《运筹学》题库
《运筹学》试题及答案大全

《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
运筹学试题库

运筹学试题库一、多项选择题1、下面命题正确的是()。
A、线性规划的标准型右端项非零;B、线性规划的标准型目标求最大;C、线性规划的标准型有等式或不等式约束;D、线性规划的标准型变量均非负。
2、下面命题不正确的是()。
A、线性规划的最优解是基本解;B、基本可行解一定是基本解;C、线性规划有可行解则有最优解;D、线性规划的最优值至多有一个。
3、设线性规划问题(P),它的对偶问题(D),那么()。
A、若(P)求最大则(D)求最小;B、(P)、(D)均有可行解则都有最优解;C、若(P)的约束均为等式,则(D)的所有变量均无非负限制;D、(P)和(D)互为对偶。
4、课程中讨论的运输问题有基本特点()。
A、产销平衡;B、一定是物品运输的问题;C、是整数规划问题;D、总是求目标极小。
5、线性规划的标准型有特点()。
A、右端项非零;B、目标求最大;C、有等式或不等式约束;D、变量均非负。
6、下面命题不正确的是()。
A、线性规划的最优解是基本可行解;B、基本可行解一定是基本解;C、线性规划一定有可行解;D、线性规划的最优值至多有一个。
7、线性规划模型有特点()。
A、所有函数都是线性函数;B、目标求最大;C、有等式或不等式约束;D、变量非负。
8、下面命题正确的是()。
A、线性规划的最优解是基本可行解;B、基本可行解一定是最优;C、线性规划一定有可行解;D、线性规划的最优值至多有一个。
9、一个线性规划问题(P)与它的对偶问题(D)有关系()。
A、(P)有可行解则(D)有最优解;B、(P)、(D)均有可行解则都有最优解;C、(P)可行(D)无解,则(P)无有限最优解;D、(P)(D)互为对偶。
10、运输问题的基本可行解有特点()。
A、有m+n-1个基变量;B、有m+n个位势;C、产销平衡;D、不含闭回路。
二、简答题(1)微分学求极值的方法为什么不适用于线性规划的求解?(2)线性规划的标准形有哪些限制?如何把一般的线性规划化为标准形式? (3)图解法主要步骤是什么?从中可以看出线性规划最优解有那些特点?(4)什么是线性规划的可行解,基本解,基可行解?引入基本解和基可行解有什么作用?(5)对于任意基可行解,为什么必须把目标函数用非基变量表示出来?什么是检验数?它有什么作用?如何计算检验数?(6)确定换出变量的法则是什么?违背这一法则,会发生什么问题? (7)如何进行换基迭代运算?(8)大M 法与两阶段法的要点是什么?两者有什么共同点?有什么区别? (9)松弛变量与人工变量有什么区别?试从定义和处理方式两方面分析。
运筹学期末试题

《运筹学》试题样卷(一)一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。
2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。
3. 如果一个线性规划问题有可行解,那么它必有最优解。
4.对偶问题的对偶问题一定是原问题。
5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。
6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。
7. 度为0的点称为悬挂点。
8. 表上作业法实质上就是求解运输问题的单纯形法。
9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。
二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。
农场劳动力情况为秋冬季3500人日;春夏季4000人日。
如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。
该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。
种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。
养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。
养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。
农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。
三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。
三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。
(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20x 1, x 2 , x 3 ≥0五、求解下面运输问题。
运筹学试题及详细答案

运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。
答案:多,竞争。
《运筹学》试题

《运筹学》试题一、名词解释(20分)对偶可行基影子价格灵敏度分析平衡运输问题不平衡运输问题纯整数规划0—1规划问题混合整数规划网络最大流问题二、选择题(20分)1、我们可以通过()来验证模型最优解。
A观察B应用C实验D调查2、建立运筹学模型的过程不包括()阶段。
A观察环境B数据分析C模型设计D模型实施3、建立模型的一个基本理由是去揭晓那些重要的或有关的()A数量B变量 C 约束条件 D 目标函数4、模型中要求变量取值()A可正B可负C非正D非负5、运筹学研究和解决问题的效果具有()A连续性 B 整体性 C 阶段性 D 再生性6、如果线性规划问题有可行解,那么该解必须满足()A所有约束条件 B 变量取值非负 C 所有等式要求 D 所有不等式要求7、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。
A基 B 基本解 C 基可行解 D 可行域8、线性规划问题是针对()求极值问题.A约束B决策变量 C 秩D目标函数9、如果第K个约束条件是“≤”情形,若化为标准形式,需要()A左边增加一个变量B右边增加一个变量C左边减去一个变量D右边减去一个变量10、若某个bk≤0, 化为标准形式时原不等式()A不变 B 左端乘负1 C 右端乘负1 D 两边乘负1三、填空题(20分)1、线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求()的线性规划问题与之对应,反之亦然。
2、在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的()。
3、如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为()。
4、对偶问题的对偶问题是()。
5、若原问题可行,但目标函数无界,则对偶问题()。
6、在某线性规划问题中,已知某资源的影子价格为Y1,相应的约束常数b1,在灵敏度容许变动范围内发生Δb1的变化,则新的最优解对应的最优目标函数值是()(设原最优目标函数值为Z﹡)7、若某约束常数bi的变化超过其容许变动范围,为求得新的最优解,需在原最优单纯形表的基础上运用()求解。
《运筹学》题库

运筹学习题库数学建模题(5)1、某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:试建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。
解:设甲、乙产品的生产数量应为x1、x2,则x1、x2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x , 2建立使利润最大的生产计划的数学模型,不求解。
解:设甲、乙两种产品的生产数量为x 1、x 2, 设z 为产品售后总利润,则max z = 4x 1+3x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+,50040005.253000222112121x x x x x x x 3、一家工厂制造甲、乙、丙三种产品,需要三种资源——技术服务、劳动力和行政管理。
每种产品的资源消耗量、单位产品销售后所能获得的利润值以及这三种资源的储备量如下表所示:建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。
解:建立线性规划数学模型:设甲、乙、丙三种产品的生产数量应为x 1、x 2、x 3,则x 1、x 2、x 3≥0,设z 是产品售后的总利润,则max z =10x 1+6x 2+4x 3s.t.⎪⎪⎩⎪⎪⎨⎧≥≤++≤++≤++03006226005410100321321321321x x x x x x x x x x x x ,, 4、一个登山队员,他需要携带的物品有:食品、氧气、冰镐、绳索、帐篷、照相器材、通信器材等。
每种物品的重量合重要性系数如表所示。
设登山队员可携带的最大重量为25kg,试建立队员所能携带物品最大量的线性规划模型,不求解。
解:引入0—1变量x i , x i =1表示应携带物品i ,,x i =0表示不应携带物品I⎩⎨⎧==≤++++++++++++=7,...,2,1,10254212625510481418152076543217654321i x x x x x x x x x x x x x x x naxz i 或5、工厂每月生产A 、B 、C 三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源根据市场需求,预测三种产品最低月需求量分别是150、260、120,最高需求量是250、310、130,试建立该问题数学模型,使每月利润最大,为求解。
(完整版)运筹学习题集

销地
产地
1
2
3
产量
1
5
1
8
12
2
2
4
1
14
3
3
6
7
4
销量
9
10
11
表3-4
销地
产地
1
2
3
4
5
产量
1
10
2
3
15
9
25
2
5
20
15
2
4
30
3
15
5
14
7
15
20
4
20
15
13
M
8
30
销量
20
20
30
10
25
解:
(1)在表3-3中分别计算出各行和各列的次最小运费和最小运费的差额,填入该表的最右列和最下列。得到:
+ = + +
+ =
建立数学模型:
Max z=(1.25-0.25)*( + )+(2-0.35)*( + )+(2.8-0.5) -(5 +10 )300/6000-(7 +9 +12 )321/10000-(6 +8 )250/4000-(4 +11 )783/7000-7 *200/4000
s.t
2.确定 的范围,使最优解不变;取 ,求最优解;
3.确定 的范围,使最优基不变,取 求最优解;
4.引入 求最优解;
解1.由单纯形方法得
即,原问题的最优解为
例求下面运输问题的最小值解:
1
运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。
答案:运筹学在现实生活中的应用非常广泛。
例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。
此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。
总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。
2、请简述单纯形法求解线性规划的过程。
答案:单纯形法是一种求解线性规划问题的常用方法。
它通过不断迭代和修改可行解,最终找到最优解。
具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学习题库数学建模题(5)1、某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:试建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。
解:设甲、乙产品的生产数量应为x1、x2,则x1、x2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x , 2建立使利润最大的生产计划的数学模型,不求解。
解:设甲、乙两种产品的生产数量为x 1、x 2, 设z 为产品售后总利润,则max z= 4x 1+3x 2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+,50040005.253000222112121x x x x x x x 3、一家工厂制造甲、乙、丙三种产品,需要三种资源——技术服务、劳动力和行政管理。
每种产品的资源消耗量、单位产品销售后所能获得的利润值以及这三种资源的储备量如下表所示:建立使得该厂能获得最大利润的生产计划的线性规划模型,不求解。
解:建立线性规划数学模型:设甲、乙、丙三种产品的生产数量应为x 1、x 2、x 3,则x 1、x 2、x 3≥0,设z 是产品售后的总利润,则max z =10x 1+6x 2+4x 3s.t.⎪⎪⎩⎪⎪⎨⎧≥≤++≤++≤++03006226005410100321321321321x x x x x x x x x x x x ,, 4、一个登山队员,他需要携带的物品有:食品、氧气、冰镐、绳索、帐篷、照相器材、通信器材等。
每种物品的重量合重要性系数如表所示。
设登山队员可携带的最大重量为25kg,试建立队员所能携带物品最大量的线性规划模型,不求解。
解:引入0—1变量x i , x i =1表示应携带物品i ,,x i =0表示不应携带物品I⎩⎨⎧==≤++++++++++++=7,...,2,1,10254212625510481418152076543217654321i x x x x x x x x x x x x x x x naxz i 或5、工厂每月生产A 、B 、C 三种产品,单件产品的原材料消耗量、设备台时的消耗量、资源根据市场需求,预测三种产品最低月需求量分别是150、260、120,最高需求量是250、310、130,试建立该问题数学模型,使每月利润最大,为求解。
解:设每月生产A 、B 、C 数量为321,,x x x 。
321121410x x x MaxZ ++= 250042.15.321≤++x x x14002.16.13321≤++x x x2501501≤≤x 3102602≤≤x1301203≤≤x0,,321≥x x x6、A 、B 两种产品,都需要经过前后两道工序,每一个单位产品A 需要前道工序1小时和后道工序2小时,每单位产品B 需要前道工序2小时和后道工序3小时。
可供利用的前道工序有11小时,后道工序有17小时。
每加工一个单位产品B 的同时,会产生两个单位的副产品C ,且不需要任何费用,产品C 一部分可出售盈利,其余只能加以销毁。
出售A 、B 、C 的利润分别为3、7、2元,每单位产品C 的销毁费用为1元。
预测表明,产品C 最多只能售出13个单位。
试建立总利润最大的生产计划数学模型,不求解。
解:设每月生产A 、B 数量为,,21x x 销毁的产品C 为3x 。
33221)2(273x x x x x MaxZ --++=11221≤+x x 173221≤+x x13232≤-x x0,,321≥x x x7、靠近某河流有两个化工厂(参见附图),流经第一化工厂的河流流量为每天5003m ,在两个工厂之间有一条流量为200万3m 的支流。
第一化工厂每天排放有某种优化物质的工业污水2万3m ,第二化工厂每天排放该污水1.4万3m 。
从第一化工厂的出来的污水在流至第二化工厂的过程中,有20%可自然净化。
根据环保要求,河流中的污水含量不应大于0.2%。
这两个工厂的都需要各自处理一部分工业污水。
第一化工厂的处理成本是1000元/万3m ,第二化工厂的为800元/万3m 。
现在要问满足环保的条件下,每厂各应处理多少工业污水,才能使两个工厂的总的污水处理费用最少?列出数学模型,不求解。
500万3m 200万3m解:设第一化工厂和第二化工厂的污水处理量分别为每天1x 3m 和x 2万3m ,218001000m in x x Z += st ⎪⎪⎩⎪⎪⎨⎧≥≤≥+≤≤0,4.16.18.021212211x x x x x x 8、消费者购买某一时期需要的营养物(如大米、猪肉、牛奶等),希望获得其中的营养成分(如:蛋白质、脂肪、维生素等)。
设市面上现有这3种营养物,其分别含有各种营养成分数量,以及各营养物价格和根据医生建议消费者这段时间至少需要的各种营养成分的数量问:消费者怎么购买营养物,才能既获得必要的营养成分,而花钱最少?只建立模型,不用计算。
解:设购买甲、乙、丙三种营养物的数量分别为321x x x 和、, 则根据题意可得如下线性规划模型:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥++≥+≥++≥++++=0,,45035721703652802064..452025min 32132131321321321x x x x x x x x x x x x x x t s x x x z 9、某公司生产的产品A ,B ,C 和D 都要经过下列工序:刨、立铣、钻孔和装配。
已知每问该公司该如何安排生产使利润收入为最大?(只需建立模型)解:设生产四种产品分别x 1,x 2,x 3,x 4单位则应满足的目标函数为:max z=2 x 1+3 x 2+x 3+ x 4 满足的约束条件为:123412341234123412340.50.51800228000.50.530003236000100600500400x x x x x x x x x x x x x x x x x x x x +++≤⎧⎪+++≤⎪⎪+++≤⎪+++≤⎪⎨≥⎪⎪≥⎪≥⎪⎪≥⎩ 10、某航空公司拥有10架大型客机、15架中型客机和2架小型客机,现要安排从一机场到4城市的航行计划,有关数据如表1-5,要求每天到D 城有2个航次(往返),到A,B,C 城市各4个航次(往返),每架飞机每天只能完成一个航次,且飞行时间最多为18小时,求利润最大的航班计划。
1A 2A A 城的架次为x 3A ,其余依此类推。
资源限制派出的大型客机架次不能超过10架,表示为111110A B C D x x x x +++≤同理222333152A B C A B C x x x x x x ++≤++≤班次约束飞往各城的班次要满足1231231231234442A A AB B BC C CD D D x x x x x x x x x x x x ++=++=++=++=非负性约束0ij x ≥且为整数;(i=1,2,3;j=A,B,C,D )目标函数为111222333max 100002000200020002000200020002000A B C A B C A B Cz x x x x x x x x x =++++++++1D -8000x +11、 CRISP 公司制造四种类型的小型飞机:AR1型(具有一个座位的飞机)、AR2型(具有两个座位的飞机)、AR4型(具有四个座位的飞机)以及AR6型(具有六个座位的飞机)。
AR1和AR2一般由私人飞行员购买,而AR4和AR6一般由公司购买,以便加强公司的飞行编队。
为了提高安全性,联邦航空局(F.A.A )对小型飞机的制造做出了许多规定。
一般的联邦航空局制造规章和检测是基于一个月进度表进行的,因此小型飞机的制造是以月为单位进行的。
时在任何给定的时间生产多达9架飞机。
因此,下一个月可以得到的制造天数是270天(9*30,每月按30天计算)。
Jonathan Kuring 是该公司飞机制造管理的主任,他想要确定下个月的生产计划安排,以便使盈利贡献最大化。
解:设1x 表示下个月生产AR1型飞机的数目,2x 表示AR2型,3x 表示AR4型,4x 表示AR6型目标函数:1234max 6284103125z x x x x =+++约束条件:12341234123412344791127022608171115,,,0x x x x x x x x x x x x x x x x +++≤+++≤≤≤≤≤≥1234,,,x x x x 为整数12、永辉食品厂在第一车间用1单位原料N 可加工3单位产品A 及2单位产品B ,产品A 可以按单位售价8元出售,也可以在第二车间继续加工,单位生产费用要增加6元,加工后单位售价增加9元。
产品B 可以按单位售价7元出售,也可以在第三车间继续加工,单位生产费用要增加4元,加工后单位售价可增加6元。
原料N 的单位购入价为2元,上述生产费用不包括工资在内。
3个车间每月最多有20万工时,每工时工资0.5元,每加工1单位N 需要1.5工时,若A 继续加工,每单位需3工时,如B 继续加工,每单位需2工时。
原料N 每月最多能得到10万单位。
问如何安排生产,使工厂获利最大?解:设1x 为产品A 的售出量;2x 为A 在第二车间加工后的售出量;3x 表示产品B 的售出量;4x 表示B 在第三车间加工后的售出量;5x 为第一车间所用原材料的数量,则目标函数为:12345max 89.578 2.75z x x x x x =+++-约束条件:52451253451234510000032 1.52000003020,,,,0x x x x x x x x x x x x x x x ≤⎧⎪++≤⎪⎪+-=⎨⎪+-=⎪⎪≥⎩➢ 化标准形式(5)1、将下列线性规划模型化为标准形式 解:2、将下列线性规划模型化为标准形式解:3、将下列线性规划变为最大值标准形。
12341234123412341234min 34254223142322,,0,z x x x x x x x x x x x x st x x x x x x x x =-+-+-+-=-⎧⎪++-≤⎪⎨-+-+≥⎪⎪≥⎩无约束 解: ⎪⎪⎩⎪⎪⎨⎧≥≤-=--≥++-≤++-++=无约束3213213213213210063244239232min x x x x x x x x x x x x x x x z ⎪⎪⎩⎪⎪⎨⎧≥≥-=++-≥+-≤+++-=无约束321321321321321005232732min x x x x x x x x x x x x x x x z ⎪⎪⎩⎪⎪⎨⎧≥=--=--+-=+-++⋅+⋅+--+-=-05232700)(32'max 713217542165421765421x x x x x x x x x x x x x x x x x x x x z ⎪⎪⎩⎪⎪⎨⎧≥=-++=--++=+-+++--=-06''3'32'44''22'39''''2''3'32''max 51332153321433213321x x x x x x x x x x x x x x x x x x x z''"12344'"12344'"123445'"123446'"123445,6max 3425542231423222,,,,,0z x x x x x x x x x x x x x x x x st x x x x x x x x x x x x x =-+-+⎧-+-+-=⎪++-++=⎪⎨-+-+--=⎪⎪≥⎩➢ 图解法(5)1、用图解法求解下面线性规划 min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。