不等式的放缩法基本公式资料

合集下载

不等式证明之放缩法

不等式证明之放缩法

不等式证明之放缩法放缩法是一种常用的不等式证明方法,它通过对不等式两边进行一系列放缩操作,从而逐步缩小不等式范围,最终达到证明不等式成立的目的。

本文将对放缩法的基本思想和几种常用的放缩方法进行详细介绍。

首先,我们来介绍放缩法的基本思想。

放缩法的核心思想是通过对不等式两边进行放缩操作,把原来的不等式转化为一个更容易证明的不等式。

在放缩过程中,我们可以利用不等式的性质、算术平均-几何平均不等式、柯西-施瓦茨不等式等数学工具,结合实际问题的特点,灵活选择适当的放缩方法,从而得到具有更强的推理力度的不等式,最终完成不等式的证明。

接下来,我们介绍几种常用的放缩方法。

1.替换法:通过替换变量,将原不等式中的复杂变量替换为新的变量,使得不等式形式变得更加简单,更易证明。

这个方法可以常常应用于含有多个变量的不等式中,通过替换变量后,使得原来复杂的不等式简化为只含有一个变量的不等式。

2.增量法:通过引入一个增量,将原不等式中的变量加上增量后,得到一个更容易证明的不等式。

这个方法常常适用于原不等式中含有与增量具有类似性质的变量,可以通过增量的引入,改变原不等式的结构,使得证明变得更加简单。

3.分割法:将整个证明过程分为若干个子证明,通过对每个子证明的分割和放缩操作,最终得到整个不等式的证明。

这个方法常常适用于原不等式较为复杂或不易直接证明的情况,通过将证明分割为若干个子证明,分别证明每个子证明的不等式,最后再将这些子证明的不等式组合起来,得到原不等式的证明。

4.对称法:通过对不等式的两边同时进行操作,得到具有对称性的不等式,从而实现原不等式的放缩。

这个方法常常适用于原不等式中含有对称性的项,通过对称性的放缩操作,不仅可以得到更容易证明的不等式,也可以将原不等式变得更加简洁明了。

以上只是常用的放缩方法中的一部分,实际应用中还有很多其他的放缩方法,需要根据具体问题的情况选择适当的方法。

无论使用哪种放缩方法,都需要注意选择合适的放缩范围,并保证放缩后的不等式在放缩范围内成立,才能保证最终得到的不等式是正确的。

不等式证明放缩法

不等式证明放缩法

不等式证明放缩法下面以一些常见的不等式为例,介绍不等式证明的放缩法。

1.形式:对于给定的不等式,我们希望通过放缩法证明其成立。

假设不等式是要证明的命题P,即P成立。

我们可以找到一个等价命题Q,使得Q更容易证明,即P等价于Q。

2.推论:通过利用已知的数学性质和常见的数学不等关系,我们可以推出不等式的一些性质和结构。

这些推论可以是基本的数学定理、常见的不等式性质或者已知的不等关系。

3.放缩:利用推论中得到的性质,我们可以对给定的不等式进行放缩处理。

放缩的目的是使得式子更容易处理,并且逼近或者确切地表示给定的不等式。

常见的放缩方法包括乘法放缩、加法放缩以及函数放缩等。

4.确定条件:在放缩过程中,我们需要确定一些条件以保证放缩后的不等式仍然成立。

这些条件可以是已知的数学性质、函数的性质以及数学不等式的性质等。

5.证明:最后,我们通过利用放缩后的不等式和确定的条件,进行形式上的证明。

证明可以是直接的运算、利用已知不等式或者使用归纳法等。

下面我们以一些例子来具体说明不等式证明的放缩法。

例一:证明对于任意的正实数a,b,c成立(a+b)(b+c)(c+a) ≥8abc。

解:假设P为要证明的不等式,即P:(a+b)(b+c)(c+a) ≥ 8abc。

针对P进行放缩如下:(a+b)(b+c)(c+a) = (a+b+c)(ab+bc+ca) - abc≥ 3√(abc) * 3√(a²b²c²) - abc (根据均值不等式)= 3√(abc * a²b²c²) - abc≥ 3√(8a⁻²b⁻²c⁻²abc * a²b²c²) - abc (由调和-几何均值不等式得到)= 6abc - abc= 5abc.所以P成立。

例二:证明对于任意的正实数x。

解:假设P为要证明的不等式。

针对P进行放缩如下:1/x+1/(1-x)=(1-x+x)/x(1-x)=1/x(1-x)≥1/(1/4)所以P成立。

不等式放缩法

不等式放缩法

不等式放缩法不等式放缩法,这可是数学里一个相当有趣的“小魔法”!咱们先来说说啥是不等式放缩法。

简单来讲,就是把一个复杂的不等式通过巧妙的手段进行变形,让它变得更容易处理和证明。

比如说,原本一个长得很吓人的不等式,咱们通过合理的放缩,把它变成一个咱们熟悉的、能轻松搞定的形式。

我给大家举个例子哈。

比如说有这么个不等式:1/2 + 1/3 + 1/4 +… + 1/n > 1/2 ×(n 1) (n ≥ 2)。

要是直接去证明,可能会让人有点头疼。

那咱们就来放缩一下。

先把每一项 1/k (k =2, 3, 4, …, n)都放大成 1/2 ,这样原来的式子就变成了(n 1) × 1/2 ,这不就和要证明的右边一样了嘛!而且因为我们是把每一项都放大了才得到的这个式子,所以原不等式就成立啦!是不是感觉有点神奇?我还记得之前给学生们讲这部分内容的时候,有个小家伙一脸迷糊地问我:“老师,这放缩法咋感觉像是在‘作弊’呢?”我笑着回答他:“这可不是作弊哦,这是数学的智慧!就像你走在路上,遇到一个大石头挡道了,咱们总不能硬撞上去吧,得绕个弯或者找个更简单的路过去,这放缩法就是咱们在数学道路上找的‘捷径’!”那不等式放缩法有啥用呢?用处可大啦!比如说在一些数列求和的问题里,如果直接求和很难算,咱们就可以用放缩法来估计和的范围。

还有在证明一些不等式的结论时,放缩法往往能起到关键作用,让看似复杂的问题一下子变得清晰起来。

不过呢,放缩法也不是随便放缩的,要是放缩得不合理,那可就得出错误的结论啦。

这就好比你修房子,尺寸要是搞错了,房子可就歪歪斜斜没法住人了。

所以在使用放缩法的时候,一定要小心谨慎,多思考多尝试。

再给大家说个我自己的经历。

有一次我在做一道数学题,用了放缩法,结果怎么都证明不出来。

我检查了好几遍,才发现是放缩的时候放得太大了,把原本成立的不等式给弄“变形”了。

从那以后,我每次用放缩法都会特别小心,反复确认放缩的合理性。

常用不等式-放缩技巧

常用不等式-放缩技巧

一:一些重要恒等式ⅰ:12+22+…+n2=n(n+1)(2n+1)/6ⅱ: 13+23+…+n3=(1+2+…+n)2Ⅲ:cosa+cos2a+…+cos2n a=sin2n+1a/2n+1sinaⅳ:e=2+1/2!+1/3!+…+1/n!+a/(n!n) (0<a<1) ⅴ:三角中的等式(在大学中很有用)cosαcosβ= 1/2[cos(α+β)+cos(α-β)]sinαcosβ= 1/2[sin(α+β)+sin(α-β)]cosαsinβ= 1/2 [sin(α+β)+sin(α-β)]sinαsinβ=-1/2[cos(α+β)-cos(α-β)]sinθ+sinφ=2sin(θ/2+θ/2)cos(θ/2-φ/2)sinθ-sinφ=2cos(θ/2+φ/2)sin(θ/2-φ/2)cosθ+cosφ=2cos(θ/2+φ/2)cos(θ/2-φ/2)cosθ-cosφ=-2sin(θ/2+φ/2)sin(θ/2-φ/2)tan+tanB+tanC=tanAtanBtanCcotAcotB+cotBcotC+cotCcotA=1tan(A/2)tan(B/2)+tan(B/2)tan(C/2)+tan(C/2)tan(A/2)=1sin2A+sin2B+sin2C=4sinAsinBsinC ⅵ:欧拉等式 e∏i=-1 (i是虚数,∏是pai)ⅶ:组合恒等式(你们自己弄吧,我不知怎样用word 编)二重要不等式1:绝对值不等式︱︱x︱-︱y︱︱≤∣x±y∣≤︱x︱+︱y︱(别看简单,常用)2:伯努利不等式(1+x1)(1+x2)…(1+x n)≥1+x1+x2+…+x n(x i符号相同且大于-1)3:柯西不等式(∑ a i b i)2≤∑a i2∑b i24:︱sin nx︱≤n︱sin x︱5; (a+b)p≤2p max(︱a p︱,︱b p︱)(a+b)p≤a p+ b p (0<p<1)(a+b)p≥a p+ b p (p>1)6:(1+x)n≥1+nx (x>-1)7:切比雪夫不等式若a1≤a2≤…≤a n, b1≤b2≤…≤b n∑a i b i≥(1/n)∑a i∑b i若a1≤a2≤…≤a n, b1≥b2≥…≥b n∑a i b i≤(1/n)∑a i∑b i三:常见的放缩(√是根号)(均用数学归纳法证)1:1/2×3/4×…×(2n-1)/2n<1/√(2n+1);2:1+1/√2+1/√3+…+1/√n>√n;3:n!<【(n+1/2)】n4:n n+1>(n+1)n n!≥2n-15:2!4!…(2n)!>{(n+1)!}n6:对数不等式(重要)x/(1+x)≤㏑(1+x)≤x 7:(2/∏)x≤sinx≤x8:均值不等式我不说了(绝对的重点)9:(1+1/n)n<4四:一些重要极限(书上有,但这些重要极限需熟背如流)。

不等式证明 之 放缩法

不等式证明 之 放缩法

不等式证明 之 放缩法放缩法的定义所谓放缩法,即要证明不等式A<B 成立,有时可以将它的一边放大或缩小,寻找一个中间量,如将A 放大成C ,即A<C ,后证C<B ,这种证法便称为放缩法。

使用放缩法的注意事项(1)放缩的方向要一致。

(2)放与缩要适度。

(3)很多时候只对数列的一部分进行放缩法,保留一些项不变(多为前几项或后几项)。

(4)用放缩法证明极其简单,然而,用放缩法证不等式,技巧性极强,稍有不慎,则会出现放缩失当的现象。

典例分析:例1、 设x>y>z ,n *N ∈,且z x n z y y x -≥-+-11恒成立,求n 的最大值.例2、 已知:x>0,y>0,z>0,求证:z y x z yz y y xy x ++>+++++2222.例3、 求证:n n n 21...31211112<++++<-+)(, n *N ∈.例4、 求证:21...31211222<++++n ,n *N ∈.变式:求证:471...31211222<++++n,n *N ∈.例5、 已知:)()1(...433221+∈+⨯++⨯+⨯+⨯=N n n n a n ,, 求证:2)2(2)1(+<<+n n a n n n .例6、{}n b 满足:2111,(2)3n n n b b b n b +≥=--+(1) 用数学归纳法证明:n b n ≥(2) 1231111...3333n n T b b b b =++++++++,求证:12n T < 解:(1)略(2) 13()2(3)n n n n b b b n b ++=-++又 n b n ≥132(3)n n b b +∴+≥+ , *n N ∈ 迭乘得:11132(3)2n n n b b -++≥+≥ *111,32n n n N b +∴≤∈+ 234111111111 (2222222)n n n T ++∴≤++++=-< 点评:把握“3n b +”这一特征对“21(2)3n n n b b n b +=--+”进行变形,然后去掉一个正项,这是不等式证明放缩的常用手法。

不等式的放缩法基本公式

不等式的放缩法基本公式

不等式的放缩法基本公式1.加减法:对于不等式a<b,可以加上一个等式(或不等式)的两边,得到a+c<b+c。

同样地,可以减去一个等式(或不等式)的两边,得到a-c<b-c。

2. 乘除法:对于不等式a < b,如果c > 0,则乘以一个正数的两边,不等号方向不变,得到ac < bc。

如果c < 0,则乘以一个负数的两边,不等号方向反转,得到ac > bc。

同样地,除以一个正数的两边,不等号方向不变;除以一个负数的两边,不等号方向反转。

3.平方:对于不等式a<b,如果a和b都是非负数,可以对其进行平方运算,得到a^2<b^2、如果a和b都是负数,得到a^2>b^24.开方:对于不等式a<b,如果a和b都是非负数且不超过1,可以对其进行开方运算,得到√a<√b。

如果a和b都是正数且大于1,得到√a>√b。

5.绝对值:对于不等式,a,<,b,可以根据a和b的正负情况分别讨论。

如果a和b都是非负数,得到a<b。

如果a和b都是负数,得到-a<-b。

6.倍增法:对于不等式a<b,可以重复加或者减一个相同的数,直到得到符合条件的不等式。

这些是不等式的放缩法的基本公式和方法,但实际问题中常常还需要结合具体情况进行灵活运用。

同时,需要注意的是,放缩法只是解决不等式问题的一种方法,不是唯一的方法,有时候可能需要结合其他方法一起使用。

最重要的是,解决不等式问题时需要保持逻辑性和推理能力,严谨地进行分析和求解。

放缩法大全

放缩法大全

a −1 + 1 − 2a − ln x 解(1):令g ( x) = f ( x) − ln x = ax + x 1 (a , x 1) 2 a − 1 1 ax 2 − x + 1 − a [ax − (1 − a)]( x − 1) g ( x) = a − 2 − = = 2 x x x x2 1 a[ x − ( − 1)]( x − 1) a g ( x) = 0 (或用二次函数图象分 析) 2 x
1 1 1 1 1 1 + + ... + dx + dx + ... + dx 2 3 n +1 1 x x x 2 n
n +1 2 3 n +1
n
=

1
1 dx = ln( n + 1) x
1 n
n +1

n
1 dx = ln( n + 1) − ln n x
同理证右。
n +1 1 n ln( ) ln( ) n n n −1
所以:
ln n 2 f (n) − f (n − 1) 2 n

ln n 2 f (n) − f (n − 1) 2 n
取n=2,3,…,n累加
ln 2 2 ln 32 ln n 2 2n 2 − n − 1 + 2 + ... + 2 f (n) − f (1) = 2 2 3 n 2(n + 1)
1 m an = 4n − 3, { }前n项和为S n , 若S 2 n +1 − S n 恒成立, an 15 求整数m的最小值。
1 1 1 m 解: + + ... + 对n N + 恒成立, an +1 an + 2 a2 n +1 15 1 1 1 令f ( n ) = + + ... + , an +1 an + 2 a2 n +1 1 1 1 f (n − 1) = + + ... + an an +1 a2 n −1

不等式放缩技巧

不等式放缩技巧

不等式常用放缩技巧:模型一、等比数例倒求放缩目标。

小于常值题是重点,因为它涉及一个考点,例如:证明不等式:11112112123123n++++<⨯⨯⨯⨯⨯⨯⨯首先这个2不是随便的一个数,为什么不是5/3,不是3? 我们首先代入一下:q-11=5/3,3,2分别解得: q=52,32,21那么通项公式:an=(52)1-n,(32)1-n ,( 21)1-n <1+2)25(1+3)25(1+…+n )25(1<5211-=5/3(n 取多少开始才有可能后式大于前式,就很难求出。

)<1+2)23(1+3)23(1+…+n)23(1<5211-=5/3(n>2)<1+2)2(1+3)2(1+…+n)2(1<2111-=2(n>1)后两种很容易发现不超三项就开始成立。

所以一般出题出n>1时就开始成立 再见青海高考2014年高考题:解:(1)a n+1=3an +1,根据模型求解:是一次函数斜截式肯定可以用点斜式表示 (a n+1-Y0)=3(an –X0),为构成等比式,直接X0=Y0 解得Y0=X0=-1/2所以(a n+1+1/2)=3(a n +1/2) 所以a n +1/2为等比数列所a n +1/2=(a1+1/2)31-n =23n所以a n =213-n(2)小于3/2,不妨用等比数列极限=q-11=3/2,解得q=1/3 所以通项Bn=(31)1-n ,只需n a 1=132-n <(31)1-n =131-n ,也即2.13-n <13-n ,也即 1<n 3-2.13-n = .13-n (只要N>1显然成立)则<1+31+(31)2+…+(31)n<3111-=3/2当然考试时不用那么啰嗦。

这只是思路建立目标与已知的关系。

上述放缩是等比数列为模板倒求放缩比,此方法用在指数型,首先考虑,等比数列模型放缩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档