序,估计信号x(t)的波形clear all;clc;Ak=exp(-0.02); %各系数由前面确定;Ck=1; Rk=0.1; p(1)=20; %各初值;Qk=1-exp(-0.04);p1(1)=Ak*p(1)*Ak'+Qk; %由p1代表p';x(1)=0; %设信号初值为0;H(1)=p1(1)*Ck'*inv(Ck*p1(1)*Ck'+Rk);zk=[-3.2,-0.8,-14,-16,-17,-18,-3.3,-2.4,-18,-0.3,-0.4,-0.8,-19,-2.0,-1.2,-11, -14,-0.9,0.8,10,0.2,0.5,-0.5,2.4,-0.5,0.5,-13,0.5,10,-12,0.5,-0.6,-15,-0.7,15 ,0.5,-0.7,-2.0,-19,-17,-11,-14] %zk为测量出来的离散值;N=length(zk); %要测量的点数;for k=2:Np1(k)=Ak*p(k-1)*Ak'+Qk; %未考虑噪声时的均方误差阵;H(k)=p1(k)*Ck'*inv(Ck*p1(k)*Ck'+Rk); %增益方程;I=eye(size(H(k))); %产生和H(k)维数相同的单位矩阵;p(k)=(I-H(k)*Ck)*p1(k); %滤波的均方误差阵;x(k)=Ak*x(k-1)+H(k)*(zk(k)-Ck*Ak*x(k-1)); %递推公式;end,x %显示信号x(k)的数据;m=1:N;n=m*0.02;plot(n,zk,'-r*',n,x,'-bo'); %便于比较zk和x(k)在同一窗口输出;xlabel('t/s','Fontsize',16);ylabel('z(t),x(t)','fontsize',16);title('卡尔曼滤波递推——x(t)的估计波形与z(t)波形','fontsize',16) legend('观测数据z(t)','信号估计值x(t)',2);grid;四.实验结果五.实验小结通过卡尔曼滤波估计信号与观测信号比较知,卡尔曼滤波输出的估计信号x与实际观测到的离散值)(t z还是存在一定的误差,卡尔曼滤波是从初始状态)(t就采用递推方法进行滤波,那么在初值迭代后的一段时间内可能会出现较大的误差,随着迭代进行,各参数逐渐趋于稳定,后面的估计值与观察值的误差就减少了。

相关文档
最新文档