专题一 第4讲 导数的简单应用

合集下载

(高等数学)第四章 导数的应用

(高等数学)第四章 导数的应用

第四章 导数的应用第一节 中值定理一.费马定理1.定义1.极值设函数()x f 在点0x 的某邻域()0U x 内对一切()0x U x ∈有()()0f x f x ≤或(()()0f x f x ≥),则称()x f 在点0x 处取得极大值(或极小值);并称0x 为()x f 的极大值点(或极小值点).注意:极大值、极小值在今后统称为极值;极大值点、极小值点在今后统称为极值点;2.定理1.极值的必要条件(费马定理)设()x f 在点0x 的某邻域()0U x 内有定义,且在0x 处可导,若()0f x 为极值,则必有:()00f x '=.证明:不妨设()0f x 为极大值。

按极大值的定义,则0x ∃的某个邻域,使对一切此邻域内的x 有()()0f x f x ≤--------------(1) 所以,()()()0000lim 0;x x f x f x f x x x --→-'=≥-()()()0000l i m 0;x x f x f x f x x x ++→-'=≤---------(2)又因为()0f x '存在,所以应有()()00f x f x -+''=---------(3) 故,由(2)式及(3)式,必有()00f x '=.1.注意:使()00f x '=的点0x 可能为()x f 的极大值点(或极小值点),也可能不是.比如:20,0.y x x == 二.中值定理1.定理2.罗尔中值定理:若值设函数()x f 满足:(1)()x f 在区间[]b a ,上连续; (2)()x f 在区间()b a ,内可导; (3)()()b f a f =.则,必至少存在一点()b a ,∈ξ,使()0f ξ'=注意:罗尔定理的几何意义是说,在每点处都有非垂直切线的一段曲线上,若两端点处的高度相同,则在曲线上至少存在一条水平切线.(作图说明) 证明:由闭区间上连续函数的性质,()x f 在[]b a ,上有最大值M 及最小值m. (1) 若M=m ,则()M x f ≡,[]b a x ,∈∀.所以,()()0,,.f x x a b '≡∀∈任取()b a ,∈ξ,均满足()0f ξ'=;(2) 若m M ≠,则M 和m 中至少有一个不等于()()b f a f =,因此则M 和m中至少有一个在区间内部某点()b a ,∈ξ处取到.不妨设()ξf 为()x f 的最大值,从而也是极大值。

导数专题书目录

导数专题书目录

导数专题书目录第一篇独孤九剑——导数基础专题1总诀式——导数的前世今生第一讲导数基本定义第二讲导数运算法则第三讲复合函数求导第四讲同构函数求导专题2破剑式——数形结合遇导数第一讲导数的几何意义第二讲在点的切线方程第三讲过点的切线方程专题3破刀式——基本性质与应用第一讲单调性问题第二讲极值与最值第三讲恒能分问题专题4破枪式——抽象函数的构造第一讲求导法则与抽象构造第二讲幂函数及其抽象构造第三讲指数函数与抽象构造第四讲对数函数与抽象构造第五讲三角函数与抽象构造第六讲平移与奇偶抽象构造专题5破鞭式——分类讨论的策略第一讲不含参的四类问题第二讲含参数的五类问题专题6破索式——三次函数的探究第一讲基本性质第二讲切线问题第三讲四段论界定第四讲三倍角界定专题7破掌式——指对的破解逻辑第一讲指数模型第二讲对数模型专题8破箭式——六大同构函数论第一讲六大同构函数第二讲外部函数同构第三讲极值底层逻辑专题9破气式——零点与交点问题第一讲零点相关定理第二讲曲线交点问题第三讲零点个数问题第二篇如来神掌——导数选填的奇思妙解专题1心中有佛——秒解抽象函数构造第一讲抽象函数的积分构造第二讲“网红解法”的利弊专题2佛光初现——妙解参数取值范围第一讲零点比大小问题妙解双参比值问题第二讲零点比大小妙解指对单参数的问题第三讲恰到好处的取点妙解双参系列问题专题3金顶佛灯——数轴破整数个数解第一讲对数的取点技巧第二讲指数的取点技巧专题4佛动山河——平口单峰函数探秘第一讲平口二次函数问题第二讲平口对勾函数问题第三讲平口三次函数问题第四讲平口函数万能招数第五讲构造平口单峰函数第六讲必要探路最值界定第七讲倍角定理最值界定专题5佛问伽蓝——拉格朗日插值妙用第一讲三大微分中值定理简述第二讲拉格朗日中值定理应用专题6迎佛西天——构造函数速比大小第一讲构造基本初等函数第二讲构造母函数比大小第三讲构造混阶型比大小专题7天佛降世——琴生不等式破选填第一讲函数的凹凸性第二讲凹凸性的应用专题8佛法无边——极限思想巧妙应用第一讲前世今生论第二讲洛必达法则专题9万佛朝宗——选填压轴同构压制第一讲母函数原理概述第二讲同等双参需同构第三讲同构引出的秒解第三篇无涯剑道——导数三板斧升级篇专题1问剑求生——同类同构第一讲双元同构篇第二讲指对同构篇第三讲朗博同构篇第四讲零点同构篇第五讲同构保值篇第六讲同构导中切专题2持剑逆道——分类同构第一讲分而治之型第二讲端点效应型第三讲志同道合型第四讲分道扬镳型第五讲柳暗花明型专题3迎剑归宗——切点同构第一讲切线问题的进阶处理第二讲公切线问题几何探秘第三讲基本函数的切线找点第四讲跨阶函数的切线找点第五讲双变量乘积处理策略第四篇逍遥功——泰勒与放缩专题1逍遥剑法——泰勒展开第一讲泰勒基本展开式第二讲泰勒与切线找点第三讲泰勒与极值界定第四讲无穷阶极值界定第五讲泰勒与切线界定专题2逍遥刀法——京沪专线第一讲指数型“0”线第二讲对数型“0”线第三讲三角型“0”线专题3逍遥拳法——京九专线第一讲指数型“1”线第二讲对数型“1”线第三讲“e”线放缩论“n”线放缩论第四讲指对混阶放缩论第五讲指对三角放缩论第六讲高阶借位放缩论第七讲充分必要放缩论第八讲数列放缩系统论第五篇武当神功——点睛之笔专题1梯云纵——极点极值第一讲极值点本质第二讲唯一极值点第三讲存在极值点第四讲莫有极值点专题2太和功——隐点代换第一讲直接应用第二讲整体代换第三讲反代消参第四讲降次留参第五讲矛盾区间专题3峰回掌——跨阶找点第一讲找点初步认识第二讲找点策略阐述第三讲高次函数找点第四讲指对函数找点第五讲三角函数找点专题4太极剑——跳阶找点第一讲指对混阶找点第二讲指数三角找点第三讲对数三角找点第四讲终结混阶找点专题5八卦阵——必要探路第一讲端点效应第二讲极点效应第三讲显点效应第四讲隐点效应第五讲内点效应第六讲外点效应第七讲拐点效应第八讲弧点效应第六篇六脉神剑——明元之家专题1少商剑——三三来迟第一讲飘带函数减元第二讲点差法第三讲韦达定理的应用专题2商阳剑——四曾相识第一讲极值点偏移第二讲构造法第三讲拐点偏移第四讲泰勒公式专题3中冲剑——不讲五德第一讲换元构造第二讲对数平均不等式第三讲指数平均不等式第四讲广义对均第五讲深度剖析专题4関冲剑——七晴六遇第一讲零点差模型第二讲极值模型第三讲混合模型专题5少泽剑——第一讲复数三角形式第二讲棣莫弗定理第三讲复数的应用专题6少冲剑——第一讲斜率成等差等比问题第一讲数据逻辑及相关定理第二讲破解逻辑及突破压轴。

第4讲 第2课时 利用导数解决不等式恒(能)成立问题

第4讲 第2课时 利用导数解决不等式恒(能)成立问题

求解不等式恒成立问题的方法 (1)构造函数分类讨论:遇到 f(x)≥g(x)型的不等式恒成立问题时,一般 采用作差法,构造“左减右”的函数 h(x)=f(x)-g(x)或“右减左”的函数 u(x)=g(x)-f(x),进而只需满足 h(x)min≥0 或 u(x)max≤0,将比较法的思想融 入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对 参数进行分类讨论. (2)分离函数法:分离函数法的主要思想是将不等式变形成一个一端是 参数 a,另一端是变量表达式 v(x)的不等式后,若 a≥v(x)在 x∈D 上恒成立, 则 a≥v(x)max;若 a≤v(x)在 x∈D 上恒成立,则 a≤v(x)min.
第四章 导数及其应用
第4讲 导数与函数的综合应用 第2课时 利用导数解决不等式恒(能)
成立问题
1
PART ONE
核心考向突破
考向一 恒成立问题
例 1 (2020·新高考卷Ⅰ节选)已知函数 f(x)=aex-1-ln x+ln a.若 f(x)≥1,求 a 的取值范围.
解 解法一:∵f(x)=aex-1-ln x+ln a, ∴f′(x)=aex-1-1x,且 a>0. 设 g(x)=f′(x),则 g′(x)=aex-1+x12>0, ∴g(x)在(0,+∞)上单调递增,即 f′(x)在(0,+∞)上单调递增,

(2)对于任意的 s,t∈[12,2],都有 f(s)≥g(t)成立,等价于在[12,2]上, 函数 f(x)min≥g(x)max.
由(1)可知在[12,2]上,g(x)的最大值为 g(2)=1. 在12,2 上,f(x)=ax+xln x≥1 恒成立等价于 a≥x-x2ln x 恒成立. 设 h(x)=x-x2ln x,则 h′(x)=1-2xln x-x, 令 φ(x)=1-2xln x-x,φ′(x)=-(2ln x+3),当 x∈[12,2]时,φ′(x)<0,

导数的应用教学课件ppt

导数的应用教学课件ppt
乘法法则
对于两个函数f(x)和g(x),其导数分别为f'(x)和g'(x),则两函数积的导数为(fg)'(x)=f'(x)g(x)+f(x)g'(x)。
幂法则
对于一个函数f(x),其导数为f'(x),则(x^n)'=nx^(n-1)。
导数计算的常见问题与解决方案
常见问题
在导数计算中,容易出现一些错误,如符号错误、运算错误 、化简错误等。
导数可以用来求函数的极值、单调区间、凹凸区间等
导数在其他领域中的应用
导数可以用来解决物理、经济、工程等领域中的一些问题,如物体运动时的加速 度、经济学中的边际效应、工程中的曲率等等
02
导数的计算
极限与导数
极限的定义
极限是函数在某一变化过程中, 某个变量的变化趋势,通常用符 号lim表示。
导数的定义
与其他学生或老师交流讨论,及时解决学习中遇 到的问题。
THANKS
导数的深入研究
1
深入理解导数的定义和计算方法,包括高阶导 数和复合函数的导数。
2
研究导数在函数性质、曲线形状、极值等方面 的应用,以及在实际问题中的应用。
3
探讨导数在数学中的地位和作用,以及与其他 数学分支的联系。
导数在未来的应用前景
分析导数在金融、经济、工程等领域 的应用前景,例如最优化问题、供应 链管理、计算机图形学等。
导数的应用教学课件ppt
xx年xx月xx日Biblioteka contents目录
• 导数的概念及背景 • 导数的计算 • 导数在函数性质研究中的应用 • 导数在几何中的应用 • 导数在实际问题中的应用 • 导数的进一步探讨与展望
01

例谈导数的几个简单的应用

例谈导数的几个简单的应用

例谈导数的几个简单的应用王耀辉高中阶段学习导数以后,常常把导数作为研究函数单调性、极大(小)值、最大(小)值和解决生活中优化问题等来运用.实际上,它还有其他方面更多的应用.本文就根据高中学过的一些内容,列举了导数的几个简单的应用,供读者学习时参考.1.利用导数的定义求极限 在一些教辅资料、高考题中,出现了一类特殊极限求值问题,最常见的是00型,感觉不好求.若能灵活运用导数的定义,问题便会迎刃而解.例1.求值:(1)0sin lim x x x →,(2)0ln(1)lim x x x→+. 解:(1)根据导数的定义,该式实际上为求函数()sin f x x =在点0x =处的导数. 所以00sin sin sin 0lim =lim x x x x x x→→-00(sin )|cos |cos 01x x x x =='====. (2)根据导数的定义,该式实际上为求函数()ln(1)f x x =+在点0x =处的导数. 所以000ln(1)1lim=[ln(1)]||11x x x x x x x ==→+'+==+. 例2.(2010年全国卷文科21题)设函数2()(1)x f x x e ax =--.若当0x ≥时()0f x ≥,求实数a 的取值范围.解:由已知得()(1)x f x x e ax =--≥0(x ≥0),即1x e ax --≥0(x ≥0), 当0x =时,a R ∈;当0x >时,分离参数得1x e a x -≤(0x >),令1()x e g x x-=(0x >),求导得21()x x xe e g x x-+'=(0x >),再令()1x x h x xe e =-+(0x >),则()0x h x xe '=>(0x >),∴()1x x h x xe e =-+在(0,)+∞上递增,∴()(0)0h x h >=,∴()0g x '>,∴1()x e g x x-=在(0,)+∞上递增.∴0()lim ()x g x g x →>,所以0lim ()x a g x →≤.因为00001lim ()=lim =lim 0x x x x x e e e g x xx →→→---00()||1x x x x e e =='===,所以1a ≤. 综上所述,实数a 的取值范围为1a ≤.2.利用函数极值点导数为零的性质,在三角函数中求值例3.已知()sin 2cos 2()f x a x x a R =+∈图像的一条对称轴方程为2x π=,则a 的值为( )A .12B C .3 D .2 解析:由于三角函数的对称轴与其曲线的交点为极值点,所以由()2cos 22sin 2f x a x x '=-,得()2cos 2sin =0266f a πππ'=-,故3a =. 例4.已知函数()cos f x x x =的图像向左平移ϕ(0)ϕ>个单位所得图像对应的函数为偶函数,则ϕ的最小值是( )A .6πB .3πC .23πD .56π解析:设函数()f x 图像向左平移ϕ(0)ϕ>个单位后的函数解析式为:()cos())g x x x ϕϕ=++,由于()g x 为偶函数,所以(0)0g '=.又()sin())g x x x ϕϕ'=-+-+,所以sin 0ϕϕ-=,tan ϕ=ϕ的最小值为23π.例5.已知2cos sin x x -=,求tan x 的值.解析:设()2cos sin f x x x =-,则曲线()2cos sin f x x x =-过点(,t .由于2cos sin )x x x x -=+cos cos sin )x x ϕϕ=+)x ϕ=+,其中cos ϕϕ==所以函数()2cos sin f x x x =-在点(,t 处取极小值,导数为零.即()2sin cos 0f t t t '=--=,所以1tan 2t =-,从而1tan 2x =-.3.导数在数列求和中的应用例6.已知数列{}n a 的通项为12n n a n -=⋅,求数列{}n a 前n 项的和n S .解析:令2x =,则11ni i i x -=⋅∑1()n i i x ='=∑12(1)1(1)=1(1)nn n x x n x n x x x +'⎡⎤--++⋅=⎢⎥--⎣⎦所以n S 121(1)22=(12)n n n n +-+⋅+⋅-1=1(1)22n nn n +-+⋅+⋅4.导数在二项式中的应用例7.证明:1231232n n n n n n C C C nC n -+++⋯+=⋅.证明:令012233(1)n n nn n n n n x C C x C x C x C x +=+++++…,对等式两边求导,得:1121321(1)23n n n n n n n n x C C x C x nC x --+=++++…, 令1x =,代入上式即得1123223n n n n n n n C C C nC -⋅=+++⋯+,即1231232n n n n n n C C C nC n -+++⋯+=⋅.5.导数在三角恒等变换公式中的应用在三角恒等变换公式中,公式多,不易记,应用导数可以将这些恒等式进行沟通.(1)两角和、差的三角函数公式cos cos cos sin sin αβαβαβ-=+(),①视α为变量,β为常量,对等式①两边求导,得sin()sin cos cos sin αβαβαβ--=-+即sin()sin cos cos sin αβαβαβ-=-,②反过来,视α为变量,β为常量,对等式②两边求导,得cos cos cos sin sin αβαβαβ-=+()故利用上述求导方法有:cos cos cos sin sin αβαβαβ±=()αα对求导对求导sin()sin cos cos sin αβαβαβ±=±(2)二倍角公式 22cos 2cos sin ααα=-αα对求导对求导sin 22sin cos ααα=(3)积化和差公式 1sin cos [sin()sin()]2αβαβαβ⋅=++- αα对求导对求导1cos cos [cos()cos()]2αβαβαβ⋅=++-, 1cos sin [sin()sin()]2αβαβαβ⋅=+-- αα对求导对求导1sin sin [cos()cos()]2αβαβαβ⋅=-+--. 当然,导数的应用不只这些,本文只是抛砖引玉,有兴趣的读者还可以继续探索.。

专题04导数法-高中物理解题方法精讲含解析.docx

专题04导数法-高中物理解题方法精讲含解析.docx

高中物理解题方法之导数法在物理解题中用导数法,首先要把物理问题化归为数学问题。

在分析物理状态和物理过程的基础上,找到合适的物理规律,即函数,再求函数的导数,从而求解极值问题或其他问题,然后再把数学问题回归到物理问题,明确其物理意义。

例1、两等量同种电荷在两点电荷连线的中垂线上电场的分布图1•两等量正点电荷的电场强度在y坐标轴上的点的合成以两点电荷的连线的中点为原点,以两点电荷的连线的中垂线为y轴,则各点的电场强度可表示为:E = J ) • cos& 二Zk(Q J • //2+员/2+/ 7^+7因为原点的电场强度£0=0,往上或往下的无穷远处的电场强度也为0,所以,从0点向上或向下都是先增大后减小,这是定性的分析。

那么,在哪儿达到最大呢,需要定量的计算。

方法用三角函数法求导数E = 2k( ° O J・cos& 屮把y = ——代入得 E = ^g・sin2&cos&。

厂+十tan 0 rz = sin20cos &,求导数z'= 2sin&cos2& — sin'& 二sin0 (2cos,O-sin,0),欲使z = 0,需sin 0 = 0(舍去)或2cos2& —sii?& = 0 即tan/9 = V2,此处,将其代入得£max 普•誉 方法2.用代数法求导数3nZj/=(/24-/P-3/(/2+/p ,令其分子为0,得y =空,代入得 24V3 kQ• II9 I 23 •图象用Excel 作图,得到关于等量同种电荷的电场在其屮垂线上的分布的图象,图象 的横轴y 表示各点到原点的距离(以两点电荷的连线的中点为原点),纵轴表示 中垂线上各点的电场强度。

E图2.两等量正点电荷的电场强度在y 坐标轴上的分布令2=,・(厂+,2)2,对z 求导数得maxy此图象也验证了以上所得的结果:图象中令心5,则当汴孚誓亠处电场强度最大。

第4讲 导数的应用---函数的最极值

第4讲 导数的应用---函数的最极值

第四讲最极值问题【复习指导】本讲复习时,应注重导数在研究函数极值与最值中的工具性作用,会将一些实际问题抽象为数学模型,从而用导数去解决.复习中要注意等价转化、分类讨论等数学思想的应用.基础梳理1.函数的极值⑴.判断f(x0)是极值的方法一般地,当函数y=f(x)在点x0处连续时,①.如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②.如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.⑵.求可导函数极值的步骤:①.求f′(x);②.求方程f′(x)=0的根;③.检查f′(x)在方程f′(x)=0的根左右值的符号.如果左正右负,那么y=f(x)在这个根处取得极大值;如果左负右正,那么y=f(x)在这个根处取得极小值,如果左右两侧符号一样,那么这个根不是极值点.2.函数的最值⑴.在闭区间[a,b]上连续的函数y=f(x)在[a,b]上必有最大值与最小值.⑵.若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.⑶.设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①.求f(x)在(a,b)内的极值;②.将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.3.利用导数解决生活中的优化问题的一般步骤⑴.分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);⑵.求函数的导数f′(x),解方程f′(x)=0;⑶.比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值;⑷.回归实际问题作答.两个注意⑴.注意实际问题中函数定义域的确定.⑵.在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定最大值还是最小值即可,不必再与端点的函数值比较. 三个防范⑴.求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.⑵.f ′(x 0)=0是y =f (x )在x =x 0取极值的既不充分也不必要条件.如①.y =|x |在x =0处取得极小值,但在x =0处不可导;②.f (x )=x 3,f ′(0)=0,但x =0不是f (x )=x 3的极值点.⑶.若y =f (x )可导,则f ′(x 0)=0是y =f (x )在x =x 0处取极值的必要条件.基础自测1.[12陕西]求函数f (x )=x e x 的极值为______________.2.函数f (x )=e -x +x 的最小值为_____ .【解】f ′(x )=1-e -x ,故当x ≥0时,f ′(x )≥0,而当x <0时,f ′(x )≤0,故当x =0时,f (x )的最小值为1.3.[11湖北理]已知函数f (x )=1-x +ln x ,x >0.求函数y =f (x )的最大值;4.[11福建文]若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于 .【解】f ′(x )=12x 2-2ax -2b ,由函数y =f (x )在x =1处有极值,可知函数y =f (x )在x =1处的导数值为零,12-2a -2b =0,故a +b =6,由题意知a ,b 都是正实数,故ab ≤(a +b 2)2=9,当且仅当a=b =3时取到等号.考点一 极值问题题型⑴.求已知函数的极值【例1】[08全国II 理]设函数f (x )=sin x2+cos x,求y =f (x )的极值.【解】f ′(x )=2cos x +1(2+cos x )2.当2k π-2π3<x <2k π+2π3(k ∈Z)时,cos x >-12,即f ′(x )>0;当2k π+2π3<x <2k π+4π3(k ∈Z)时,cos x <-12,即f ′(x )<0.故y =f (x )在每一个区间(2k π-2π3,2k π+2π3)(k ∈Z)上是增函数,y =f (x )在每一个区间(2k π+2π3,2k π+4π3)(k ∈Z)是减函数,故当x =2k π+2π3(k ∈Z)时,函数取得极大值33,当x =2k π+4π3(k ∈Z)时,函数取得极小值-33. 【练习1】设函数f (x )=e x (sin x -cos x ),若0≤x ≤2016π,则函数f (x )的各极大值之和为 . 【解】因f ′(x )=2e x sin x ,故x ∈(2k π+π,2k π+2π)(k ∈Z )时,f ′(x )<0,f (x )单调递减,x ∈(2k π+2π,2k π+3π)(k ∈Z )时,f ′(x )>0,f (x )单调递增,故当x =2k π+2π(k ∈Z )时,f (x )取极小值,其极小值为f (2k π+2π)=-e 2k π+2π(k ∈Z ),又0≤x ≤2016π,故f (x )的各极小值之和S =-e 2π-e 4π-…-e 2 016π=-e 2π(1-e 2 016π)1-e 2π.运用导数求可导函数y =f (x )的极值的步骤:⑴.先求函数的定义域,再求函数y =f (x )的导数f ′(x );⑵.求方程f ′(x )=0的根;⑶.检查f ′(x )在方程根的左右的值的符号,如果左正右负,那么y =f (x )在这个根处取得极大值,如果左负右正,那么y =f (x )在这个根处取得极小值.题型⑵.已知函数在某区间上有极值,求参数的取值范围【例2】函数f (x )=2ax -ln x 2在(0,1)上有极值,则a 的取值范围是 .【解】f ′(x )=2(a -1x ),函数f (x )=2ax -ln x 2在(0,1)上有极值,则f ′(x )=2(a -1x )在(0,1)上有解,故a 的取值范围是(1,+∞); 问题:无极值点如何?【练习2】⑴.若函数f (x )=x 3+x 2-ax -4在区间(-1,1)恰有一个极值点,则实数a 的取值范围为_____________.[1,5)⑵.已知函数f (x )=x 3-3ax 2+3x +1在区间(2,3)上至少有一个极值点,求a 的取值范围. 【解】f ′(x )=0在区间(2,3)上至少有一个根,且无偶次重根,故a =12x (x 2+1),由x ∈(2,3)知,a∈(54,53). 【例3】[13湖北文]已知函数f (x )=x (-ax +ln x )有两个极值点,则实数a 的取值范围是______. 【解】f ′(x )=-2ax +1+ln x ,易知,当a ≤0时,f ′(x )在(0,+∞)上单调递增,只有一个极值点,不合题意,故a >0,令f ′(x )=0得,a =12x (1+ln x ),令g (x )=12x (x 2+1),则g ′(x )=-12x 2ln x ,令g ′(x )=0得,x =1,在(0,1)上,g ′(x )>0,g (x )单调递增;在(1,+∞)上,g ′(x )<0,g (x )单调递减;故g (x )max =g (1)=1-2a ,由函数f (x )=x (-ax +ln x )有两个极值点知,1-2a >0,解得,a <12,故实数a 的取值范围是(0,12).变题:已知函数f (x )=x (-ax +ln x )在区间(0,2)有两个极值点,则实数a 的取值范围是______. 题型⑶.讨论极值【例4】[13福建理]已知函数f (x )=x -a ln x ,a ∈R .⑴.当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; ⑵.求函数y =f (x )的极值. 【解】函数f (x )的定义域为(0,+∞),f ′(x )=1-ax.⑴.当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x ,x >0,故f (1)=1,f ′(1)=-1,故y =f (x )在点A (1,f (1))处的切线方程为x +y -2=0; ⑵.由f ′(x )=1-ax,x >0知:①.当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;②.当a >0时,由f ′(x )=0,解得,x =a ;因x ∈(0,a )时,f ′(x )<0,x ∈(a ,+∞)时,f ′(x )>0,故y =f (x )在x a =处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上:当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值f (a )=a -a ln a ,无极大值.双基自测1.用[x ]表示不超过x 的最大整数.已知f (x )=x +[x ]的定义域为[-1,1),则函数f (x )的值域为 . 【解】根据[x ]的定义分类讨论.当x ∈[-1,0)时,y =x -1,-2≤y <-1;当x ∈[0,1)时,y =x ,0≤y <1;故函数f (x )的值域为[-2,-1)∪[0,1).2.已知函数f (x )=|2x -1|的定义域和值域都是[a ,b ],则a +b = .【解】由函数f (x )=|2x -1|的定义域和值域都是[a ,b ]知,0≤a <b ,则由f (x )=|2x -1|在(0,+∞)上单调递增,由21,21ab a b⎧−=⎪⎨−=⎪⎩得,a =0,b =1,故a +b =1.3.若函数f (x )=⎩⎪⎨⎪⎧2x ,x <0,-2-x ,x >0,则函数f [f (x )]的值域是_______________.【解】当x <0时,f (x )=2x ∈(0,1),故f [f (x )]=-2-f (x )∈(-1,-12);当x >0时,f (x )=-2-x ∈(-1,0),故f [f (x )]=2f (x )∈(12,1),从而原函数的值域为(-1,-12)∪(12,1).4.已知函数f (x )=⎩⎨⎧x +4,x <a ,x 2-2x ,x ≥a,若任意实数b ,总存在实数x 0,使得f (x 0)=b ,则实数a 的取值范围是 .【解】“任意实数b ,总存在实数x 0,使得f (x 0)=b ”等价于函数f (x )的值域为R .在平面直角坐标系xOy 中,分别作出函数y =x +4及y =x 2-2x 的图像,观察图像可知-5≤a ≤4.5.已知函数f (x )的自变量取值区间为A ,若其值域区间也为A ,则称区间A 为f (x )的保值区间.⑴.求函数f (x )=x 2形如[a ,+∞)的保值区间;⑵.若g (x )=x -ln(x +m )的保值区间是[2,+∞),求m 的取值.【解】⑴.若a <0,则a =f (0)=0,矛盾.若a ≥0,则a =f (a )=a 2,解得a =0或1,故f (x )的保值区间为[0,+∞)或[1,+∞).⑵.因g (x )=x -ln(x +m )的保值区间是[2,+∞),故m +2>0,即m >-2.令g ′(x )=1-1x +m>0得,x >1-m ,故g (x )在(1-m ,+∞)上为增函数,同理可得g (x )在(-m ,1-m )上为减函数.若2≤1-m ,即m ≤-1时,则g (1-m )=2得,m =-1满足题意.若m >-1时,则g (2)=2得,m =-1,矛盾.故满足条件的m 值为-1.考点二 值域与最值问题(一) .观察法求值域 注意结合函数的图像求解【例5】⑴.函数f (x )=1x 2+1的值域是 .⑵.函数y =(13)|x |的值域是______________.【练习5】设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g (x )+x +4,x <g (x )g (x )-x , x ≥g (x ), 则f (x )的值域是______.【解】f (x )=⎩⎪⎨⎪⎧x 2+x +2, x <-1或x >2,x 2-x -2, -1≤x ≤2.由f (x )的图象得:当x <-1或x >2时,f (x ) >f (-1)=2,当-1≤x ≤2时,f (12)≤f (x )≤f (2),即-94≤f (x )≤0,故f (x )值域为[-94,0)∪(2,+∞).(二) .流程图法求值域【例6】函数y =2-4x -x 2的值域是____________. 【解】【练习6】函数y =1-⎝⎛⎭⎫12x 的值域是____________.【解】由1-⎝⎛⎭⎫12x≥0,即⎝⎛⎭⎫12x ≤1,得2x ≥1,故x ≥0. (三) .单调性法求值域【例7】函数y =x -1-2x 的值域是____________. 【练习7】函数y =x +1-x -1的值域是____________.(四) .换元法求值域【例8】求函数y =-12x 2-x +12,x ∈[0,+∞)的值域.【练习8】⑴.求函数y =-12x 4-x 2+12的值域.⑵.求函数y =-12x -x +12的值域.⑶.求函数y =-12(1-2x )2-1-2x +12的值域.(五) .反解法求值域【例9】函数y =1+x 21-x 2的值域是____________.【练习9】函数2sin 2sin xy x+=−的值域是_____________.(六) .判别式法求值域【例10】函数y =1x 2+x +1的值域是_____________.【练习10】函数y =x 2-xx 2-x +1的值域是_____________. ㈦.导数法求已知函数在闭区间上的最值(值域)【例11】函数y =1-x +x ln x 的最小值是 .【解】y ′=ln x ,当x ∈(0,1)时,y ′<0,函数y =1-x +x ln x 在(0,1)上单调递减;当x ∈(1,+∞)时,y ′>0,函数y =1-x +x ln x 在(0,1)上单调递增,故函数y =1-x +x ln x 的极小值为0,因有唯一的极小值,故也是最小值,故函数y =1-x +x ln x 的最小值是0.【练习11】[13全国Ⅰ文改编]已知函数f (x )=-x 2-4x +e x (ax +b ),曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.⑴.求a ,b 的值;⑵.讨论y =f (x )的单调性,并求y =f (x )在[-2,1]上的最大值与最小值.【解】⑴.f ′(x )=-2x -4+e x (ax +a +b ).由已知得,f (0)=4,f ′(0)=4.故b =4,又a +b =8.从而a =4,b =4;⑵.由⑴知,f (x )=-x 2-4x +4e x (x +1),故f ′(x )=4(x +2)(e x -12).令f ′(x )=0得,x =-2或x =-ln2.从而当x ∈(-∞,-2)∪(-ln2,+∞)时,f ′(x )>0;当x ∈(-2,-ln2)时,f ′(x )<0,故y =f (x )在(-∞,-2),(-ln2,+∞)上单调递增,在(-2,-ln2)上单调递减.f (-2)=4(1-e -2),f (-ln2)=2-(ln2)2+2ln2,f (1)=8e -5>f (-2),故y =f (x )在[-2,1]上的最大值与最小值分别为f (1),f (-ln2).考点三 含参最值问题题型⑴.含参最值问题的讨论 【例12】已知函数f (x )=x |x -2|.⑴.写出f (x )的单调区间;⑵.设a >0,求f (x )在[0,a ]上的最大值.【解】⑴.22(1)1,2,()|2|(1)1,2x x f x x x x x ⎧−−≥⎪=−=⎨−−+<⎪⎩,故f (x )的单调递增区间是(-∞,1]和[2,+∞);单调递减区间是[1,2].⑵.①当0<a <1时,f (x )在[0,a ]上是增函数,此时f (x )在[0,a ]上的最大值是f (a )=a (2-a ); ②当1≤a ≤2时,f (x )在[0,1]上是增函数,在[1,a ]上是减函数,故此时f (x )在[0,a ]上的最大值是f (1)=1;③当2<a ≤1+2时,f (x )在[0,1]是增函数,在[1,2]上是减函数,在[2,a ]上是增函数,而f (a )≤f (1+2)=f (1),故此时f (x )在[0,a ]上的最大值是f (1)=1;④当a >1+2时,f (x )在[0,1]上是增函数,在[1,2]上是减函数,在[2,a ]上是增函数,而f (a ) >f (1+2)=f (1),故此时f (x )在[0,a ]上的最大值是f (a )=a (a -2).综上所述,max(2),01,()12,(2),2a a a f x a a a a −<<⎧⎪=≤≤⎨⎪−>⎩,11+1+. 【练习12】⑴.已知函数f (x )=x ln x ,设实数a >0,试求F (x )=1a f (x )在[a ,2a ]上的最大值.【解】F ′(x )=1a (1+ln x ),令F ′(x )=0得,x =1e ,故当x ∈(0,1e )时,F ′(x )<0,F (x )在(0,1e )上单调递减;当x ∈(1e ,+∞)时,F ′(x )>0,F (x )在(1e ,+∞)上单调递增;故F (x )在[a ,2a ]上的最大值为F (x )max=max{F (a ),F (2a )}.因F (a )-F (2a )=-ln4a ,故当0<a ≤14时,F (a )-F (2a )≥0,F (x )max =F (a )=ln a ,当a >14时,F (a )-F (2a )<0,故F (x )max =F (2a )=2ln2a .【小结】函数的最值取决于什么?单调性!!!因此讨论函数的最值,就是讨论函数的单调性!!!【例13】已知函数f (x )=-ax +ln x ,a ∈R .⑴.当a =2时,求函数y =f (x )的单调区间;⑵.当a >0时,求函数y =f (x )在[1,2]上最小值.【解】⑴.当a =2时,f (x )=-2x +ln x ,函数f (x )的定义域为(0,+∞),求导函数得,f ′(x )=-2+1x .由f ′(x )>0得,0<x <12;由f ′(x )<0得,x >12,故函数f (x )的单调递增区间为(0,12),单调减区间是(12,+∞);⑵.①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,故y =f (x )的最小值是f (2)=-2a +ln2;②当1a ≥2,即a ≤12时,函数f (x )在区间[1,2]上是增函数,故f (x )的最小值是f (1)=-a ;③当1<1a <2,即12<a <1时,函数f (x )在[1,1a ]上是增函数,在[1a ,2]上是减函数.又f (2)-f (1)=-a +ln2,故当12<a <ln2时,最小值是f (1)=-a ;当ln2≤a <1时,最小值为f (2)=-2a +ln2.综上可知,当0<a <ln2时,函数f (x )的最小值是-a ;当a ≥ln2时,函数f (x )的最小值是f (2)=-2a +ln2.【例14】设0<a ≤2,函数f (x )=x 2+a |1-ln x |,求函数f (x )在区间[1,+∞)上的最小值.【解】易知22ln ,(),()ln ,(1)x a a x x e f x x a a x x e ⎧−+≥⎪=⎨+−≤<⎪⎩,由0<a ≤2知,f (x )在(e ,+∞)上单调递增,故f (x )min=f (e)=e 2;而当x ∈[1,e)时,f (x )在[1,e)上单调递增,故当x =1时,f (x )取得最小值f (x )min =f (1)=1+a ,易知e 2>1+a ,故f (x )在区间[1,+∞)上的最小值为f (x )min =f (1)=1+a . 变题:去掉条件0<a ≤2?①当x ≥e 时,f (x )=x 2-a +a ln x ,则f ′(x )=2x +ax ,x ≥e ,因a >0,故f ′(x )>0恒成立.故f (x )在(e ,+∞)上是增函数.故当x =e 时,f (x )min =f (e)=e 2. ②.当1≤x <e 时,f (x )=x 2+a -a ln x ,则f ′(x )=2x (x +a2)(x -a2)(1≤x <e). (i).当a2≤1时,即0<a ≤2时,f ′(x )在(1,e)上为正数,故f (x )在区间(1,e)上为增函数.故当x =1时,f (x )min =f (1)=1+a ,且此时f (1)<f (e). (ii).当1<a2<e ,即2<a <2e 2时,f ′(x )在(1,a2)上为负数,在(a2,e)上为正数.故f (x )在区间(1,a2)上为减函数,在(a 2,e)上为增函数,故当x =a 2时,f (x )min =a 2(3-ln a 2),且此时f (a 2)<f (e). (iii)当a2≥e 时,即a ≥2e 2时,f ′(x )在(1,e)上为负数,故f (x )在区间(1,e)上为减函数,故当x =e 时,f (x )min =f (e)=e 2.。

导数的应用与求导法则知识点总结

导数的应用与求导法则知识点总结

导数的应用与求导法则知识点总结导数在数学和物理学中具有广泛的应用。

它是描述函数变化率的工具,可以用来解决许多实际问题。

在本文中,我们将讨论导数的应用以及一些常用的求导法则知识点。

一、导数的应用1. 切线与法线导数可以用来求解曲线上的切线和法线。

给定一个函数f(x),我们可以通过求解导数f'(x)来获得曲线上任意一点的切线斜率。

切线的斜率是导数的值。

与切线垂直的线被称为法线。

法线的斜率是切线斜率的负倒数。

2. 最值问题导数可以帮助我们找到函数的最值点。

在一个区间内,函数的最大值和最小值通常出现在导数为零或不存在的点。

因此,我们可以通过求解导数为零的方程来找到这些临界点,然后通过比较函数值来确定最值。

3. 凹凸性与拐点导数可以用来判断函数的凹凸性以及拐点的位置。

如果导数在某个区间内是递增的,那么函数在该区间内是凹的;如果导数是递减的,那么函数是凸的。

拐点发生在导数变化的方向改变的点。

4. 高阶导数导数的概念可以进一步推广到高阶导数。

高阶导数描述了函数变化的更高阶性质,比如曲率和弯曲程度。

通过求解导数的导数,我们可以计算出函数的高阶导数。

二、求导法则知识点1. 基本导数法则基本导数法则是求导的基础。

它包括了常数规则、幂函数规则、指数函数规则、对数函数规则和三角函数规则。

这些法则允许我们快速求解各种类型的函数导数。

2. 乘积法则乘积法则可以用来求解两个函数的乘积的导数。

假设有两个函数u(x)和v(x),它们的乘积为f(x) = u(x)v(x)。

那么,f'(x) = u'(x)v(x) +u(x)v'(x)。

3. 商积法则商积法则可以用来求解两个函数的商的导数。

假设有两个函数u(x)和v(x),它们的商为f(x) = u(x) / v(x)。

那么,f'(x) = [u'(x)v(x) - u(x)v'(x)] / v(x)^2。

4. 链式法则链式法则可以用来求解复合函数的导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4讲 导数的简单应用[考情分析] 1.导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.2.应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题.考点一 导数的几何意义与计算 核心提炼1.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x ).(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ).(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 2.导数的几何意义(1)函数在某点的导数即曲线在该点处的切线的斜率.(2)曲线在某点的切线与曲线过某点的切线不同.(3)切点既在切线上,又在曲线上.例1 (1)已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)-ln x ,则f ′(2)的值为( )A.74 B .-74 C.94 D .-94答案 B解析 ∵f (x )=x 2+3xf ′(2)-ln x ,∴f ′(x )=2x +3f ′(2)-1x, 令x =2,得f ′(2)=4+3f ′(2)-12, 解得f ′(2)=-74. (2)(2020·北京通州区模拟)直线l 经过点A (0,b ),且与直线y =x 平行,如果直线l 与曲线y =x 2相切,那么b 等于( )A .-14B .-12 C.14 D.12答案 A解析 直线l 经过点A (0,b ),且与直线y =x 平行,则直线l 的方程为y =x +b ,直线l 与曲线y =x 2相切,令y ′=2x =1,得x =12,则切点为⎝⎛⎭⎫12,14,代入直线l 的方程,解得b =-14. 易错提醒 求曲线的切线方程要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.跟踪演练1 (1)(2020·内蒙古自治区模拟)曲线y =(ax +2)e x 在点(0,2)处的切线方程为y =-2x +b ,则ab 等于( )A .-4B .-8C .4D .8答案 B解析 y ′=e x (ax +2+a ),故k =y ′|x =0=2+a =-2,解得a =-4,又切线过点(0,2),所以2=-2×0+b ,解得b =2,所以ab =-8.(2)直线2x -y +1=0与曲线y =a e x +x 相切,则a 等于( )A .eB .2eC .1D .2答案 C解析 设切点为(n ,a e n +n ),因为y ′=a e x +1,所以切线的斜率为a e n +1,切线方程为y -(a e n +n )=(a e n +1)(x -n ),即y =(a e n +1)x +a e n (1-n ),依题意切线方程为y =2x +1,故⎩⎪⎨⎪⎧a e n +1=2,a e n (1-n )=1,解得a =1,n =0. 考点二 利用导数研究函数的单调性核心提炼利用导数研究函数单调性的关键(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域.(2)单调区间的划分要注意对导数等于零的点的确认.(3)已知函数单调性求参数范围,要注意导数等于零的情况.例2 已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .讨论f (x )的单调性. 解 f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3. 若a ≤0,当x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减,若a >0,f ′(x )=a (x -1)x 3⎝⎛⎭⎫x -2a ⎝⎛⎭⎫x +2a . (1)当0<a <2时,2a >1, 当x ∈(0,1)或x ∈⎝⎛⎭⎫2a ,+∞时,f ′(x )>0,f (x )单调递增, 当x ∈⎝⎛⎭⎫1,2a 时,f ′(x )<0,f (x )单调递减. (2)当a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增. (3)当a >2时,0<2a<1, 当x ∈⎝⎛⎭⎫0,2a 或x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,当x ∈⎝⎛⎭⎫2a ,1时,f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在⎝⎛⎭⎫2a ,+∞内单调递增; 当a =2时,f (x )在(0,+∞)内单调递增;当a >2时,f (x )在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫2a ,1内单调递减,在(1,+∞)内单调递增. 易错提醒 (1)在求单调区间时“定义域优先”.(2)弄清参数对f ′(x )符号的影响,分类讨论要不重不漏.跟踪演练2 (1)已知定义在R 上的函数f (x )的导函数为f ′(x ),对任意x ∈(0,π),有f ′(x )sinx >f (x )cos x ,且f (x )+f (-x )=0,设a =2f ⎝⎛⎭⎫π6,b =2f ⎝⎛⎭⎫π4,c =-f ⎝⎛⎭⎫-π2,则( )A .a <b <cB .b <c <aC .a <c <bD .c <b <a答案 A解析 构造函数g (x )=f (x )sin x ,x ≠k π,k ∈Z ,g ′(x )=f ′(x )sin x -f (x )cos xsin 2x >0,所以函数g (x )在区间(0,π)上是增函数,因为f (x )+f (-x )=0,即f (x )=-f (-x ),g (-x )=f (-x )-sin x =f (x )sin x ,所以函数g (x )是偶函数,所以g ⎝⎛⎭⎫π6<g ⎝⎛⎭⎫π4<g ⎝⎛⎭⎫π2=g ⎝⎛⎭⎫-π2,代入解析式得到2f ⎝⎛⎭⎫π6<2f ⎝⎛⎭⎫π4<-f ⎝⎛⎭⎫-π2,故a <b <c .(2)已知f (x )=(x 2+2ax )ln x -12x 2-2ax 在(0,+∞)上是增函数,则实数a 的取值范围是() A .{1} B .{-1} C .(0,1] D .[-1,0)答案 B解析 f (x )=(x 2+2ax )ln x -12x 2-2ax ,f ′(x )=2(x +a )ln x ,∵f (x )在(0,+∞)上是增函数,∴f ′(x )≥0在(0,+∞)上恒成立,当x =1时,f ′(x )=0满足题意;当x >1时,ln x >0,要使f ′(x )≥0恒成立,则x +a ≥0恒成立.∵x +a >1+a ,∴1+a ≥0,解得a ≥-1;当0<x <1时,ln x <0,要使f ′(x )≥0恒成立,则x +a ≤0恒成立,∵x +a <1+a ,∴1+a ≤0,解得a ≤-1.综上所述,a =-1.考点三 利用导数研究函数的极值、最值 核心提炼1.由导函数的图象判断函数y =f (x )的极值,要抓住两点(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点.(2)由y =f ′(x )的图象可以看出y =f ′(x )的函数值的正负,从而可得到函数y =f (x )的单调性,可得极值点.2.求函数f (x )在[a ,b ]上的最大值和最小值的步骤(1)求函数在(a ,b )内的极值.(2)求函数在区间端点处的函数值f (a ),f (b ).(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值. 例3 (1)若函数f (x )=e x -(m +1)ln x +2(m +1)x -1恰有两个极值点,则实数m 的取值范围为( )A .(-e 2,-e)B.⎝⎛⎭⎫-∞,-e 2C.⎝⎛⎭⎫-∞,-12 D .(-∞,-e -1)答案 D解析 由题意可得f ′(x )=e x -m +1x +2(m +1),x >0, 因为函数f (x )=e x -(m +1)ln x +2(m +1)x -1恰有两个极值点,所以函数f ′(x )=e x-m +1x +2(m +1)(x >0)有两个不同的变号零点.令e x -m +1x+2(m +1)=0, 等价转化成x e x 1-2x=m +1(x >0)有两个不同的实数根,记h (x )=x e x 1-2x, 所以h ′(x )=(x e x )′(1-2x )-x e x (1-2x )′(1-2x )2 =-e x (2x +1)(x -1)(1-2x )2, 当x ∈⎝⎛⎭⎫0,12时,h ′(x )>0, 此时函数h (x )在此区间上单调递增,当x ∈⎝⎛⎭⎫12,1时,h ′(x )>0,此时函数h (x )在此区间上单调递增,当x ∈(1,+∞)时,h ′(x )<0,此时函数h (x )在此区间上单调递减,作出h (x )=x e x 1-2x的简图如图, 要使得x e x 1-2x=m +1有两个不同的实数根, 则h (1)>m +1,即-e>m +1,整理得m <-1-e.(2)已知函数f (x )=a x +e x -(1+ln a )x (a >0,a ≠1),对任意x 1,x 2∈[0,1],不等式|f (x 1)-f (x 2)|≤a ln a +e -4恒成立,则a 的取值范围为( )A.⎣⎡⎦⎤12,eB .[2,e]C .[e ,+∞)D .(e ,+∞)答案 C解析 依题意,得a ln a +e -4≥0, ①因为f ′(x )=a x ln a +e x -1-ln a =(a x -1)ln a +e x -1,当a >1时,对任意的x ∈[0,1],a x -1≥0,ln a >0,e x -1≥0,恒有f ′(x )≥0;当0<a <1时,对任意x ∈[0,1],a x -1≤0,ln a <0,e x -1≥0,恒有f ′(x )≥0,所以f (x )在[0,1]上是增函数,则对任意的x 1,x 2∈[0,1],不等式|f (x 1)-f (x 2)|≤a ln a +e -4恒成立,只需f (x )max -f (x )min ≤a ln a +e -4,因为f (x )max =f (1)=a +e -1-ln a ,f (x )min =f (0)=1+1=2,所以a +e -1-ln a -2≤a ln a +e -4,即a -ln a +1-a ln a ≤0,即(1+a )(1-ln a )≤0,所以ln a ≥1,从而有a ≥e ,而当a ≥e 时,①式显然成立.故选C.易错提醒 利用导数研究函数的极值、最值应注意的问题(1)不能忽略函数f (x )的定义域.(2)f ′(x 0)=0是可导函数在x =x 0处取得极值的必要不充分条件.(3)函数的极小值不一定比极大值小.(4)函数在区间(a ,b )上有唯一极值点,则这个极值点也是最大(小)值点,此结论在导数的实际应用中经常用到.跟踪演练3 (1)若x =1e是函数f (x )=ln x -kx 的极值点,则函数f (x )=ln x -kx 有( ) A .极小值-2B .极大值-2C .极小值-1D .极大值-1答案 B解析 由题意得f ′(x )=1x-k , ∴f ′⎝⎛⎭⎫1e =e -k =0,∴k =e.由f ′(x )=1x -e =0,得x =1e ,当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )>0,函数f (x )单调递增; 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )<0,函数f (x )单调递减, ∴函数f (x )的极大值为f ⎝⎛⎭⎫1e =ln 1e -e ×1e=-2. (2)已知点M 在圆C :x 2+y 2-4y +3=0上,点N 在曲线y =1+ln x 上,则线段MN 的长度的最小值为________.答案 2-1解析 由题意可得C (0,2),圆C 的半径r =1.设N (t,1+ln t )(t >0),令f (t )=|CN |2,则f (t )=t 2+(1-ln t )2(t >0),所以f ′(t )=2t +2(1-ln t )⎝⎛⎭⎫-1t =2(t 2+ln t -1)t .令φ(t )=t 2+ln t -1(t >0),易知函数φ(t )在(0,+∞)上单调递增,且φ(1)=0,所以当0<t <1时,f ′(t )<0;当t >1时,f ′(t )>0,所以f (t )在(0,1)上单调递减,在(1,+∞)上单调递增,所以f (t )min =f (1)=2.因为|MN |≥|CN |-1=2-1,所以线段MN 的长度的最小值为2-1.专题强化练一、选择题1.(2020·全国Ⅰ)函数f (x )=x 4-2x 3的图象在点(1,f (1))处的切线方程为() A .y =-2x -1 B .y =-2x +1C .y =2x -3D .y =2x +1答案 B解析 f (1)=1-2=-1,切点坐标为(1,-1),f ′(x )=4x 3-6x 2,所以切线的斜率为k =f ′(1)=4×13-6×12=-2,切线方程为y +1=-2(x -1),即y =-2x +1.2.函数f (x )=ln x x的单调递增区间是( ) A .(0,e)B .(e ,+∞)C .(0,1)D .(1,e)答案 A 解析 由f ′(x )=⎝⎛⎭⎫ln x x ′=1-ln x x 2>0(x >0),可得⎩⎪⎨⎪⎧1-ln x >0,x >0,解得x ∈(0,e). 3.设函数f (x )定义在区间(0,+∞)上,f ′(x )是函数f (x )的导函数,f (x )+x ln xf ′(x )>0,则不等式ln x f (x )>0的解集是( ) A.⎝⎛⎭⎫13,+∞B .(1,+∞) C.⎝⎛⎭⎫0,13 D .(0,1) 答案 B解析 构造新函数g (x )=ln xf (x ),则g (1)=0,g ′(x )=1xf (x )+ln xf ′(x ). 因为f (x )+x ln xf ′(x )>0,又x >0,所以1xf (x )+ln xf ′(x )>0, 所以g ′(x )>0,所以函数g (x )=ln xf (x )在(0,+∞)上单调递增.而ln x f (x )>0可化为ln xf (x )>0, 等价于g (x )>g (1),解得x >1,所以不等式ln x f (x )>0的解集是(1,+∞). 4.若函数f (x )=x 2+ax +1x 在⎝⎛⎭⎫12,+∞上是增函数,则a 的取值范围是( ) A .[-1,0]B .[-1,+∞)C .[0,3]D .[3,+∞)答案 D解析 由条件知f ′(x )=2x +a -1x 2≥0在⎝⎛⎭⎫12,+∞上恒成立,即a ≥1x 2-2x 在⎝⎛⎭⎫12,+∞上恒成立,∵函数y =1x 2-2x 在⎝⎛⎭⎫12,+∞上为减函数,∴y <1⎝⎛⎭⎫122-2×12=3.∴a ≥3. 5.已知定义在R 上的函数f (x )=13ax 3+x 2+ax +1有三个不同的单调区间,则实数a 的取值范围是( )A .(-∞,-1)∪(1,+∞)B .[-1,0)∪(0,1]C .(-1,1)D .(-1,0)∪(0,1)答案 D解析 根据题意,函数f (x )=13ax 3+x 2+ax +1,其导函数f ′(x )=ax 2+2x +a .若函数f (x )=13ax 3+x 2+ax +1有三个不同的单调区间,则f ′(x )=ax 2+2x +a 有2个不同的零点,则有Δ=4-4a 2>0,且a ≠0,可得-1<a <1,且a ≠0,即实数a 的取值范围是(-1,0)∪(0,1).6.若函数f (x )=e x -x 2-ax (其中e 是自然对数的底数)的图象在x =0处的切线方程为y =2x+b ,则函数g (x )=f ′(x )-b x在(0,+∞)上的最小值为( ) A .-1 B .e C .e -2 D .e 2答案 C解析 因为f ′(x )=e x -2x -a ,所以f ′(0)=1-a .由题意知1-a =2,解得a =-1,因此f (x )=e x -x 2+x ,而f (0)=1,于是1=2×0+b ,解得b =1,因此g (x )=f ′(x )-b x =e x -2x +1-1x =e x -2x x, 所以g ′(x )=e x (x -1)x 2, 令g ′(x )=0得x =1,当0<x <1时,g ′(x )<0,g (x )单调递减;当x >1时,g ′(x )>0,g (x )单调递增,故g (x )在x =1处取得极小值也是最小值,即g (x )在(0,+∞)上的最小值为g (1)=e -2.7.已知函数f (x )=a x +x 2-x ln a ,若对任意x 1,x 2∈[0,1],不等式|f (x 1)-f (x 2)|≤a -2恒成立,则实数a 的取值范围是( )A .[e 2,+∞)B .[e ,+∞)C .[2,e]D .[e ,e 2]答案 A解析 依题意可知,当x ∈[0,1]时,f (x )max -f (x )min ≤a -2且a >2,因为f ′(x )=(a x -1)ln a +2x ,所以当x >0时,f ′(x )>0,函数f (x )在[0,1]上单调递增,则f (x )max =f (1)=a +1-ln a ,f (x )min =f (0)=1,所以f (x )max -f (x )min =a -ln a ,所以a -ln a ≤a -2,得a ≥e 2.8.已知函数f (x )=-x 2+a 2,g (x )=x 2e x -a 2,若对任意的x 1∈⎣⎡⎦⎤-12,1,存在唯一的x 2∈[-1,1],使得f (x 1)=g (x 2),则实数a 的取值范围是( )A.⎣⎡⎦⎤14,eB.⎝⎛⎦⎤1+1e ,eC.⎝⎛⎦⎤14+1e ,eD .[1,e] 答案 B解析 当x ∈⎣⎡⎦⎤-12,1时,f (x )=-x 2+a 2的值域是⎣⎡⎦⎤a 2-1,a 2,g ′(x )=2x e x +x 2e x =x (x +2)e x ,则g (x )在(-1,0)上是减函数,在(0,1)上是增函数,g (-1)=1e -a 2,g (0)=-a 2,g (1)=e -a 2,若对任意的x 1∈⎣⎡⎦⎤-12,1,存在唯一的x 2∈[-1,1],使得f (x 1)=g (x 2),则⎩⎨⎧ a 2-1>1e -a 2,a 2≤e -a 2,所以1+1e<a ≤e. 二、填空题9.已知f (x )=(x +1)(x +2)(x +a ),若f ′(-1)=2,则f ′(1)=________.答案 26解析 f (x )=(x +1)(x +2)(x +a )=(x 2+3x +2)(x +a )=x 3+(a +3)x 2+(3a +2)x +2a , 所以f ′(x )=3x 2+2(a +3)x +3a +2,所以f ′(-1)=3×(-1)2+2(a +3)×(-1)+3a +2=2,解得a =3,所以f ′(x )=3x 2+12x +11,所以f ′(1)=3×12+12×1+11=26.10.已知函数f (x )=x 2-ax +3在(0,1)上为减函数,函数g (x )=x 2-a ln x 在(1,2)上为增函数,则a 的值等于________.答案 2解析 ∵函数f (x )=x 2-ax +3在(0,1)上为减函数,∴a 2≥1,得a ≥2. 又∵g ′(x )=2x -a x, 依题意得g ′(x )≥0在(1,2)上恒成立,∴2x 2≥a 在(1,2)上恒成立,∴a ≤2.∴a =2.11.已知a >0,f (x )=x e xe x +a,若f (x )的最小值为-1,则a =________. 答案 1e 2解析 由f (x )=x e xe x +a, 得f ′(x )=(e x +x e x )(e x +a )-x e x ·e x(e x +a )2=e x (e x +ax +a )(e x +a )2. 令g (x )=e x +ax +a ,则g ′(x )=e x +a >0,∴g (x )在(-∞,+∞)上为增函数,又g (-1)=1e>0,∴存在x 0<-1,使得g (x 0)=0,即0e x+ax 0+a =0,①∴f ′(x 0)=0, ∴函数f (x )在(-∞,x 0)上为减函数,在(x 0,+∞)上为增函数,则f (x )的最小值为f (x 0)=000e e x x x a +=-1,即x 00e x =-0e x-a .②联立①②,可得a =1e 2. 12.已知函数f (x )=mx 2+2x -2e x,m ∈[1,e],x ∈[1,2],g (m )=f (x )max -f (x )min ,则关于m 的不等式g (m )≥4e 2的解集为________. 答案 ⎣⎡⎦⎤24-e ,e 解析 由f (x )=mx 2+2x -2e x, 得f ′(x )=(2mx +2)e x -(mx 2+2x -2)e x(e x )2=2mx +2-mx 2-2x +2e x =-mx 2+(2-2m )x -4e x=-(mx +2)(x -2)e x, ∵m ∈[1,e],x ∈[1,2],∴f ′(x )≥0,∴函数f (x )在区间[1,2]上单调递增,∴f (x )max =f (2)=4m +2e 2,f (x )min =f (1)=m e , ∴g (m )=f (x )max -f (x )min=4m +2e 2-m e =4m +2-m e e 2, 令4m +2-m e e 2≥4e 2,得m ≥24-e,又m ∈[1,e],∴m ∈⎣⎢⎡⎦⎥⎤24-e ,e . 故不等式g (m )≥4e 2的解集为⎣⎢⎡⎦⎥⎤24-e ,e . 三、解答题13.设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数f (x )的图象过点(0,1)时,求函数f (x )的极小值;(2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围.解 f ′(x )=3ax 2-4x +1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f (x )=x 3-2x 2+x +1,f ′(x )=3x 2-4x +1,由f ′(x )>0,解得x <13或x >1; 由f ′(x )<0,解得13<x <1. 所以函数f (x )在⎝⎛⎭⎫-∞,13和(1,+∞)上单调递增,在⎝⎛⎭⎫13,1上单调递减, 所以函数f (x )的极小值是f (1)=13-2×12+1+1=1.(2)若f (x )在(-∞,+∞)上无极值点,则f (x )在(-∞,+∞)上是单调函数,即f ′(x )=3ax 2-4x +1≥0或f ′(x )=3ax 2-4x +1≤0恒成立.由a >0,f ′(x )≥0恒成立的充要条件是Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43. 显然,f ′(x )≤0不恒成立,综上,a 的取值范围为⎣⎡⎭⎫43,+∞.14.已知函数f (x )=ln x -a 2x 2+ax (a ∈R ).(1)当a =1时,求函数f (x )的单调区间;(2)若函数f (x )在区间(1,+∞)上是减函数,求实数a 的取值范围.解 (1)当a =1时,f (x )=ln x -x 2+x ,其定义域是(0,+∞),∴f ′(x )=1x -2x +1=-2x 2-x -1x. 令f ′(x )=0,即-2x 2-x -1x =-(x -1)(2x +1)x=0, 解得x =-12或x =1. ∵x >0,∴x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴函数f (x )在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,即单调递增区间为(0,1),单调递减区间为(1,+∞).(2)方法一 ∵f (x )=ln x -a 2x 2+ax ,其定义域为(0,+∞),∴f ′(x )=1x -2a 2x +a =-2a 2x 2+ax +1x=-(2ax +1)(ax -1)x. ①当a =0时,f ′(x )=1x>0, ∴f (x )在区间(0,+∞)上为增函数,不符合题意;②当a >0时,f ′(x )<0(x >0)等价于(2ax +1)(ax -1)>0(x >0),即x >1a. 此时f (x )的单调递减区间为⎝⎛⎭⎫1a ,+∞.依题意,得⎩⎪⎨⎪⎧ 1a ≤1,a >0,解得a ≥1; ③当a <0时,f ′(x )<0(x >0)等价于(2ax +1)(ax -1)>0(x >0),即x >-12a. 此时f (x )的单调递减区间为⎝⎛⎭⎫-12a ,+∞, ∴⎩⎪⎨⎪⎧-12a ≤1,a <0,解得a ≤-12.综上所述,实数a 的取值范围是⎝⎛⎦⎤-∞,-12∪[1,+∞). 方法二 ∵f (x )=ln x -a 2x 2+ax ,x ∈(0,+∞),∴f ′(x )=-2a 2x 2+ax +1x. 由f (x )在(1,+∞)上是减函数,可得g (x )=-2a 2x 2+ax +1≤0在(1,+∞)上恒成立. ①当a =0时,1≤0,不符合题意;②当a ≠0时,可得⎩⎪⎨⎪⎧ 14a <1,g (1)≤0,即⎩⎪⎨⎪⎧a >14或a <0,-2a 2+a +1≤0, ∴⎩⎨⎧ a >14或a <0,a ≥1或a ≤-12,∴a ≥1或a ≤-12. ∴实数a 的取值范围是⎝⎛⎦⎤-∞,-12∪[1,+∞).。

相关文档
最新文档