不等式的放缩法基本公式资料

不等式的放缩法基本公式资料
不等式的放缩法基本公式资料

不等式的放缩法基本

公式

典型例题:用放缩法证明不等式

用放缩法证明不等式 所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的“度”,否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。下面举例谈谈运用放缩法证题的常见题型。 一. “添舍”放缩 通过对不等式的一边进行添项或减项以达到解题目的,这是常规思路。 例1. 设a ,b 为不相等的两正数,且a 3-b 3=a 2-b 2,求证143 <+<a b 。 证明:由题设得a 2+ab +b 2=a +b ,于是(a +b )2>a 2+ab +b 2=a +b ,又a +b >0,得a +b >1,又ab <14(a +b )2,而(a +b )2=a +b +ab <a +b +14(a +b )2,即34(a +b )2<a +b ,所以 a + b <43,故有1<a +b <43 。 例2. 已知a 、b 、c 不全为零,求证: a a b b b b c c c ac a a b c 22222232 ++++++++++>() 证明:因为a ab b a b b a b a b a b 222 22 234 2 22++=+++=++()>()≥,同理b bc c b c 222 +++>,c ac a c a 222+++>。 所以a ab b b bc c c ac a a b c 22222232 ++++++++++>() 二. 分式放缩 一个分式若分子变大则分式值变大,若分母变大则分式值变小,一个真分式,分子、分母同时加上同一个正数则分式值变大,利用这些性质,可达到证题目的。 例3. 已知a 、b 、c 为三角形的三边,求证:12<++<a b c b a c c a b +++。 证明:由于a 、b 、c 为正数,所以a b c a a b c +++>,b a c b a b c +++>,c a b c a b c +++>,所以

用放缩法证明不等式的方法与技巧

用放缩法证明不等式的方法与技巧 一.常用公式 1.)1(11)1(12-<<+k k k k k 2.12 112-+<<++k k k k k 3.22k k ≥()4≥k 4.1232k k ???????≥(2≥k ) 5. ?? ????--≤!!(!k k k 1)11211(待学) 6.b a b a +≤+ (待学) 二.放缩技巧 所谓放缩的技巧:即欲证A B ≤,欲寻找一个(或多个)中间变量C ,使A C B ≤≤, 由A 到C 叫做“放”,由B 到C 叫做“缩”. 常用的放缩技巧 (1)若0,,t a t a a t a >+>-< (2) < > 11> ,n >= (3)21111111 (1)1(1)(1)1n n n n n n n n n n - =<<=->++-- (4 )= <=<= (5)若,,a b m R + ∈,则,a a a a m b b m b b +>< + (6)21111111 112!3!!222 n n -+++???+<+++???+ (7)22211111111 11(1)()()232231n n n +++???+<+-+-+???+--(因为211(1)n n n < -) (7)1111111112321111n n n n n n n n n +++???+≤++???+=<+++++++ 或11111111123222222 n n n n n n n n n +++???+≥++???+==+++ (8 )1+???+>???+== 三.常见题型 (一).先求和再放缩: 1.设1111 2612 (1) n S n n = ++++ +,求证:1n S < 2.设1n b n = (n N * ∈),数列2{}n n b b +的前n 项和为n T ,求证:34n T < (二).先放缩再求和: 3.证明不等式:111 12112123 123n ++++

(学)高中数学数列放缩专题:用放缩法处理数列和不等问题

(学)高中数学数列放缩专题:用放缩法处理数列和不等问题

数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

放缩法证明不等式的基本策略

放缩法”证明不等式的基本策略 近年来在高考解答题中, 常渗透不等式证明的内容, 而不等式的证明是高中数学中的一个难点, 以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一 提的是,高考中可以用 证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点 能体现出创造性。 放缩法”它可以和很多知识内容结合, 而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度, 些高考试题,例谈 放缩”的基本策略,期望对读者能有所帮助。 1、添加或舍弃一些正项(或负项) 2、先放缩再求和(或先求和再放缩) 子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或 分母放大即可。 3、先放缩,后裂项(或先裂项再放缩) n J k 例 3、已知 a n =n ,求证:k=1 a k V 3- 它可 放缩法” ,有极大的迁移性,对它的运 用往往 对应变能力有较高的要求。 因为放缩必须有目标, 否则就不能同向传递。下面结合一 例1、已知 a n 2n 1(n N ).求证: a 1 a ^ a 2 a 3 丑(n N a n 1 ). 证明:Q 皀 a k 1 2k 1 2k 1 2(2k1 1) 1 3.2k 2k 2 1,2,..., n. a_ a 2 a 2 a 3 a n a n 1 1 ( 1 1 二(二 二 1 a_ 3 a 2 a 2 a 3 多项式的值变小。由于证 若多项式中加上一些正的值,多项式的值变大, 多项式中加上一些负的值, 明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证 明的目的。本题在放缩时就舍去了 2k 2,从而是使和式得到化简 例2、函数f (x ) =±- 1 4x ,求证: (1)+f ( 2) +…+f (n ) 证明:由 f(n)= 羊7=1-- 1 4n 1 得 f (1) +f (2) + …+f (n ) n 2(1 4 1 1 丄 2 21 2 22 1 1 * 芦 >1 此题不等式左边不易求和 ,此时根据不等式右边特征 ,先将分子变为常数,再对分母进行放缩,从而对 左边可以进行求和.若分子, 分母如果同时存在变量时 ,要设法使其中之一变为常量,分式的放缩对于分

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

高中数学放缩法公式

“放缩法”证明不等式的基本策略 1、添加或舍弃一些正项(或负项) 例1、已知* 21().n n a n N =-∈求证: *12 231 1...().23n n a a a n n N a a a +-<+++∈ 证明: 111211111111 .,1,2,...,,2122(21)2 3.222232 k k k k k k k k a k n a +++-==-=-≥-=--+-Q 1222311111111 ...(...)(1),2322223223 n n n n a a a n n n a a a +∴ +++≥-+++=-->- *122311...().232 n n a a a n n n N a a a +∴-<+++<∈ 若多项式中加上一些正的值,多项式的值变大,多项式中加上一些负的值,多项式的 值变小。由于证明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证明的目的。本题在放缩时就舍去了22k -,从而是使和式得到化简. 2、先放缩再求和(或先求和再放缩) 例2、函数f (x )= x x 414+,求证:f (1)+f (2)+…+f (n )>n + )(2 1 21*1 N n n ∈-+. 证明:由f (n )= n n 414+=1- 11 11422n n >-+? 得f (1)+f (2)+…+f (n )>n 2211221122112 1 ?- ++?- +?-Λ )(21 2 1)2141211(41*11N n n n n n ∈-+=++++-=+-Λ. 此题不等式左边不易求和,此时根据不等式右边特征, 先将分子变为常数,再对分母进行放缩,从而对左边可以进行求和. 若分子, 分母如果同时存在变量时, 要设法使其中之一变为常量,分式的放缩对于分子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或分母放大即可。 3、逐项放大或缩小

不等式解法(放缩法)

用放缩法证明数列不等式的几种类型和途径 不等式的证明,尤其是使用放缩法证明不等式,很多学生觉得无从下手,老师也觉得教学效果不理想.这里仅就用放缩法证明数列不等式谈谈自己的看法,不妥之处请同行指教. 根据建构主义的观点,学生在学习时可将知识分成若干模块,再对若干模块进行学习,经过同化和顺应,将知识变成自己的一部分. 常见的放缩方法有:增加(减少)某些项,增大(减少)分子(分母),增大(减小)被开方数,增大(减小)底数(指数),利用二项式定理,利用不等式的性质或重要不等式,利用函数的性质等. 对于“和式”数列不等式,若能够直接求和,则考虑先求和,再证不等式;若不能或甚难求和,则可考虑使用放缩法证明不等式. 而对于“和式”数列不等式,放缩的最主要目的是通过放缩,把原数列变为可求和、易求和的数列. 下面根据实施的途径分为以下五类进行讨论: 途径1:放缩为等差 等差?1类. 例1.求证:2131211222<++++n 同类不等式还有: ⑴ 8 11131211333<++++n ⑵ ()() 12216712151311222+->-++++n n (n>1)

⑶ 33322 1222<++++n n (n>1) 途径2:放缩为等比类. 例2.求证:3 512112112112132<-++-+-+-n 同类不等式还有: ⑴ 5 412112112112132<++++++++n ⑵ 3 4131213513313132<--++-+-+-n n 途径4:增大(减小)分子(分母)或被开方数放缩类. 例5.求证:()()2 2)1(322121+<+++?+?<+n n n n n n

导数应用于不等式证明之放缩法一例

导数应用于不等式证明之放缩法一例 的单调区间; 求轴垂直,处的切线与,在点(曲线是自然对数的底数),为常数,已知函数)()1())1(1)(...718.2(),2(ln )(.21x f y f x f y e k k x e x f x ==-=- 2)()1(,0)1(ln 1)(2-+<+>+-=x x x e e x g x x e x x x g 证明:,对任意)设( ()()()】式成立。证毕。恒成立,【所以所以)递增 ,)递减,在(,在(划分单调区间如下:解得令】 【只需证再用放缩法 , )即证明()(】,只需证 ,要证【)() (),所以(放缩,由于以下对】 【证明:结论20)(011132 ln 2)(0)(,,0ln 3)(,ln 31ln 2)(2),0(,0ln 2x )(,0ln 2x ln 1x 1 )]1(ln 1[)1(1)], 1(ln 1[1)1(11)1(1)1()(111),1()()]1(ln 1[1)0(,)1(ln 11323232332 3333min 33322222222222222222>>-=+-=+-=+-=++==∞+>>+='+=? ++='>>++=>+++?-->+++?+->+++-?+>++++≥++≥+≥+<+-?+?>+<+-?+?------------------------x h e e e e e e e e e e e e e e h h e e x h e x x x h x x x x x h x e x x x h x e e x x x x x x e e x x e x x x x e x e x e e x e x e e e e x x x x e e e x x x x x x x x x x x

高考数学数列不等式证明题放缩法十种方法技巧总结

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n Λ求证 .2 )1(2)1(2 +<<+n S n n n 例2 已知函数 bx a x f 211 )(?+= ,若5 4)1(= f ,且 )(x f 在[0,1]上的最小值为21,求证: .2 1 21)()2()1(1 -+ >++++n n n f f f Λ 例3 求证),1(22 1321 N n n n C C C C n n n n n n ∈>?>++++-Λ. 例4 已知222121n a a a +++=L ,222 121n x x x +++=L ,求证:n n x a x a x a +++Λ2 211≤1. 2.利用有用结论 例5 求证.12)1 21 1()511)(311)(11(+>-+++ +n n Λ 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 1211 1,(1).2 n n n a a a n n +==+ ++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828e ≈L ) 例8 已知不等式 21111 [log ],,2232 n n N n n *+++>∈>L 。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,] [log 222≥+

放缩法证明数列不等式问题的方法

放缩法证明“数列+不等式”问题的两条途径 数列与不等式的综合问题常常出现在高考的压轴题中,是历年命题的热点,解决这类问题常常用到放缩法。用放缩法解决“数列+不等式”问题通常有两条途径:一是先放缩再求和,二是先求和再放缩。 1、 先放缩再求和 例1 (05年湖北理)已知不等式],[log 2 1131212n n >+++Λ其中n 为不大于2的整数,][log 2n 表示不超过n 2log 的最大整数。设数列{}n a 的各项为正且满足111),0(--+≤>=n n n a n na a b b a )4,3,2(Λ=n ,证明:] [log 222n b b a n +<,Λ5,4,3=n 分析:由条件11--+≤ n n n a n na a 得:n a a n n 1111+≥- n a a n n 1111≥-∴- )2(≥n 1111 21-≥---n a a n n (2) 11112≥-a a 以上各式两边分别相加得: 2 1111111++-+≥-Λn n a a n 2 111111++-++≥∴Λn n b a n ][log 2 112n b +> )3(≥n =b n b 2][log 22+ ∴ ][log 222n b b a n +< )3(≥n 本题由题设条件直接进行放缩,然后求和,命题即得以证明。 例2 (04全国三)已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n

(1)写出数列}{n a 的前三项1a ,2a ,3a ; (2)求数列}{n a 的通项公式; (3)证明:对任意的整数4>m ,有8 711154<+++m a a a Λ 分析:⑴由递推公式易求:a 1=1,a 2=0,a 3=2; ⑵由已知得:1112(1)2(1)n n n n n n n a S S a a ---=-=+----(n>1) 化简得:1122(1)n n n a a --=+- 2)1(2)1(11---=---n n n n a a ,]32) 1([232)1(11+--=+---n n n n a a 故数列{32)1(+-n n a }是以3 21+-a 为首项, 公比为2-的等比数列. 故1)2)(31(32)1(---=+-n n n a ∴22[2(1)]3 n n n a -=-- ∴数列{n a }的通项公式为:22[2(1)]3 n n n a -=--. ⑶观察要证的不等式,左边很复杂,先要设法对左边的项进行适当的放缩,使之能够求和。而左边=232451113111[]221212(1) m m m a a a -+++=+++-+--L L ,如果我们把上式中的分母中的1±去掉,就可利用等比数列的前n 项公式求和,由于-1与1交错出现,容易想到将式中两项两项地合并起来一起进行放缩,尝试知:32322121121121+>++-, 43432121121121+<-++,因此,可将1 212-保留,再将后面的项两两组合后放缩,即可求和。这里需要对m 进行分类讨论,(1)当m 为偶数)4(>m 时, m a a a 11154+++Λ)11()11(11654m m a a a a a +++++=-Λ )2 12121(2321243-++++< m Λ )2 11(4123214--?+=m 8321+<87=

专题:利用放缩法证明数列不等式问题

2014年12月02日的高中数学组卷1.(2014?烟台一模)已知数列{a n}前n项和为S n,首项为a1,且成等差数列.(Ⅰ)求数列{a n}的通项公式; (Ⅱ)数列满足b n=(log2a2n+1)×(log2a2n+3),求证:.

2.(2014?宁波模拟)已知数列{a n}是公差不为零的等差数列,a10=15,且a3、a4、a7成等比数列.(Ⅰ)求数列{a n}的通项公式; (Ⅱ)设,数列{b n}的前n项和为T n,求证:.

3.(2014?东营一模)已知数列{a n}的前n项和S n=a n+n2﹣1,数列{b n}满足3n?b n+1=(n+1)a n+1﹣na n,且b1=3.(Ⅰ)求a n,b n; (Ⅱ)设T n为数列{b n}的前n项和,求T n,并求满足T n<7时n的最大值.

4.(2014?成都一模)已知数列{a n}满足a1=1,点(a n,a n+1)在直线y=2x+1上. (1)求数列{a n}的通项公式; (2)若数列{b n}满足b1=a1,=+…+(n≥2且n∈N*),求b n+1a n﹣(b n+1)a n+1的值;(3)对于(2)中的数列{b n},求证:(1+b1)(1+b2)…(1+b n)<b1b2…b n(n∈N*).

5.(2014?广东二模)已知各项均为正数的数列{a n}满足a n+12=2a n2+a n a n+1,且a2+a4=2a3+4,其中n∈N*. (1)求数列{a n}的通项公式; (2)设数列{b n}满足b n=,是否存在正整数m,n(1<m<n),使得b1,b m,b n成等比数列?若存在,求出所有的m、n的值;若不存在,请说明理由. (3)令c n=,记数列{c n}的前n项和为S n(n∈N*),证明:≤S n<.

不等式放缩法

利用放缩法证明数列型不等式 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式 问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明: 1 32 n i i T =< ∑。 点评: 关键是将12(21)(21) n n n +--裂项成111 2121n n +---,然后再求和,即可达到目标。

(2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S ,2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 711 12 n +≥。 点评:此题(II )充分利用(I )的结论,n T 递增,将2n S 裂成 1122 112222n n n n S S S S S S S ----+-+ +-+的和,从而找到了解题的突破口。

2、迭乘放缩法:放缩法与迭乘法的结合,用放缩法构造迭乘形式,相乘时消去中间项。用于解决积式问题。 例3 已知数列{}n a 的首项为13,a =点()1,+n n a a 在直线)(03*N n y x ∈=-上。 若 3 *3log 2(),n n c a n N =-∈证明对任意的* n ∈N ,不等 式 12111 (1)(1+)(1+)n c c c +??>恒成立. 点评:此题是证明积式大于根式,由于左边没有根式,右边是三次根式,立方后比较更容易处理。33 131(1+ )()32 n n c n -=-可以看成是三个假分式的乘积,保持其中一项不变,另两项假分数分子分母同时加1,加2,则积变小,3313133131 ()323231332 n n n n n n n n n n --++>??=----,而通项式为31 { }32 n n +-的数列在迭乘时刚好相消,从而达到目标。

用放缩法证明不等式Word版

利用放缩法证明数列型不等式 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。裂项放缩法 主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333 n n n S a +=-?+,1,2,3, n =。设2n n n T S =,1,2,3, n =,证明: 1 3 2 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--1132311()2(21)(21)22121n n n n n n T ++= =-----, 11223 1 1 131131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ = 113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例 2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为n S , 2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 711 12n +≥ 。 证明:(I )111 111 1()23 2212 2n n T T n n n n n n +-= +++ -++++++++ 111 21221n n n = +- +++10(21)(22) n n =>++ ∴1n n T T +>. (II ) 112211222222,n n n n n n S S S S S S S S ---≥∴=-+-+ +-+1221122n n T T T T S --=++ +++ 由(I )可知n T 递增,从而12222n n T T T --≥≥ ≥,又11217 ,1,212T S T ===, 12211222n n n S T T T T S --∴=+++++21171711 (1)(1)112212 n n T T S n +≥-++=-++= 即当2n ≥时,2n S 711 12 n +≥。

放缩法证明不等式

不等式的证明 本文主要介绍用放缩法证明不等式的技巧。 一、项的添加与删除。 【例1】已知4,≥∈n N n ,求证:2 ) 2)(1(2++> n n n 。 证明:)12 )1(1()...1(2121++-++≥+++++=-n n n n C C C C n n n n n n n 22324322++> ++=n n n n =2 ) 2)(1(++n n 。 [练习1] 若N n x ∈>,0且1>n ,求证:nx x n +>+1)1(。 二、利用分数的性质进行放缩。 【例2】若a , b , c , d ∈R + ,求证:21<+++++++++++< c a d d b d c c a c b b d b a a 证:记m = c a d d b d c c a c b b d b a a +++ ++++++++ ∵a , b , c , d ∈R + ∴1=+++++++++++++++> c b a d d b a d c c a c b a b d c b a a m 2=+++++++< c d d d c c b a b b a a m ∴1 < m < 2 即原式成立 【例3】求证:21 31211111232222<++++<+-n n 证:∵ n n n n n 1 11)1(112 --=-< ∴2121113121211113121112 222<-=+-++-+-+<++++n n n n ∵1 11)1(112+- =+>n n n n n ∴ 11 23)111()3121(113121112 222+- =+-++-+>++++n n n n 。 【例4】[1992年“三南”高考试题]求证:n n 21...31211<+ +++ 。

证明数列不等式的常用放缩方法技巧(含答案)

证明数列不等式的常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如: a a >+12; n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )2 5lg 3lg ( 5lg 3lg 2 =<=+n n n n (5)利用常用结论: Ⅰ. 的放缩 Ⅱ. 2 1k 的放缩(1) : 2111(1)(1) k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):2 2 111111()1(1)(1)211 k k k k k k < ==+-+--+(程度小) Ⅳ. 2 1k 的放缩(3):2214112()412121k k k k <=+--+(程度更小) Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++

不等式证明放缩法.doc

不等式的证明(放缩法) 1.设x 0, y 0 , A x y , B x x y ,则 A, B 的大小关系是() 1 x y 1 1 y A. A B B. A B C. A B D. A B 2.已知三角形的三边长分别为a, b, c ,设 M a b , N c , Q a b , 1 a 1 b 1 c 1 a b 则M,N与Q的大小关系是() A.MNQ B. MQN C. QNM D. N Q M 3.设不等的两个正数a, b 满足a3 b3 a2 b2,则a b 的取值范围是() A. (1, ) B. (1, 4 C. [1, 4 D. (0,1] ) ] 1 1 1 3 1 3 4.设A L ,则 A 与1的大小关系是. 210 210 1 210 2 211 1 5.设S 1 1 1 L 1 ,则 S 的整数部分为. 2 3 100 6.已知a,b,c均为正数,且a2 b2 c2 ,求证:c3 a3 b3 c3 . 2 7.设n N 1 1 1 1 . ,求证:L (2n 1)2 4 9 25 8.设n N 1 1 1 L 1 1 . ,求证: n 1 n 2 2n 2 9.设n N 1 1 L 1 1. ,求证: 42 (2 n)2 22 10.设S n 1 2 2 3 L n ( n 1) ,求证:不等式n( n 1) S n (n 1)2 2 2 对 所有的正整数n 都成立.

简答: 1. B 提示: A x y x y x y B 1 x y 1 x y 1 x y 1 x 1 y 2. D 提示:由 a b c ,得 1 1 , 1 a 1 a b 1 c 1 1 1 a b c b a b c c 3. B 提示:由条件得 a 2 ab b 2 a b ,所以 (a b)2 a 2 a b b 2 a b ,故 a b 1 . 又 ( a b) 2 0 ,可得 3(a 2 ab b 2 ) 4( a 2 ab b 2 ) ,从而 3( a b)2 4( a b) ,所以 a b 4 ,故 1 a b 4 . 3 3 4. A<1 5. 18 提示:因为 n 2 时, n n 1 2 n n n 1 ,所以 2 1 2 ,即 2( n 1 n ) 1 n 1) n n 1 n n n 2( n 1 n 故18 1 2( 101 2) 1 1 1 L 1 1 2( 100 1) 19 2 3 100 所以所求整数部分为 18. 6.解:由已知可知, 0 a c,0 b c, a b a 2 b 2 c 2 c, ab 2 ,所以 2 3 3 2 2 2 2 3 3 3 2 ab 2 2 c 2 ) c 3 a b aga bgb c(a b ) c ,a b (a b)(a b ) c(c 2 2 所以原不等式得证 . 7.提示:由 1 4k 2 1 1 4k 1 (1 1 ) ,累加即得 . (2 k 1)2 4k 1 4k 2 4 k k 1 8.提示: 1n 1 1 L 1 1 1 L 1 1 1 L 1 n 1. 2 2n 2n 2n 2n n 1 n 2 2n n n n n 9.提示: 1 1 1 1) 1 1 ,累加即得 . (2 n)2 n 2 n(n n 1 n

高中数学放缩法

高考专题 放缩法 缩法是不等式证明中一种常用的方法,也是一种非常重要的方法。在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。但放缩的范围较难把握,常常出现放缩之后得不出结论或得出相反结论的现象。因此,使用放缩法时,如何确定放缩目标尤为重要。要想正确确定放缩目标,就必须根据欲证结论,抓住题目的特点。掌握放缩技巧,真正做到弄懂弄通,并且还要根据不同题目的类型,采用恰到好处的放缩方法,才能把题解活,从而培养和提高自己的思维和逻辑推理能力,分析问题和解决问题的能力。 数列及不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列及不等式知识解决问题的能力.本文介绍一类及数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设1 1 +=n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1 < n B 解:(1)由已知得2)1(4+=n n a S ,2≥n 时,211)1(4+=--n n a S ,作差得: 1212224----+=n n n n n a a a a a ,所以0)2)((11=--+--n n n n a a a a ,又因为{}n a 为正数数列, 所以21=--n n a a ,即{}n a 是公差为2的等差数列,由1211+=a S ,得11=a ,所以 12-=n a n (2))1 21 121(21)12)(12(111+--=+-== +n n n n a a b n n n ,所以

用放缩法证明不等式

用放缩法证明不等式 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

利用放缩法证明数列型不等式 一、常用的放缩法在数列型不等式证明中的应用 1、裂项放缩法:放缩法与裂项求和的结合,用放缩法构造裂项求和,用于解决和式问题。裂项放缩法主要有两种类型: (1)先放缩通项,然后将其裂成某个数列的相邻两项的差,在求和时消去中间的项。 例1设数列{}n a 的前n 项的和1412 2333n n n S a +=-?+,1,2,3, n =。设2n n n T S =, 1,2,3, n =,证明:1 32 n i i T =< ∑。 证明:易得12(21)(21),3 n n n S +=--11 32311()2(21)(21)22121n n n n n n T ++==-----, 11223 111 31131111 11 ()()221212212121212121 n n i i i n n i i T ++===-=-+-++ ---------∑∑ =113113()221212 n +-<-- 点评: 此题的关键是将12(21)(21)n n n +--裂项成1 11 2121 n n +---,然后再求和,即可达到目标。 (2)先放缩通项,然后将其裂成(3)n n ≥项之和,然后再结合其余条件进行二次放缩。 例2 已知数列{}n a 和{}n b 满足112,1(1)n n n a a a a +=-=-,1n n b a =-,数列{}n b 的前n 和为 n S ,2n n n T S S =-; (I )求证:1n n T T +>; (II )求证:当2n ≥时,2n S 711 12 n +≥ 。 证明:(I )111111 1()23 2212 2n n T T n n n n n n +-= +++ -+++ +++++ 111 21221n n n = +- +++10(21)(22) n n =>++ ∴1n n T T +>. (II )112211222222,n n n n n n S S S S S S S S ---≥∴=-+-+ +-+1221122n n T T T T S --=++ +++

高三数学数列放缩法

数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设 ,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴. 3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序. 一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数 .j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

相关文档
最新文档