土方与基坑工程 地下水控制

合集下载

土方基坑支护工程施工工艺及控制要点

土方基坑支护工程施工工艺及控制要点

第二讲土方、基坑支护工程施工工艺及控制要点一、土方工程1、土方施工主要内容土方工程是建筑工程施工的主要子分部工程之一,它包括土方开挖、回填、运输等施工过程,以及排水、降水、护坡等辅助工作。

根据土按开挖和回填的几何特征,土方开挖分为场地平整、挖基槽、挖基坑、挖土方等。

厚度在300mm以内的挖填及找平称为场地平整。

挖土宽度在3m以内,且长度等于或大于宽度3倍者称为挖基槽.挖土底面积在20㎡以内,且底长为底宽3倍以内者称为挖基坑。

山坡挖土或地槽宽度大于3m,坑底面积大于20㎡或场地平整挖填厚度超过300mm者称为挖土方.2、土的分类建筑施工中,按土石的坚硬程度、开挖的难易将土石分为八类。

3、特殊性土的特性4、土方开挖的施工准备工作5、土方开挖放坡不加支撑的容许深度当土质为天然湿度、构造均匀,水文地质条件良好(即不会发生坍塌、移动、松散或不均匀下沉),且无地下水时,开挖基坑可不必放坡,采取直立开挖不加支护,但挖方深度应按表1的规定,基坑宽应稍大于基础宽.如超过表2的规定的深度,但不大于5m时,应根据土质和施工具体情况进行放坡,以保证不塌方,其最大容许坡度按表3采用.放坡后基坑上口宽度由基础底面宽度及边坡坡度来决定,坑底宽度每边应比基础宽出30~50cm,以便于施工操作。

6、深基坑开挖6.1开挖方案选择基坑工程设计方案的第一步是选择开挖方案,不同的开挖方法适用于不同的场合,不同的的开挖方法对围护结构和支撑体系也提出不同的要求.基坑开挖方法首先可分为放坡开挖和有围护开挖两类,在有围护开挖中又可分为无支撑开挖和有支撑开挖两类,有支撑开挖方法按照开挖在平面和立面上的不同安排又可以分为中心岛开挖、沟壕式开挖、逆作法(或半逆作法)开挖等不同的方法。

(1)放坡开挖放坡开挖的直接费用最少,而且为主体工程创造了比较宽敞的施工作业空间,因而工作面宽,工期也比较短,如果条件允许,放坡开挖应该是首选的方案。

决定采用放坡开挖的因素主要是周围场地和开挖深度的限制。

简述基坑工程控制的要点

简述基坑工程控制的要点

简述基坑工程控制的要点
基坑工程控制的要点如下:
1. 基坑围护结构的设计:基坑围护结构的设计应根据地质条件、土壤性质、地下水位等因素确定。

围护结构的选用应能满足工程施工期间的需求,并确保安全稳定。

2. 地下水位的控制:在基坑工程中,地下水位的控制是至关重要的。

需要采取相应的措施,如井点降水、井筒降水、地下水封堵等,来控制地下水位,防止基坑内液化和倒塌。

3. 土方开挖的监测与控制:在进行土方开挖时,需要对土方的变形和沉降进行监测和控制。

通过合理的开挖方式和施工工艺,控制土方开挖的速度和深度,避免过快或过深的开挖导致土体失稳。

4. 基坑支护的施工与监测:基坑支护是基坑工程中最重要的一环。

支护结构的施工应按照设计要求进行,并进行实时监测。

如果发现支护结构出现变形或破坏的情况,需要及时采取补强或修复措施。

5. 地下管线的保护:在进行基坑工程时,需要对周边的地下管线进行保护。

在施工前应对周边的地下管线进行勘察和标记,并采取措施保护地下管线,如避免对管线施加过大的荷载和振动。

6. 安全措施的落实:基坑工程是高风险的工程,必须要落实安全措施。

工人必须佩戴必要的个人防护装备,施工现场必须设置安全警示标志,保证施工现场安全。

综上所述,基坑工程的控制要点包括基坑围护结构的设计、地下水位的控制、土方开挖的监测与控制、基坑支护的施工与监测、地下
管线的保护以及安全措施的落实。

这些要点的合理应用可以确保基坑工程的安全和顺利进行。

基坑工程质量控制措施

基坑工程质量控制措施

基坑工程质量控制措施基坑工程是指在土地或地下空间中进行的挖土和开挖施工的工程。

基坑施工的质量控制是确保工程施工安全和工程效果的重要环节。

以下是基坑工程质量控制的一些常用措施:1.前期勘察和设计:基坑工程施工前,需要进行详细的勘察和设计,确保工程施工合理、安全,并满足设计规范要求。

勘察应包括地质、水文、水位、土壤力学等方面,以便后续工程施工过程中的管控。

2.土壤处理:基坑的土壤要经过合理的处理和改良,以提高其稳定性和承载力。

对于松散土和湿性土壤,可以通过填土、夯实、处理等方式进行加固和改良。

3.周边建筑物的保护:在基坑施工过程中,需要采取措施确保周边建筑物的安全。

如果基坑与周边建筑物之间有共振等效应,应当进行模拟分析,并采取补强措施以确保建筑物的安全。

4.地下水位控制:基坑施工中,需要对地下水位进行监测和控制。

通过排水井、隔离板等方式,降低地下水位,以减少地下水对施工的影响。

5.底板处理:基坑的底板需要进行合理的处理和加固,以提高底板的稳定性和承载力。

常用的处理方式包括挖底平整、铺设垫层、加固地基等。

6.基坑支护结构施工:基坑支护结构施工是基坑工程中的重要环节。

其质量和稳定性直接影响到整个工程的安全和良好运行。

在施工过程中要确保支护结构的强度和刚度。

7.施工过程监测:基坑工程施工过程中,需要进行各种监测,如基坑变形监测、土壤位移监测、地下水位监测等。

通过监测,及时发现问题和变化,并采取相应措施。

8.材料质量控制:施工过程中使用的材料,如混凝土、钢筋等需要经过严格的质量控制,并符合相关国家标准和规范。

9.施工施工组织和施工计划:基坑工程施工前,需要制定详细的施工组织和施工计划,并对施工过程中的各个环节进行管控和监督。

10.安全措施:施工过程中,应遵守相关的安全规定,采取合理的安全措施,确保施工人员和周围环境的安全。

总之,基坑工程的质量控制需要从前期勘察、设计到施工过程中的各个环节进行全面管控。

只有在严格按照质量控制措施进行施工,才能确保基坑工程质量和安全,实现设计要求。

基坑施工中的地下水处理施工方案

基坑施工中的地下水处理施工方案

基坑施工中的地下水处理及工程实例前言当基础深度在天然地下水位以下时,在基础施工中常常会遇到地下水的处理问题。

一般认为,基坑开挖要具备以下的必要条件:首先保持基坑干燥状态,创造有利于施工的环境;其次是确保边坡稳定,做到安全施工,如果忽视这些必要条件,其后果是严重的。

有的基坑积水或土质稀软,工人难以立足,无法施工;有的出现“流砂现象”导致边坡塌方,地质破坏;有的内部基坑土体发生较大的位移,影响邻近建筑物的安全。

之所以会出现这些异常情况,都是由地下水引起的。

所以,在基坑施工中应对地下水的处理给予应有的重视。

一、地下水的人工处理地下水的处理有多种可行的方法,从降水方式来说可总分为止水法和排水法两大类。

止水法,即通过有效手段,在基坑周围形成止水帷幕,将地下水止于基坑之外,如沉井法、灌浆法、地下连续墙等;排水法是将基坑范围内地表水与地下水排除,如明沟排水、井点降水等。

止水法相对来说成本较高,施工难度较大;井点降水施工简便、操作技术易于掌握,是—种行之有效的现代化施工方法,已广泛应用。

本文结合工程实例对井点降水法作一简要介绍。

井点降水法,它是在拟建工程的基坑周围设能渗水的井点管,配置一定的抽水设备,不间断地将地下水抽走,使基坑范围内的地下水降低至设计深度。

井点法防水适用于具有不同几何形状的基坑,它有克服流砂、稳定边坡的作用。

由于基坑内土方干燥,有利机械化施工,缩短工期,保证工程质量与安全。

目前国内常用的井点降水法有轻型井点、喷射井点、电渗井点。

在我国,井点降水法是新中国成立后才逐步发展起来的。

在工程的基坑<槽>附近埋设大量的渗水井点管,与此同时地面组装抽水管路系统,通过井群连续抽吸地下水,使基坑范围内的地下水位降低到基坑以下一定深度,以保持基坑干燥状态。

通常把这一方法叫做井点降水法。

井点降水法具有下列优点:施工简便,操作技术易于掌握;适应性强,可用于不同几何图形的基坑;降水后土壤干燥,便于机械化施工和后续工作工序的操作;井点作用下土层固结,土层强度增加,边坡稳定性提高;地下水通过滤水管抽走,防止了流砂的危害;节省支撑材料,减少土方工程量等。

如何解决施工中的地下水位过高问题

如何解决施工中的地下水位过高问题

如何解决施工中的地下水位过高问题地下水位过高是施工中常见的问题之一,它会给施工现场带来一系列的困扰和风险。

本文将探讨如何解决施工中的地下水位过高问题,并提出相应的解决方案。

一、地下水位过高的原因分析地下水位过高可能是由于降水、附近河流的涨水、地下水埋深较浅等原因引起的。

在施工过程中,如果地下水位过高,会对土方施工、基坑开挖、基础浇筑等工程造成不利影响,增加施工风险。

二、解决地下水位过高的常用方法1. 地下水控制通过合理的地下水控制措施,可以有效地控制地下水位,减少对施工工程的干扰。

具体方法包括:井点降水、井外排水、埋设隔水层等。

不同情况下,可采用单独的方法或多种方法的组合,以确保地下水位在可控范围内。

2. 排水系统的建设在施工现场周边设置合理的排水系统,能够有效地将地下水引导出施工区域,降低地下水位。

排水系统应包括排水沟、排水管道等设施,根据施工需要设置排水的流向和方式,确保施工区域的排水畅通。

3. 封堵措施通过封堵地下水源,可以有效地减少地下水的渗入。

封堵措施包括:施工围堰、封闭井点、地下钢板桩围护等。

这些措施旨在避免地下水通过渗流路径进入工程区域,从而降低地下水位。

4. 建立监测系统在施工中,建立地下水位监测系统是非常重要的。

通过实时监测地下水位变化,可以及时采取相应措施进行调整。

监测系统可以采用水位计、监测井等设备,将监测数据传输给施工人员,提供准确的地下水位信息。

三、案例分析以某城市的地铁建设为例,地下水位过高给施工工程带来了很大的困扰。

为了解决这一问题,施工方采取了以下措施:1. 地下水控制:通过设置井点、降水井等措施,降低地下水位,确保施工过程中不受地下水的干扰。

2. 排水系统的建设:在施工区域周边设置了排水沟和排水管道,及时将地下水排出施工区域,保持工程区域相对干燥。

3. 封堵措施:采用施工围堰和地下钢板桩围护等方法,封堵地下水源,减少地下水的渗入。

4. 建立监测系统:在施工过程中,设置了地下水位监测设备,实时监测地下水位变化,及时调整施工措施,确保施工安全。

基坑支护施工的关键要点

基坑支护施工的关键要点

基坑支护施工的关键要点基坑支护施工是建筑工程中非常重要的一环,它涉及到土方开挖、地下水的控制以及基坑周边土体的稳定等问题。

只有合理的施工方法和技术,才能确保基坑的安全和稳定。

本文将从几个关键要点来探讨基坑支护施工的相关内容。

一、土方开挖土方开挖是基坑支护施工的首要步骤,也是施工过程中最为关键的环节。

在进行土方开挖前,需要进行详细的勘察和设计,确定基坑的形状、尺寸和深度等参数。

同时,还需要对地下水位进行调查和分析,以确定合适的排水方案。

在进行土方开挖时,需要根据地质情况选择合适的开挖方法,如机械开挖、爆破开挖或人工开挖等。

同时,要注意土方开挖的坡度和边坡稳定性,避免发生坡塌等意外事故。

二、地下水控制地下水是基坑支护施工中需要重点关注和控制的因素之一。

在进行基坑支护前,需要根据地下水位的高低确定相应的排水方案。

常用的排水方法包括井点降水、水平排水和深井排水等。

在进行地下水控制时,需要注意排水设备的选择和布置。

同时,还需要对地下水位进行实时监测,及时调整排水设备的工作状态,确保基坑内的地下水位保持在安全范围内。

三、基坑支护结构基坑支护结构是确保基坑安全稳定的重要措施。

常见的基坑支护结构包括钢支撑、混凝土墙和土钉墙等。

在选择支护结构时,需要根据基坑的深度、土质条件和周边环境等因素进行合理的设计。

在进行基坑支护结构施工时,需要注意施工工艺和施工质量的控制。

同时,还需要对支护结构进行实时监测,及时发现和处理可能存在的问题,确保基坑的稳定和安全。

四、土体稳定土体稳定是基坑支护施工中需要重点关注的问题之一。

在进行土体稳定性分析时,需要考虑土体的强度、稠度和水分含量等因素。

根据土体的性质和稳定性要求,选择合适的土方开挖和支护措施。

在进行土体稳定性控制时,需要进行合理的施工措施和技术。

例如,可以采用加固土体、加压注浆或土体冻结等方法来提高土体的稳定性。

同时,还需要对土体进行实时监测,及时发现和处理可能存在的问题。

总结起来,基坑支护施工的关键要点包括土方开挖、地下水控制、基坑支护结构和土体稳定等方面。

基坑降排水施工技术要点及质量控制

基坑降排水施工技术要点及质量控制

基坑降排水施工技术要点及质量控制1)安全等级:根据上海市工程建设规范《基坑工程技术规范》,本工程基坑深度为6.05~8.7m,基坑工程安全等级为二级。

2)环境保护等级:本工程基坑周边环境相对简单,基坑实施过程中无建构筑物,本工程基坑工程环境保护等级可定为三级。

2 基坑降排水施工施工降排水主要内容为0.0m以上放坡开挖前的降水、0.0m以下基坑开挖前的降水、经常性排水和基坑内永久工程建筑物施工所需的经常性降排水(包括降雨、地下水和施工废水等)。

2.1明排水第一阶段土方开挖前为敞开式地势,原地面平均高程+4.3m,地下水位水平均高程+2.5m,经计算涌水量111.6m3/d。

采用开明沟水泵强排。

2.1.1水泵选型2.1.2施工方法在基坑南侧沿开挖线开挖一道横向排水沟,纵向至开挖线每10m一道排水沟,排水沟底宽2m,按1:1.5坡开挖。

横向明沟两头分别设置集水坑,采用水泵抽排水,抽排水经三级沉淀池排出。

2.2.3安全监测1)由于明沟开挖深度较大,故排水期间需加强巡视,防止塌方。

2)明沟四周设置警示牌,禁止其他人员设备靠近。

2.2轻型井点降水2.2.1施工准备1)施工机具(1)在对滤管进行选择时,可以使用Φ48mm,壁厚为3.0mm的镀锌管或者是无缝钢管都可以,但是其长度需要控制咋2米左右,并且确保其一段使用厚度为4毫米的钢板予以焊死,而且在距离这一端1.4米的距离处在管壁上钻出15毫米的小圆孔,并使用两层的滤网将其包裹,并在其外使用网眼比较大的尼龙丝网来对其进行再次包裹,同时使用10号的铅丝来对其进行绑扎,而其另一段则与井点来进行连接。

(2)在选择井点管时,可以参照滤管的型号来选择同样标准的管材。

在对连接管进行安装时则需要使用透明管或者是胶皮管来使其与总管来进行连接,而且为了避免出现漏气问题还要使用密封胶带进行绑扎处理。

(3)在选择抽水设备时为了保障其能够充分满足使用的要求,要依据实际情况选择配置离心泵或者真空泵等,或者水箱等其他机组配件。

深基坑施工的关键技术要点梳理

深基坑施工的关键技术要点梳理

深基坑施工的关键技术要点梳理深基坑施工是建筑工程中重要的一环,涉及到土方开挖、地下水控制、支护结构等多个方面的技术要点。

本文将从这些关键技术要点入手,详细论述深基坑施工中需要注意的问题。

一、土方开挖在深基坑施工中,土方开挖是首要且必不可少的工作。

在进行土方开挖时,首先需要进行地质勘察,了解周边地层的情况。

同时,要根据地质勘察结果,制定合理的开挖方案,选择合适的开挖机械和装备。

在进行土方开挖时,要控制开挖过程中的土体变形和沉降。

为了减少土体变形,可以通过合理的施工顺序和方法,采取局部或整体支护措施等。

同时,还需要及时监测土体变形情况,以及控制挖土速度,避免引起沉降。

二、地下水控制在深基坑施工中,地下水控制是至关重要的。

地下水的水位和水压对基坑的稳定性有重要影响。

为了控制地下水,可以采取常见的降水方法,如井点降水、深井抽水等。

在进行地下水控制时,需要注意以下几点:首先,要注意降水量和降水速度,避免过快降水导致地层松散和沉降。

其次,要保证降水系统的正常运行,对降水管道和设备进行定期检查和维护。

最后,还要及时监测地下水位和水压的变化,以及对基坑周边土体的变形情况。

三、支护结构支护结构是深基坑施工中的重要环节,可以保证基坑的稳定性和安全性。

常见的支护结构形式有钢支撑、混凝土梁、土钉墙等。

在进行支护结构设计时,要根据基坑的形状、大小和土层的性质等因素,选择合适的支护方式。

同时,还要考虑基坑周围的建筑物和地下管线等因素,以及满足施工和使用要求。

在进行支护结构施工时,要严格按照设计要求进行施工,保证支护结构的质量和安全性。

同时,还要及时监测支护结构的变形情况,以及对基坑内外的土体变形情况。

四、地下连续墙地下连续墙是深基坑施工中常用的一种支护结构,可以有效地控制基坑的变形和沉降。

地下连续墙的施工主要包括槽钢桩的打入、槽钢的连接和混凝土的浇筑等步骤。

在进行地下连续墙施工时,要注意以下几点:首先,要保证地下连续墙的质量和强度,选择合适的槽钢和混凝土材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K——土壤的渗透系数;H——潜水含水层厚度;S——基坑水位降深;R——降水影响半径;宜通过试验或根据当地经验确定,当基坑安全等级为二、三级时,对潜水含水层按下式计算:kHSR2=(6-125)对承压含水层按下式计算:kSR10=(6-126)k——土的渗透系数;r0——基坑等效半径;当基坑为圆形时,基坑等效半径取圆半径。

当基坑非圆形时,对矩形基坑的等效半径按下式计算:r0=0.29(a+b)(6-127)式中a、b——分别为基坑的长、短边。

对不规则形状的基坑,其等效半径按下式计算:πAr=(6-128)式中A——基坑面积。

(2)基坑近河岸(图6-168b)2lg)2(366.1rbSSHkQ-=(b<0.5R)(6-129)(3)基坑位于两地表水体之间或位于补给区与排泄区之间时(图6-168c)])()(2cos)(2lg[)2(366.1212121bbbbrbbSSHkQ+-+-=ππ(6-130)(4)当基坑靠近隔水边界时)2(lg)lg(2)2(366.1rbrrRSSHkQ+-+-=(6-131)图6-168 均质含水层潜水完整井基坑涌水量计算简图(a)基坑远离地面水源;(b)基坑近河岩;(c)基坑位于两地表水体之间;(d)基坑靠近隔水边界2.均质含水层潜水非完整井基坑涌水量计算(1)基坑远离地面水源(图6-169a))2.01lg()1lg(366.122rhllhrRhHkQmmm+-++-=)2(hHhm+=(6-132)(2)基坑近河岸,含水层厚度不大时(图6-169b)]14.0lg25.066.0lg2lg[366.1222lMbMlrllrbslksQ-+++=(b>M/2)(6-133)式中M——由含水层底板到滤头有效工作部分中点的长度。

(3)基坑近河岸(含水层厚度很大时):]44.022.066.0lg2lg[366.1blarshrllrbslksQ-++=(b>l)(6-134)]11.066.0lg2lg[366.1blrllrbslksQ-++=(b<l)(6-135)图6-169 均质含水层潜水非完整井涌水量计算简图(a )基坑远离地面水源;(b )基坑近河岸,含水层厚度不大;(c )基坑近河岸,含水层厚度很大3.均质含水层承压水完整井基坑涌水量计算 (1)基坑远离地面水源(图6-170a ))1lg(73.20r RMS kQ += (6-136)式中 M ——承压含水层厚度。

(2)基坑近河岸(图6-170b ))2lg(73.20r b MSkQ = (b <0.5r 0) (6-137) (3)基坑位于两地表水体之间或位于补给区与排泄区之间(图6-170c )])()(2cos )(2lg[)2(73.22121021b b b b r b b SS H kQ +++-=ππ (6-138)图6-170 均质含水层承压水完整井涌水量计算简图(a )基坑远离地面水源;(b )基坑近河岸;(c )基坑位于两地表水体之间4.均质含水层承压水非完整井基坑涌水量计算(图6-171))2.01lg()1lg(73.200r M l l M r R MSkQ +-++= (6-139)图6-171 均质含水层承压水非完整井涌水量计算简图 5.均质含水层承压-潜水非完整井基坑涌水量计算)1lg()2(366.102r R h M M H kQ +--= (6-140)图6-172 均质含水层承压-潜水非完整井基坑涌水量计算简图6-2-8-3 集水明排法在地下水位较高地区开挖基坑,会遇到地下水问题。

如涌入基坑内的地下水不能及时排除,不但土方开挖困难,边坡易于塌方,而且会使地基被水浸泡,扰动地基土,造成竣工后的建筑物产生不均匀沉降。

为此,在基坑开挖时要及时排除涌入的地下水。

当基坑开挖深度不很大,基坑涌水量不大时,集水明排法是应用最广泛,亦是最简单、经济的方法。

1.明沟、集水井排水明沟、集水井排水多是在基坑的两侧或四周设置排水明沟,在基坑四角或每隔30~40m设置集水井,使基坑渗出的地下水通过排水明沟汇集于集水井内,然后用水泵将其排出基坑外(图6-173)。

图6-173明沟、集水井排水方法1-排水明沟;2-集水井;3-离心式水泵;4-设备基础或建筑物基础边线;5-原地下水位线;6-降低后地下水位线排水明沟宜布置在拟建建筑基础边0.4m以外,沟边缘离开边坡坡脚应不小于0.3m。

排水明沟的底面应比挖土面低0.3~0.4m。

集水井底面应比沟底面低0.5m以上,并随基坑的挖深而加深,以保持水流畅通。

沟、井的截面应根据排水量确定,基坑排水量V应满足下列要求:V≥1.5Q(6-141)式中Q——基坑总涌水量,按6-2-8-2节提供的方法计算。

明沟、集水井排水,视水量多少连续或间断抽水,直至基础施工完毕、回填土为止。

当基坑开挖的土层由多种土组成,中部夹有透水性能的砂类土,基坑侧壁出现分层渗水时,可在基坑边坡上按不同高程分层设置明沟和集水井构成明排水系统,分层阻截和排除上部土层中的地下水,避免上层地下水冲刷基坑下部边坡造成塌方(图6-174)。

图6-174分层明沟、集水井排水法1-底层排水沟;2-底层集水井;3-二层排水沟;4-二层集水井;5-水泵;6-原地下水位线;7-降低后地下水位线2.水泵选用集水明排水是用水泵从集水井中排水,常用的水泵有潜水泵、离心式水泵和泥浆泵,其技术性能如表6-124、表6-125、表6-126和表6-127所示。

排水所需水泵的功率按下式计算:21175ηηQHKN=(6-142)式中K1——安全系数,一般取2;Q——基坑涌水量(m3/d);H——包括扬水、吸水及各种阻力造成的水头损失在内的总高度(m);η1——水泵效率,0.4~0.5;η2——动力机械效率,0.75~0.85。

一般所选用水泵的排水量为基坑涌水量的1.5~2.0倍。

潜水泵技术性能表6-124型号流量(m3/h)扬程(m)电机功率(kw)转速(r/min)电流(A)电压(V)QY-3.5 100 3.5 2.2 2800 6.5 380 QY-7 65 7 2.2 2800 6.5 380 QY-15 25 15 2.2 2800 6.5 380 QY-25 15 25 2.2 2800 6.5 380 JQB-1.5-6 10~22.5 28~20 2.2 2800 5.7 380 JQB-2-10 15~32.5 21~12 2.2 2800 5.7 380 JQB-4-31 50~90 8.2~4.7 2.2 2800 5.7 380 JQB-5-69 80~120 5.1~3.1 2.2 2800 5.7 380 7.5JQB8-97 288 4.5 7.5 - - 380 1.5JQB2-10 18 14 1.5 - - 3802Z6 15 25 4.0 - - 380JTS-2-10 25 15 2.2 2900 5.4 - B型离心水泵主要技术性能表6-125水泵型号流量(m3/h)扬程(m)吸程(m)电机功率(kW)重量(kg)211B-17 6~14 20.3~14.0 6.6~6.0 1.5 17.0 2B-31 10~30 34.5~24.0 8.2~5.7 4.0 37.0 2B-19 11~25 21.0~16.0 8.0~6.0 2.2 19.0 3B-19 32.4~52.2 21.5~15.6 6.2~5.0 4.0 23.0 3B-33 30~55 35.5~28.8 6.7~3.0 7.5 40.0 3B-57 30~70 62.0~44.5 7.7~4.7 17.0 70.0 4B-15 54~99 17.6~10.0 5.0 5.5 27.0 4B-20 65~110 22.6~17.1 5.0 10.0 51.6 4B-35 65~120 37.7~28.0 6.7~3.3 17.0 48.0 4B-51 70~120 59.0~43.0 5.0~3.5 30.0 78.0 4B-91 65~135 98.0~72.5 7.1~40.0 55.0 89.0 6B-13 126~187 14.3~9.6 5.9~5.0 10.0 88.0 6B-20 110~200 22.7~17.1 8.5~7.0 17.0 104.0 6B-33 110~200 36.5~29.2 6.6~5.2 30.0 117.0 8B-13 216~324 14.5~11.0 5.5~4.5 17.0 111.0 8B-18 220~360 20.0~14.0 6.2~5.0 22.0 -8B-29 220~340 32.0~25.4 6.5~4.7 40.0 139.0 BA型离心水泵主要技术性能表6-126水泵型号流量(m3/h)扬程(m)吸程(m)电机功率外形尺寸(mm)重量(kg)管井的出水量q (m 3/d )按下述经验公式确定:3120k l r q s π= (6-144)r s ——过滤器半径(m );l ——过滤器进水部分长度(m ); k ——含水层的渗透系数(m/d )。

喷射井点的设计出水能力 表6-128型号外管直径 (mm ) 喷射管工作水 压力 (MPa ) 工作水 流量 (m 3/d )设计单个井 点出水能力 (m 3/d ) 适用含水层 渗透系数 (m/d ) 喷嘴直径 (mm ) 混合室直径 (mm ) 1.5型并列式 38 7 14 0.6~0.8 112.8~163.2 100.8~138.2 0.1~5.0 2.5型圆心式 68 7 14 0.6~0.8 110.4~148.8 103.2~138.2 0.1~5.0 4.0型圆心式 100 10 20 0.6~0.8 230.4 259.2~388.8 5~106.0型圆心式16219400.6~0.8720600~72010~20 2.过滤器长度真空井点和喷射井点的过滤器长度,不宜小于含水层厚度的1/3。

管井过滤器长度宜与含水层厚度一致。

群井抽水时,各井点单井过滤器进水部分长度应符合下述条件:y 0>l (6-145)式中 y 0——单井井管进水长度,按下式计算:(1)潜水完整井(5-146)式中 r 0——基坑等效半径;r w ——管井半径;H ——潜水含水层厚度; R0——基坑等效半径与降水影响半径之和 R 0=r 0+RR ——降水井影响半径。

(2)承压完整井(6-147)式中H'——承压水位至该承压含水层底板的距离;M ——承压含水层厚度。

当滤管工作部分长度小于2/3含水层厚度时,应采用非完整井公式计算。

若不满足上式条件,应调整井点数量和井点间距,再进行验算。

相关文档
最新文档