高一上册的数学教学计划
2024年高一数学上学期教学计划(三篇)

2024年高一数学上学期教学计划教学计划:高一数学上学期一、课程概述高一数学上学期的重点是建立起抽象思维和逻辑推理能力,为后续学习打下坚实的基础。
本学期的内容包括:集合与函数、三角函数、数列与数学归纳法、统计与概率等。
通过这些内容的学习,学生将培养出正确的数学思维方式和解决问题的能力。
二、教学目标1. 培养学生对数学的兴趣和学习数学的乐趣;2. 建立起学生的数学思维和逻辑推理能力;3. 提高学生的数学综合素养,培养他们运用数学知识解决实际问题的能力;4. 培养学生的合作与交流能力。
三、教学内容和教学进度安排1. 集合与函数(4周)- 集合的概念与表示方法- 集合的基本运算- 集合的关系与判定- 函数的概念与表示- 函数的运算与性质- 函数的应用2. 三角函数(4周)- 角度的概念与表示- 弧度制与角度制的换算- 三角函数的定义与性质- 三角函数的图像与性质- 三角函数的应用3. 数列与数学归纳法(3周)- 数列的概念与表示- 等差数列与等比数列- 通项公式与求和公式- 数学归纳法的基本思想与应用4. 统计与概率(3周)- 统计调查与统计图表- 基本统计量与频率分布- 概率的概念与性质- 事件的概念与运算- 概率的计算方法与应用四、教学方法在教学过程中,将采用多种教学方法,包括讲授、讨论、实践、游戏等,以激发学生学习的积极性和主动性。
同时,将注重启发式教学和探究式学习,帮助学生主动参与探索和思考,培养他们的独立思考和问题解决能力。
五、教学评价在教学过程中,将采用多种评价方式,包括平时作业、课堂表现、小组合作学习等。
同时,针对学生的不同能力水平,设计不同难度的作业和评价标准,确保评价的公正性和准确性。
六、教学资源支持为了提高教学效果,将充分利用现代教育技术手段,如多媒体教具、网络资源等,为学生提供更加生动、直观的学习材料和互动体验,激发他们的学习兴趣和积极性。
七、教学考核与跟踪在教学过程中,将及时进行学生的学习情况跟踪与反馈,针对学生的学习进展和困难,进行个性化辅导和指导,确保教学效果的最大化。
上学期高一数学教学计划5篇

上学期高一数学教学计划5篇上学期高一数学教学计划1一、制定的依据随着高一新教材的全面实施,本年级数学学科的教学进入了新课程改革实际阶段,高一数学教学计划。
本计划制定的依据主要是以下三个:(1)二期课改的理念:一个为本、三类课程、三维目标(2)新数学课程标准(3)三本书:课本、教参、练习册(4)本校教研组对本学期学科的要求二、基本情况分析高一(3)全班共52人,男生24人,_28人。
上学期期末为区统测,平均分为54.1分,合格率为5%,优秀率为0%,低分率为56%。
高一(4)全班共53人,男生26人,_27人。
上学期期末为区统测,平均分为50.3分,合格率为3%,优秀率为0%,低分率为62%。
从上学期期末统测来看,我班的学生在数学学习上可以说既有优势也有不足。
优势是:1、有潜力;2、师生关系比较融洽,互相信任,配合默契。
存在的不足是:1、聪明有余,而努力不足;2、男生聪明,上课积极,但不够勤奋、踏实;_认真,但上课效率不高,学得不够灵活。
3、从期末统测来看,差生的比重大;4、个别学生懒惰成性,学习态度、学习习惯极差;5、平时学习不够用心,自觉,专心思考、钻研的时间太少;6、一些同学学习成绩起伏大,不稳定;7、一些好学生满足现状,骄傲自满,思想放松,导致成绩退步;8、学习兴趣,动力,上进心不足。
三、本学期力争达到的目标1、完成三类课程的教学任务。
基础性课程要扎扎实实,夯实基础;拓展性课程要适当延伸和补充,进一步提高学生的能力和水平;研究性课程要重过程,不重结果,培养学生自主学习,探索研究的习惯与品质。
2、完成新数学课程标准规定的教学目标。
3、进一步规范学生的学习习惯(包括预习、上课、作业、复习等)。
4、转化学困生,提高成绩。
有些学生成绩总是上不去,以为不是块读数学的料,久而久之,产生放弃数学,讨厌数学的心理。
由此,我在学习中,要多方面激发其学习兴趣,耐心指导,不断激励。
让其感受到成功的喜悦,增强自信心,让其喜欢数学,找到学习数学的乐趣。
高一第上学期数学教学计划3篇

高一第上学期数学教学计划3篇高一第上学期数学教学计划篇1本学期担任高一两班的数学教学工作,两班学生共有120人,初中的基础参差不齐,但两个班的学生整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。
一、指导思想:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。
通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
一、教学目标:(一)情意目标(1)通过分析问题的方法的教学,培养学生的学习的兴趣。
(2)提供生活背景,通过数学建模,让学生体会数学就在身边,培养学数学用数学的意识。
(3)在探究函数、等差数列、等比数列的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识(4)基于情意目标,调控教学流程,坚定学习信念和学习信心。
(5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。
高一上数学教学计划优秀8篇

高一上数学教学计划优秀8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作计划、工作总结、述职报告、合同协议、演讲致辞、条据文书、心得体会、策划方案、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work plans, work summaries, job reports, contract agreements, speeches, documents, insights, planning plans, teaching materials, other sample essays, and more. If you want to learn about different sample formats and writing methods, please stay tuned!高一上数学教学计划优秀8篇为了写出好的教学计划,你打算从哪些角度来思考呢,一份有意义的教学计划是能够提升我们教学能力的,以下是本店铺精心为您推荐的高一上数学教学计划优秀8篇,供大家参考。
高一数学教学工作计划7篇

高一数学教学工作计划7篇高一数学教学工作计划篇1一、指导思想:我们要培养学生在数学课程教学的基础上,提高自身的数学素养,满足个人发展与社会进步的要求。
主要目标如下:1、掌握主要的数学基础知识和基本技能,理解基本的数学概念和数学的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。
通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理和数形结合的思想等基本能力。
3、提高分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5、提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6、具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、要运用的教学方法1、激发学生的学习兴趣和信心,引发学生的学习热情。
2、用类比,推广,特殊化,化归和数形结合的思想等思想方法的运用,培养学生思考问题的方式,提高数学思维能力,培育学生的探究精神。
3、以具有时代性和现实感的素材创设教学情境,加强数学活动,发展学生的应用意识。
选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。
4、组织学生思考和探索,改进学生的学习方式。
是学生养成有逻辑思维的习惯。
三、对学生情况的分析我现在所教的两个班的学生的学习基础不好,自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性。
班级存在的最大问题是学生的计算能力太差,学生不喜欢去算题,嫌麻烦,特别是遇到复杂点的计算题,学生就怕。
高一上册数学教学工作计划汇编五篇

高一上册数学教学工作计划高一上册数学教学工作计划汇编五篇时间流逝得如此之快,我们的工作又进入新的阶段,为了今后更好的工作发展,该为接下来的学习制定一个计划了。
那么你真正懂得怎么制定计划吗?以下是小编为大家整理的高一上册数学教学工作计划5篇,欢迎阅读与收藏。
高一上册数学教学工作计划篇1一、教学目标1.知识与技能目标(1). 掌握集合的两种表示方法;能够按照指定的方法表示一些集合.(2).发展学生运用数学语言的能力;培养学生分析、比较、归纳的逻辑思维能力.2.过程与方法目标①通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一。
因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养。
②教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力情感态度与价值观目标感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯;学习从数学的角度认识世界;通过合作学习增强合作意识;培养数学的特有文化——简洁精炼,体会从感性到理性的思维过程。
2、教材分析本节课位于我校现行教材≤中等职业教育国家规划教材≥数学第一章第一节≤集合≥的第二课时,这节课主要学习集合的表示方法。
集合语言是现代数学的基本语言。
通过集合语言的学习,有利于学生简明准确地表达学习的数学内容。
集合的初步知识是学生学习、掌握和使用数学语言的基础,是中职数学学习的出发点。
在中职数学中,这部分知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。
例如,在后续学习的集合的相关内容和第二章≤不等式≥、第三章≤函数≥,在代数中用到的有数集、解集等;在几何中用到的有点集,都离不开集合。
也是研究数学问题不可缺少的工具。
这一课在本章的学习有很重要的意义,也是本章后续学习和后续学习的基础,起到承上启下的作用。
3、学情分析学生在初中阶段的学习中,虽然已经有了对集合的初步认知,由于中职学生的现状,学生基础比较弱,学习习惯比较差,根据我校的现行教材结合学生的实际情况,为了培养学生良好的学习习惯,打好基础,对集合的两种表示方法:列举法和描述法通过讲练结合、不断地巩固练习、提高练习来达到标准要求,鼓励学生理解的基础上记忆的学习方法来学习。
高一数学第一学期教学工作计划3篇

高一数学第一学期教学工作计划3篇高一数学第一学期教学工作计划篇1本学期担任高一(14)班的数学教学工作,本班学生有58人,学生人数比较多,上课难度比较大,还有各学生中考成绩普遍较差,也给教学带来一定的难度,初中的基础参差不齐,但班上学生整体水平还可以;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。
一、教学内容本学期将完成数学必修1和数学必修4(人教版)两本教材的学习,教学辅助材料有《同步导学》。
二、教学目标与要求必修1,主要涉及两章内容:第一章集合通过__学习,使学生感受到用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言表示数学对象,为以后的学习奠定基础。
1.了解集合的含义,体会元素与集合的属于关系,并初步掌握集合的表示方法;2.理解集合间的包含与相等关系,能识别给定集合的子集,了解全集与空集的含义;3.理解补集的含义,会求在给定集合中某个集合的补集;4.理解两个集合的并集和交集的含义,会求两个简单集合的并集和交集;5.渗透数形结合、分类讨论等数学思想方法;6.在引导学生观察、分析、抽象、类比得到集合与集合间的关系等数学知识的过程中,培养学生的思维能力。
第二章函数的概念与基本初等函数Ⅰ教学__时应立足于现实生活从具体问题入手,以问题为背景,按照问题情境数学活动意义建构数学理论数学应用回顾反思的顺序结构,引导学生通过实验、观察、归纳、抽象、概括,数学地提出、分析和解决问题。
通过__学习,使学生进一步感受函数是探索自然现象、社会现象基本规律的工具和语言,学会用函数的思想、变化的观点分析和解决问题,达到培养学生的创新思维的目的。
1.了解函数概念产生的背景,学习和掌握函数的概念和性质,能借助函数的知识表述、刻画事物的变化规律;2.理解有理指数幂的意义,掌握有理指数幂的运算性质;掌握指数函数的概念、图象和性质;理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质;了解幂函数的概念和性质,知道指数函数、对数函数、幂函数时描述客观世界变化规律的重要数学模型;3.了解函数与方程之间的关系;会用二分法求简单方程的近似解;了解函数模型及其意义;4.培养学生的理性思维能力、辩证思维能力、分析问题和解决问题的能力、创新意识与探究能力、数学建模能力以及数学交流的能力。
高一上册数学教师教学工作计划5篇

高一上册数学教师教学工作计划5篇高一上册数学教学工作计划1(一):认真按时完成教学任务,本学期学完高一数学的全部内容,并力争挤出时间学习高二数学的第一章,为高三学习争取更多的时间。
(二):继续实施“导学案教学方法”完善导学案,形成集美中学特色的教学方法,培养学生自我学习的能力和习惯,使学生做到简单知识自己能学会,较难知识在老师点拔下能学会,难度大的知识在老师的讲解下能轻松学会。
(三):教师间相互听课,每周每个教师听课不少于两节,并及时的反馈交流,互相取长补短使老教师呆板陈旧的教学方法变得活泼生动,充满生机,使新教师教学水平逐步走向成熟而稳健;组织好期中、期末的复习、考试、出题、评卷、讲评、个别指导工作,约在12周左右进行期中考试。
(五)加强尖子生的培养工作,定期对他们进行辅导或者跟踪检测,以使他们成为全市的数学尖子,为学校争光,进而带动全校数学成绩的提高,提高集美中学的数学层次。
(六)重点工作放在中下等学生的教学、管理、辅导、心理调节与学习方法指导上,使他们学所有所得、学有所成,培养他们的自信心,自我学习的意识和能力,着眼于学生的未来,迫使他们养成良好的学习习惯,思维习惯,行为习惯,以期在高考中取得优异成绩,为学校赢得更大的荣誉。
高一上册数学教学工作计划2一.学情分析我校选用的数学教材是由人民教育出版社、课程教材研究所、中学数学课程教材研究开发中心编著的A版教材。
与旧教材作一比较,发现本套教材是在继承我国高中数学教科书编写优良传统和基础上积极创新,充分体现了数学的美学价值和人文精神。
我校是一所普通的高中,在重点高中和私立学校扩招的影响下,我校新生的素质可想而知了。
学生基础差,学习兴趣不大,怎样调动学生的学习兴趣是本期在教学中要解决的重要问题。
二.教材分析本教材有下列几个特点:1、更加注重强调数学知识的实际背景和应用,使教材具有很强的“亲和力”,即以生动活泼的呈现方式,激发学生的兴趣和美感,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,使学生兴趣盎然地投入学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一上册的数学教学计划高一上册的数学教学计划为了能够帮助大家对于新学期的新课程有一个更全面的教学计划,数学网为大家准备了高一上册数学教学计划格式,欢迎大家阅读。
Ⅰ.教学内容解析本节课的教学内容,是指数函数的概念、性质及其简单应用.教学重点是指数函数的图像与性质.这是指数函数在本章的位置.指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数.它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践.指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础.因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程.指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义.Ⅱ.教学目标设置1.学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念.2.学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小.3.学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法.4.在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力.Ⅲ.学生学情分析授课班级学生为南京师大附中实验班学生.1.学生已有认知基础学生已经学习了函数的概念、图象与性质,对函数有了初步的认识.学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力.学生已有研究一次函数、二次函数等初等函数的直接经验.学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯.2.达成目标所需要的认知基础学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力.3.难点及突破策略难点:1.对研究函数的一般方法的认识.2.自主选择底数不当导致归纳所得结论片面.突破策略:1.教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段.2.组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思.3.对猜想进行适当地证明或说明,合情推理与演绎推理相结合.Ⅳ.教学策略设计根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式.通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段.学生的自主学习,具体落实在三个环节:(1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念.(2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升.(3)性质应用阶段,学生自主举例说明指数函数性质的应用.研究函数的性质,可以从形和数两个方面展开.从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。
借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明.Ⅴ.教学过程设计1.创设情境建构概念师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系.你能用函数的观点分析下面的例子吗?师:大家知道细胞分裂的规律吗(出示情境问题)[情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?[情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%.如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?[师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0.84x.师:这样的函数你见过吗是一次函数吗二次函数这样的函数有什么特点你能再举几个例子吗〖问题1类似的函数,你能再举出一些例子吗这些函数有什么共同特点能否写成一般形式[设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系.引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示.初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构.指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0.a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义.为了使指数函数与对数函数能构成反函数,规定a≠1.此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”.[师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax.[教学预设]学生能举出具体的例子——y=3x,y=0.5x….如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现.进而提出这类函数一般形式y=ax.方案1:生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))师:板书学生举例(稍停顿),能举一个不太一样的例子吗(提示:底数非得大于1吗)生:函数y=0.5x,y=x,y=(-2)x,y=1x…师:板书学生举例(停顿),好像有不同意见.生:底数不能取负数.师:为什么?生:如果底数取负数或0,x就不能取任意实数了.师:我们已经将指数的取值范围扩充到了R,我们希望这些函数的定义域就是R.(若没有学生注意到底数的取值范围,可引导学生关注例举函数的定义域.若有同学提出情境中函数的定义域应为N+,师:我们已经将指数的取值范围扩充到了R,函数y=2x和y=0.84x中,能否将定义域扩充为R你们所举的例子中,定义域是否为R)师:这些函数有什么共同特点?生:都有指数运算.底数是常数,自变量在指数位置.(若有学生举出类似y=max的例子,引导学生观察,它依然具有自变量在指数位置的特征.而刻画这一特点的最简单形式就是y=ax,从而初步建立函数模型y=ax,初步体会基本初等函数的作用.) 师:具备上述特征的函数能否写成一般形式?生:可以写成y=ax(a>0).师:当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义)方案2:生:(举例)函数y=3x,y=4x,…(函数y=ax(a>1))师:板书学生举例(稍停顿),能举一个不太一样的例子吗(提示:底数非得大于1吗)生:函数y=0.5x,y=x,…师:这些函数的自变量是什么它们有什么共同特点生:(可用文字语言或符号语言概括)都有指数运算.底数是常数,自变量在指数位置.可以写成y=ax.师:y=ax中,自变量是x,底数a是常数.以上例子的不同之处,是底数不同.那你觉得底数的取值范围是什么呢?生:底数不能取负数.师:为什么?生:如果底数取负数或0,x就不能取任意实数了.师:为了研究的方便,我们要求底数a>0.当a=1时,函数就是常数函数y=1.对于这个函数,我们已经比较了解了.通常我们还规定a≠1.今天我们就来了解一下这个新函数.(出示指数函数定义) [阶段小结]一般地,函数y=ax(a>0且a≠1)称为指数函数.它的定义域是R.[意图分析]概念教学应当让学生感受形成过程,了解知识的来龙去脉,那种直接抛出定义后辅以“三项注意”的做法剥夺了学生参与概念形成的过程.此处不宜纠缠于y=22x是否为指数函数等细枝末节.指数函数的基本特征是自变量出现在指数上,应促使学生对概念本质的理解.指数函数概念的形成,经历了一个由粗到细,由特殊到一般,由具体到抽象的渐进过程,这样更加符合人们的认知心理.2.实验探索汇报交流(1)构建研究方法师:我们定义了一个新的函数,接下来,我们研究什么呢?生:研究函数的性质.〖问题2你打算如何研究指数函数的性质?[设计意图]学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.在此认知基础上,引导学生自己提出所要研究的问题,寻找研究问题的方法.开始的问题较宽泛,教师要缩小问题范围,用提示语口头提问启发.教师应充分尊重学生的思维个性,提供自主探究的平台,通过汇报交流活动达成共识实现殊途同归.中学阶段,特别是高一新授课阶段,提倡学生以形象思维作为抽象思维的支撑.[师生活动]师生经过讨论,解决启发性提示问题,确定研究的内容与方法.[教学预设]学生能够根据已有知识和经验,在教师的启发引导下,明确研究的内容以及研究的方法.部分学生会提出先作出具体函数图象,观察图象,概括性质,并进而归纳出一般函数的图象的分布特征等性质.另一部分学生可能从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.师:(稍等片刻)我们一般要研究哪些性质呢?生:变量取值范围(定义域、值域)、单调性、奇偶性.师:(板书学生回答)怎样研究这些性质呢?生:先画出函数图象,观察图象,分析函数性质.生:先研究几个具体的指数函数,再研究一般情况.师:板书“画图观察”,“取特殊值”(若没有学生提出从特殊到一般的思路.师:底数a的取值不同,函数的性质可能也会有不同.一次函数y=kx(k≠0)中,一次项系数k 不同,函数性质就不同.底数a可以取无数多个值,那我们怎么办呢)(若有学生通过对y=2x解析式的分析,得到了性质,并提出从具体函数的解析式出发,研究函数性质,猜想一般函数的性质,然后再作出图象加以验证.师:你的想法也很有道理,不妨试一试.(仍引导学生从具体指数函数图象入手.))[意图分析]学习的过程就是一个不断地提出问题、解决问题的过程.提出问题比解决问题更重要,给学生提供由自己提出问题、确定研究方法的机会,逐渐学会研究问题,促进能力发展.(2)自主探究汇报交流师:我们确定了要研究的对象和具体做法,下面可以开始研究指数函数的性质了.〖问题3选取数据,画出图象,观察特点,归纳性质.[设计意图]若直接规定底数取值,对于为什么要以y=2x,y=3x,y=0.5x为例,为什么要根据底数的大小分类讨论,缺乏合理的解释,学生对于图象的认识是被动的.若在探究前经讨论确定底数取值,由于学生认知水平的差异,仍可能会造成部分学生被动接受.学生自主选择底数,虽有得到片面认识的可能,但通过讨论交流,学生能相互验证结论,仍能得到正确认识.并且学生能在过程中体会数据如何选择,了解研究方法.由于描点作图时列举点的个数的限制,学生对x→∞时函数图象特征缺乏直观感受.而且由于所举例子个数的限制,学生对于归纳的结论缺乏一般性的认识.教师应利用绘图软件作出底数连续变化的图象,验证猜想.数形结合、从特殊到一般的思维方法是概括归纳抽象对象的一般思维方法,本节课的重点是通过对指数函数图象性质的研究,总结研究函数的一般方法,应充分发动学生参与研究的每个过程,得到直接体验.[师生活动]学生选取不同的a的值,作出图象,观察它们之间的异同,总结指数函数的图象特征与函数性质.[教学预设]学生通过观察图象,发现指数函数y=ax(a>0且a≠1)的性质.教师用实物投影仪展示学生所画图象,学生根据具体函数图象说明具体函数性质.在学生说明过程中,教师引导学生对结论进行适当的说明,进而引导学生归纳一般指数函数的性质.教师引导学生关注列表描点作图的过程,引导学生通过反思过程,并通过动态图象验证猜想,促进学生体会数形结合的分析方法.教师尊重生成,但需引导学生区别指数函数本身的性质与指数函数之间的性质.其中⑥⑦不强加于学生.对于⑥,要引导学生在同一坐标系中画出图象,启发学生观察底数互为倒数的指数函数的图象,先得到具体的例子.对于⑦,在例1第3小题中,会有学生提出利用不同底数指数函数图象解决,可顺势利导,也可布置为课后作业,继续研究.生:自主选择数据,在坐标纸上列表作图,列出函数性质.师:(巡视,必要时参与讨论,及时提示任务,待大部分学生有结论后,鼓励学生交流,请学生汇报.)有条理地整理一下结论,讨论交流所得.(同时用实物投影仪展示学生所画图象.若没有投影仪,用几何画板作出图象.)生:(可能出现的情况)(1)在两个坐标系中画图;(2)所取底数均大于1;(3)两个底数大于1,一个底数小于1;(4)关于y轴对称的两个指数函数.师:(过程性引导)底数你是怎么取的你是怎样观察出结论的在列表过程中,你有什么发现吗为什么要在两个坐标系中画图为什么不也取两个底数小于1师:(用彩笔描粗图象,故意出错)错在哪里为什么生:指数函数是单调递增的,过定点(0,1).师:(引导学生规范表述,并板书)指数函数在(-∞,+∞)上单调递增,图象过定点(0,1).师:指数函数还有其它性质吗?师:也就是说值域为(0,+∞).生:指数函数是非奇非偶函数.师:有不同意见吗?生:当0(其它预设:(1)当a>1时,若x>0,则y>1;若x 当00,则y1.(2)学生画出y=2x和y=3x图象,得出函数递增速度的差异.(3)画出y=2x和y=0.5x图象,得到底数互为倒数的指数函数图象关于y轴对称.)师:(板书学生交流结果,整理成表格.注意区分“函数性质”与“函数之间的关系”.若有学生试图说明结论的合理性,可提供机会.)大家认为底数a>1或0[阶段小结]指数函数y=ax(a>0且a≠1)具有以下性质:①定义域为R.②值域为(0,+∞).③图象过定点(0,1).④非奇非偶函数.⑤当a>1时,函数y=ax在(-∞,+∞)上单调递增;当0⑥函数y=ax与y=()x(a>0且a≠1)图象关于y轴对称.⑦指数函数y=ax与y=bx(a>b)的图象有如下关系:x∈(-∞,0)时,y=ax图象在y=bx图象下方;x=0时,两图象相交;x∈(0,+∞)时,y=ax图象在y=bx图象上方.[意图分析]通过探究活动,使学生获得对指数函数图象的直观认识.学生观察图象,是对图形语言的理解;根据图象描述性质,是将图形语言转化为符号或文字语言.对函数的理解,是建立在三种语言相互转化的基础上的.在交流汇报过程中,一方面要通过对探究较深入学生的具体研究过程的剖析,总结提升学习方法,优化学习策略;另一方面要关注部分探究意识与能力都薄弱的学生的表现,鼓励他们大胆发言,激励他们主动参与活动,让全体学生成为真正的学习主体.自主探究活动能充分激发学生的相互学习能力,能有效帮助学生突破难点.3.新知运用巩固深化(方案一)(分析函数性质的用途)师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?师:函数的定义域是函数的基础,是运用性质的前提.值域是研究函数最值的前提.具备奇偶性的函数,可以利用对称性简化研究.指数函数过定点(0,1),说明可以将常数1转化为指数式,即1=20=30=…那么函数单调性有什么用呢?生:可以求最值,可以比较两个函数值的大小.师:那你能举出运用指数函数单调性比大小的例子吗(提示:既然是运用指数函数单调性,那应该有指数式.)生:(举例并判断大小.)师:你考察了哪个指数函数怎么想到的(规范表述)师:以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.(出示例1)(方案二)师:现在我们了解了指数函数的定义和性质,它们有什么用处呢?师:(口述并板书)你能比较32与33的大小吗?生:直接计算比较.师:那比较30.2与30.3的大小呢能不能不计算呢生:利用函数y=3x的单调性.师:能具体说明吗(引导学生规范表达)我们再试一试.(出示例1)【例1】比较下列各组数中两个值的大小:①1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.[设计意图]引导学生运用指数函数性质.对于32与33的大小比较,学生更可能计算出幂的值直接比较.变式后,学生可能作差或作商比较,转化为比较30.1与1的大小,进而运用指数函数单调性,也可能直接运用单调性.初步运用新知解决问题,注重题意理解,扩大知识迁移,感悟解题方法,达到对新知巩固记忆,加深理解.[师生活动]学生板演,教师组织学生点评.[教学预设]①②两题,学生能运用指数函数单调性解决.②题学生可能得到错误答案,教师可组织相互点评,规范表达,正确运用性质.③学生可能运用不同方法,应给予充分的时间,并在具体问题解决后引导学生总结一般方法.师:(引导学生规范表达)你考察了哪个指数函数根据函数的'什么性质师:(对③的引导)你考虑利用哪个函数是y=1.5x还是y=0.8x这两个函数有什么关联(引导学生画出图象,从形上提示:图象有什么关联)生:它们都过点(0,1).师:也就是说,可以将1转化为指数形式,即1=1.50=0.80.那接下来呢?生:比较1.50.3,0.81.2和1的大小.师:我们找到了一个比大小的中间量.以往我们计算出幂的值来比大小,现在我们指数函数的单调性,不用计算就可以比较两个幂的大小.【例2】①已知3x≥30.5,求实数x的取值范围;②已知0.2x [设计意图]指数函数单调性的逆用,同时考查指数函数的定义域.4.概括知识总结方法〖问题4本节课我们学习了哪些知识你还学会了哪些方法[设计意图]回顾所学内容,深化认知.开放式小结,不同学生有不同的收获.[师生活动]学生发言总结,交流所得.[教学预设]通过本节课对指数函数图象和性质的研究,我们获得了以下知识和方法:①指数函数的定义与性质;②研究函数的一般方法和步骤.师:本节课我们学习了什么知识?生:指数函数的定义和性质.师:回顾我们的研究过程,我们是怎样研究指数函数的?生:先确定研究的内容:定义域、值域、单调性、奇偶性和其它性质.生:然后从几个具体的指数函数开始,画出图象,列出性质,最后得到一般情况.师:这是一种从特殊到一般的研究方法.研究指数函数的方法,也是研究函数的一般方法,今后我们还会运用这样的方法研究新的函数.[意图分析]课堂总结不是对所学知识的简单回顾,应让学生在知识、方法和策略上多层次地整理,促进学生理解所用学习方法的合理性与普遍性,使学生获得知识与能力的共同进步.5.分层作业,因材施教(1)感受理解:课本第54页,习题2.2(2):1,2,3,4;(2)思考运用:运用今天的研究方法,你还能得到指数函数的其它性质吗?[设计意图]分层布置作业,“感受理解”面向全体学生,旨在掌握指数函数的图象与性质.“思考运用”提供学生运用函数研究的一般方法自主研究的机会.Ⅵ.教后反思回顾一、对于指数函数概念的认识指数函数是一种函数模型,其基本特征是自变量在指数位置.底数取值范围有规定,使得这一模型形式简单又不失本质.不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想.二、对于培养学生思维习惯的考虑在学生自主探索的过程中,教师应注意培养学生良好的思维习惯.实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯.对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明.学生不仅学到了数学知识,也初步体验了研究问题的基本方法.三、关于设计定位的反思本节课的教学设计,力图体现因材施教原则。