BCR连续提取法分析土壤中重金属
BCR法分级提取土壤中重金属形态

BCR法分级提取土壤中重金属形态(2005)一、适用重金属Zn Cu Pb Cd Cr Ni二、仪器和器皿器皿:硼硅酸盐玻璃、聚乙烯、聚四氟乙烯,均用4 M 硝酸浸泡过夜,去离子水洗涤空白液:批试验中插入一个空白,通过洗涤程序,加入40 ml HACO(溶液A),按照步骤1的操作后分析空白溶液。
水平机械振荡装置:振荡频率30 rmp;1500g 离心。
土样:20目三、试剂1.去离子水2.溶液A(0.11 M HACO):25±0.2 ml 冰乙酸,稀释至1升,得0.43 M得HACO;在取250 ml得0.43 M HACO,稀释至1升,及得0.11 M HACO;3.溶液B(0.1 M NH2OH.HCL):6.95 g 试剂溶于900 ml水中,用硝酸调至pH=2,定容至1升;4.溶液C(30%的H2O2):使用出厂品,用硝酸控制酸度在pH2~35.溶液D(1 M NH4OAC):77.08 g溶于900 ml水中,用硝酸调至pH=2(仔细小心调节),定容至1升;三、步骤1.每克土壤中加入40 ml溶液A于100 ml聚乙烯瓶中,室温(20度)振荡16 h。
在3500转离心40 min后倒出上清液。
残留物用20 ml去离子水洗净,摇动15 min,再次离心并倒出上清液,合并于第一次的上清液,过滤;2.每克残留物加入40 ml的溶液B,室温下振荡16 h。
残留物用20 ml去离子水洗净,摇动15 min,再次离心并倒出上清液,合并于第一次的上清液,过滤方法同上。
3.a)每克残留物中加入10 ml溶液C,混匀并在室温下消化1 h,随后在85℃下消化1 h(盖上盖子),随后蒸发至剩余少量液体;b)再加入10 ml溶液C,继续在85℃下消化1 h,移走盖子,蒸发至剩余少量液体;c)再加入50 ml溶液D于冷却湿润的残留物中,室温下振荡16 h,,过滤方法同上。
四、注意点1.每次加入提取剂后应立即开始振荡,不要停留;2.上次离心提取完后应破坏粉碎管底的沉积物,利于下次提取;3.重金属全量用HF的方法测定;4.每批试验都必须有空白对照,每个样品重复2次;5.过滤液上机测定,在测定前应保存于4℃的冰箱中;6.土壤样品105℃烘2小时;7.振荡箱预设为25±2℃,在整个提取步骤前后测定并控制室温;。
BCR法提取重金属形态

BCR法对重金属形态进行提取,具体步骤如下:一HOAC溶解态。
称取0.2g冷冻干燥的土壤样品,置于30ml聚四氟乙烯离心管中,加入20ml0.1mol/L的醋酸,放在恒温震荡器中20-25度环境条件下震荡16h,转速30±10rpm,再加入10ml去离子水放在离心机中3000r/min震荡20min,分离上清液转移到50ml容量瓶中,稀释置刻度,摇匀。
用原子吸收分光光度计检测浓度表示为C1,残渣进行下一步形态提取。
二,可还原态。
将20ml0.1mol/L的盐酸羟胺(NH2OH.HCL)(HNO3酸化,PH=2,当天配置),加入(一)所剩残渣中,放在恒温震荡器中20-25度环境条件下震荡16h,再加入10ml去离子水放在离心机中3000r/min震荡15min,分离上清液转移到50ml容量瓶中,稀释置刻度,摇匀。
用原子吸收分光光度计检测浓度表示为C2,残渣进行下一步形态提取。
三,可氧化态。
向(二)中加入10ml 8.8mol/LH2O2(HNO3酸化,PH=2)室温下静置1h (间隔15min用手摇荡),用水浴加热至(85度±2)消化1h,蒸发至近干再加入6ml 8.8mol/L 的H2O2(HNO3酸化,PH=2),重复上述操作,冷却至室温后,再加入20ml1mol/L的NH4OA C (HNO3酸化,PH=2)(在PH=2)放在恒温震荡器中20-25度环境条件下震荡16h,放在离心机中3000r/min震荡15min,分离上清液转移到50ml容量瓶中,稀释置刻度,摇匀。
用原子吸收分光光度计检测浓度表示为C3,残渣进行下一步形态提取。
四,总量及残渣态,盐酸-高氯酸-氢氟酸消解:往(三)中残渣加入10mlHCL,设定消解炉的温度为100度,加热至样品剩余少量后取下冷却。
加入5mlHNO3,5mlHF,3mlHCLO4加盖,设定消解温度为170度,升温1h后冷却加盖,继续加热挥发硅,升温到200度,待白烟冒出至少量后,取下冷却,液体呈透明,倒出,清洗,稀释待测。
土壤重金属形态分析的改进BCR方法

BCR连续提取法分析土壤中重金属的形态⏹1、重金属形态⏹2、重金属形态研究方法及发展历程⏹3、本实验的目的⏹4、实验原理⏹5、实验步骤⏹6、数据处理1.重金属形态⏹重金属形态是指重金属的价态、化合态、结合态、和结构态四个方面,即某一重金属元素在环境中以某种离子或分子存在的实际形式。
⏹重金属进入土壤后,通过溶解、沉淀、凝聚、络合吸附等各种作用,形成不同的化学形态,并表现出不同的活性。
⏹元素活动性、迁移路径、生物有效性及毒性等主要取决于其形态,而不是总量。
故形态分析是上述研究及污染防治等的关键2、重金属形态研究方法及发展历程⏹自Chester 等(1967)和Tessier 等(1979)的开创性研究以来,元素形态一直是地球和环境科学研究的一大热点。
⏹在研究过程中,建立了矿物相分析、数理统计、物理分级和化学物相分析等形态分析方法。
⏹由于自然体系的复杂性,目前对元素形态进行精确研究是很困难,甚至是不可能的。
⏹在诸多方法中,化学物相分析中的连续提取(或逐级提取)(Sequential extraction) 技术具操作简便、适用性强、蕴涵信息丰富等优点,得到了广泛应用。
逐级提取(SEE) 技术的发展历程⏹60~70年代(酝酿期)⏹以Chester 和Hughes(1967) 为代表的一些海洋化学家尝试用一种或几种化学试剂溶蚀海洋沉积物,将其分成可溶态和残留态两部分,进而达到研究微量元素存在形态的目的。
⏹70 年代末(形成期)⏹在前人研究的基础上,Tessier et al. (1979) 用不同溶蚀能力的化学试剂,对海洋沉积物进行连续溶蚀和分离操作,将其分成若干个“操作上”定义的地球化学相,建立了Tessier 流程。
⏹80 年代(发展期)⏹不同学者在对Tessier 流程改进的基础上,先后提出了20 多种逐级提取流程。
其中,影响较大的逐级提取流程有Salomons 流程(1984) 、Forstner 流程(1985) 、Rauret et al流程(1989) 等。
BCR法测有效态重金属

BCR法测定土壤有效态重金属含量(BCR 为欧洲共同体参考物机构( European Community Bureau of Reference) 的简称,是现在欧盟标准测量和测试机构(Standards Measurements and Testing Programme ,缩写为SM &T) 的前身。
)0. 水溶态称1.00g过0.25mm筛的土壤样品于100ml离心管内,按1:40固液比加入煮沸过的蒸馏水,振荡2小时,3000g离心20分钟。
1. 交换态(Exchangable fraction)称1.00g过0.25mm筛的土壤样品于100ml离心管内,按1:40固液比加入0.11 mol/L的醋酸(CH3OOH),把管口塞紧密封。
然后放到往复振荡机上振荡16h。
离心分离,并收集醋酸提取液于塑料瓶中,待测其中的重金属含量。
往残渣中添加20mL的去离子水后振荡15min进行清洗,然后再用3000g的速度离心20分钟。
倒掉上清液,但不能倒掉任何固体残渣。
2. 铁锰态(Oxides Fe/Mn fraction)上述离心后的土壤样仍保留于离心管内,按1:40固液比加入0.5 mol/L的羟基盐酸(NH2OH•HCl)[用2 mol/L的HNO3调整pH值为1.5]进行第二步提取。
再放到往复振荡机上振荡16h,离心分离,并收集第二次提取液于塑料瓶中,待测重金属含量。
往残渣中添加20mL的去离子水后振荡15min进行清洗,然后再用3000g的速度离心20分钟。
倒掉上清液,但不能倒掉任何固体残渣。
3. 有机结合态(Organic matter and sulfidic fraction)分离后的土壤样保存于离心管内,先加入10ml 30%的过氧化氢(H2O2),于85℃的水浴锅中进行有机质消化;上述消化液将干时,就再加10ml 30%的过氧化氢继续消化,视样品不同直至加入的30%过氧化氢时没有冒气泡为止(全消化过程约2h)。
污泥中重金属的形态提取―BCR三态提取法

复杂体系分离分析结课报告污泥中重金属的形态提取—BCR三态提取法污泥中重金属的形态提取——BCR三态提取法摘要污泥中重金属的形态分析成为评估重金属可迁移性及生物可利用性的有效方式。
围绕其形态提取,西方研究者提出了多种提取方法。
BCR三态提取法逐渐被各国研究者接受,并在实际应用中的到推广。
这也为不同地域污泥重金属毒性评估提供了一个统一的标准。
关键词污泥重金属形态提取BCR三态提取法评估引言自1857年英国伦敦建立世界第一个污水处理厂以来,世界上污水处理业快速发展而不断产生新的废弃物一污泥,同时污泥的处理也成为政府管理中的一项重要问题。
目前,国内外应用比较广泛的污泥处理方式主要有4种,分别为填埋处理,填海处理,焚烧处理和土地利用。
各国在四种处理方式所占处理总量的比例不同。
污泥填埋处理是意大利、荷兰和德国对污泥的主要处理方式。
污泥填海处理的方法简单,不用花费大量能源,却可污染海洋,会导致全球环境问题,此方法目前已受到限制。
污泥的焚烧处理可以最大量地减少污泥体积,但设备和运行费用昂贵,易造成大气污染问题。
而污泥的土地利用能够实现其稳定化、无害化、资源化的目的,因此土地利用逐渐为人们所重视。
但是要实现污泥的土地利用,首先要检测、评估其重金属毒性。
1污泥重金属形态提取现状传统的对重金属的污染分析一般只是测定样品中待测元素的总量或总浓度。
然而,从20世纪70年代开始,人们认识到重金属的生物毒性和生物有效性不仅与其总量有关,而且更大程度上取决于该元素在环境中存在的化学形态及物理形态[1,2]。
因此,人们对环境介质中的重金属研究的侧重点也逐渐集中到确定重金属的形态分布及其影响方面。
颗粒物中重金属的形态分析是从土壤科学研究发展起来的,其方法是借用土壤中选择性提取金属的化学试剂逐级提取以确定污泥颗粒物中金属的形态[3]。
目前,国内外采用的重金属的形态连续提取技术多种多样,且由于采用的提取试剂以及操作方法的不同,从而也产生了由于缺乏统一标准而使实验数据难以比较状况和结论相差较大等问题。
BCR法测有效态重金属

BCR法测定土壤有效态重金属含量(BCR 为欧洲共同体参考物机构( European Community Bureau of Reference) 的简称,是现在欧盟标准测量和测试机构(Standards Measurements and Testing Programme ,缩写为SM &T) 的前身。
)0. 水溶态称1.00g过0.25mm筛的土壤样品于100ml离心管内,按1:40固液比加入煮沸过的蒸馏水,振荡2小时,3000g离心20分钟。
1. 交换态(Exchangable fraction)称1.00g过0.25mm筛的土壤样品于100ml离心管内,按1:40固液比加入0.11 mol/L的醋酸(CH3OOH),把管口塞紧密封。
然后放到往复振荡机上振荡16h。
离心分离,并收集醋酸提取液于塑料瓶中,待测其中的重金属含量。
往残渣中添加20mL的去离子水后振荡15min进行清洗,然后再用3000g的速度离心20分钟。
倒掉上清液,但不能倒掉任何固体残渣。
2. 铁锰态(Oxides Fe/Mn fraction)上述离心后的土壤样仍保留于离心管内,按1:40固液比加入0.5 mol/L的羟基盐酸(NH2OH•HCl)[用2 mol/L的HNO3调整pH值为1.5]进行第二步提取。
再放到往复振荡机上振荡16h,离心分离,并收集第二次提取液于塑料瓶中,待测重金属含量。
往残渣中添加20mL的去离子水后振荡15min进行清洗,然后再用3000g的速度离心20分钟。
倒掉上清液,但不能倒掉任何固体残渣。
3. 有机结合态(Organic matter and sulfidic fraction)分离后的土壤样保存于离心管内,先加入10ml 30%的过氧化氢(H2O2),于85℃的水浴锅中进行有机质消化;上述消化液将干时,就再加10ml 30%的过氧化氢继续消化,视样品不同直至加入的30%过氧化氢时没有冒气泡为止(全消化过程约2h)。
BCR法研究铜矿区周边农田重金属形态分布

图 2 下游污染土壤中 Cu、Pb、Zn、Mn 形态分布
2. 3 铜矿区农田 Cu、Pb、Zn、Mn 的有效性分析 酸提取态( 可交换态和碳酸盐结合态) 是植物
最容易吸收的形态,可还原态( 铁锰氧化物结合态) 是植物较易利用的形态,可氧化态( 有机物及硫化 物结合态) 是植物较难利用的形态,残渣态是植物 几乎不能 利 用 的 形 态,对 植 物 而 言 几 乎 是 无 效 的. 重金属的酸提取态和可还原态为有效态,其生物有 效性高; 可 氧 化 态 和 残 渣 态 为 稳 定 态,生 物 有 效 性低.
BCR连续提取法分析土壤中重金属

BCR 为欧洲共同体参考物机构( European Community Bureau of Reference) 的简称,是现在欧盟标准测量和测试机构(Standards Measurements and Testing Programme ,缩写为SM &T) 的前身。
2)土样水分含量测定(略) 3)?
重金属进入土壤后,通过溶解、沉淀、凝聚、 络合吸附等各种作用,形成不同的化学形态, 并表现出不同的活性。
元素活动性、迁移路径、生物有效性及毒性等 主要取决于其形态,而不是总量。故形态分析是 上述研究及污染防治等的关键。
2、重金属形态研究方法及发 展历程
自Chester 等(1967)和Tessier 等(1979)的开 创性研究以来,元素形态一直是地球和环境 科学研究的一大热点。
土壤重金属形态分析方法中共有的或是比较重要 的形态的定义如下:
可交换态重金属:是指吸附在土、腐殖 质及其他成分上的金属,对环境变化敏 感,易于迁移转化,能被植物吸收。反 映了人类近期排污影响即对生物毒性作 用。
碳酸盐结合态重金属:指土壤中的重金
属元素在碳酸盐矿物上形成的共沉淀结 合态,对环境条件特别是pH值最敏感: 当pH下降时,易重新释放出来而进入环 境;当pH升高时,有利于碳酸盐的形成。
铁锰氧化物结合态重金属:一般是以矿 物的外囊物和细分散颗粒存在,活性的 铁锰氧化物比表面积大,吸附或共沉淀 阴离子而成。当pH值和氧化还原电位较 高时,有利于铁锰氧化物的形成,铁锰 氧化物的结合态反应了人文活动对环境 的污染。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)土样水分含量测定(略) 3)?
逐级提取(SEE) 技术的发展历程
60~70年代(酝酿期) 以Chester 和Hughes(1967) 为代表的一 些海洋化学家尝试用一种或几种化学试 剂溶蚀海洋沉积物,将其分成可溶态和残 留态两部分,进而达到研究微量元素存在 形态的目的。
70 年代末(形成期) 在前人研究的基础上,Tessier et al. (1979) 用不同溶蚀能力的化学试剂,对海 洋沉积物进行连续溶蚀和分离操作,将其 分成若干个“操作上”定义的地球化学 相,建立了Tessier 流程。
(3)可氧化态:向上一步残渣中加入10mL H2O2(pH值2~3),搅拌均匀后室温下静置1h后 用水浴加热至85℃±2℃,再加入10mL H2O2 , 在恒温水浴箱中保持85℃±2℃ 1h. 加入50mL 1mol/L NH4OAc,放在恒温振动器中22℃±5℃ 下连续震荡16h,然后3000r/min下离心20min。 将上清液移入50mL容量瓶中,用水稀释到刻 度,摇匀。用原子吸收分光光度计测量浓度,表 示为C3。
BCR 为欧洲共同体参考物机构( European Community Bureau of Reference) 的简称,是现在欧盟标准测量和测试机构(Standards Measurements and Testing Programme ,缩写为SM &T) 的前身。
Rauret et al. (1999) 等对该流程作了改 进,形成了改进的BCR 流程,成为欧洲新标 准,并产生了相应的参照物(CRM 701) 。 同时,Hall et al. (1996 ,1999) 在Chao (1984) 和Kersten et al. (1989) 研究的基 础上,提出了GSC标准流程。
(2)可还原态:向上一步残渣中加入 40mL 0.5mol/L 的NH4OH • HCl, 放在恒温 振动器中22℃±5℃下连续震荡16h,然 后放入离心机中3000r/min下离心20min。 将离心管中的上清液移入50mL容量瓶中, 用水稀释到刻度,摇匀。用原子吸收分 光光度计测量浓度,表示为C2。
(4)残余态:分别加入10mLHNO3 和 4mLHF, 使酸和样品充分混合均匀。把装 有样品的消解管放进干净的高压消解罐 中,拧上罐盖,进行微波消解。微波消 解仪消解系统的最佳条件 ( 见表 1)。消 解后取出消解管,置于智能控温电加热 器上 140℃赶酸至近干,将管中溶液转移 至 50mL 容量瓶中,用纯水定容。用原 子吸收分光光度计测量浓度,表示为C4.
(5)总量:准确称取过100目筛的风干 土壤样品0.5000g,分别加入5mL HNO3 和 2mLHF,微波消解方法同上。用原子 吸收分光光度计测量浓度,表示为C0。
6、数据处理
(1)土壤各形态 Cr 含量 Wi(mg/kg)按下式计算:
Wi c V m(1 f )
式中: c——试液的吸光度减去空白溶液的吸光度,然后在校准曲线上查得的铬的 含量(mg/kg) V——试液定容的体积,ml; m——称取试样的重量,g; f——试样中水分的含量,%。
80 年代(发展期) 不同学者在对Tessier 流程改进的基础上, 先后提出了20 多种逐级提取流程。其中, 影响较大的逐级提取流程有Salomons 流 程(1984) 、Forstner 流程(1985) 、 Rauret et al流程(1989) 等。
90 年代(成熟期)
为获得通用的标准流程及其参照物,由BCR 等 主办的以“沉积物和土壤中的逐级提 取”(1992) 、“环境风险性评价中淋滤/ 提取 测试的协和化”(1994) 和“敏感生态系统保护 中的环境分析化学”(1998) 等为主题的欧洲系 列研讨会先后召开,并分别出版了研究专刊。 Ure et al. (1993) 在Forstner (1985) 等流程的 基础上,提出了Ure 流程,后经Quevauviller et al. (1997 ,1998) 修改,成为BCR 标准流程,并产生 了相应的参照物(CRM 601) 。
残渣态重金属:一般存在硅酸盐、原生 和次生矿物等土壤的晶格中,是自然地 质风化的结果,在自然条件下不易释放, 能长期稳定在沉积物中,不易为植物吸 收。主要受矿物成分及岩石风化和土壤 侵蚀影响。
Hale Waihona Puke BCR法是欧洲参考交流局(European Community Bureau of Reference)提出 的较新的划分方法,将重金属形态分为4 种,即: 酸溶态(弱酸提取态,如碳酸盐结合态)、 可还原态(如铁锰氧化物态)、 可氧化态(如有机态) 残渣态。
2、重金属形态研究方法及发 展历程
自Chester 等(1967)和Tessier 等(1979)的开 创性研究以来,元素形态一直是地球和环境 科学研究的一大热点。 在研究过程中,建立了矿物相分析、数理统 计、物理分级和化学物相分析等形态分析方 法。
由于自然体系的复杂性,目前对元素形态 进行精确研究是很困难,甚至是不可能的。 在诸多方法中,化学物相分析中的连续提 取(或逐级提取)(Sequential extraction) 技术具操作简便、适用性强、蕴涵信息 丰富等优点,得到了广泛应用。
3、本实验的目的
了解土壤中重金属形态分析方法的种类、 历史沿革、优缺点。 掌握土壤样品的采集与保存方法 掌握土壤重金属形态BCR连续提取法的原 理,实验步骤,并能进行正确操作。
4、实验原理
土壤重金属的形态分析是指用各种提取 剂对土壤重金属的各个形态进行连续提 取,进而采用一定的方法测量其各形态 含量。
连续提取通常依次采用中性、弱酸性、 中酸性、强酸性提取剂对土壤重金属进 行提取,同时随着提取步骤的深入,提 取条件也不断加强。
顺序提取模拟各种可能的自然的及人为 的环境条件变化,合理使用一系列选择 性试剂,按照由弱到强的原则,连续溶 解不同吸收痕量元素的矿物相。把原来 单一分析元素全量的评价指标变成为元 素各形态的分析量,从而提高了评价质 量。
铁锰氧化物结合态重金属:一般是以矿 物的外囊物和细分散颗粒存在,活性的 铁锰氧化物比表面积大,吸附或共沉淀 阴离子而成。当pH值和氧化还原电位较 高时,有利于铁锰氧化物的形成,铁锰 氧化物的结合态反应了人文活动对环境 的污染。
有机结合态重金属:使土壤中各种有机物 与土壤中的金属螯合而成的,反应水生 生物活动及人类排放富含有机物的污水 结果。
GSC 为加拿大地质调查局( The Geological Survey of Canada) 的简称。
2000 年以后(完善期) 在《Trends in Analytical Chemistry》 (2000 年) 上总结了90 年代元素形态分 析结果,系统探讨了元素形态分析在分析 化学中的作用、分析方法可靠性等一些 关键问题,并倡导了欧洲微量元素形态主 题网———“形态21”工程。之后,一些研 究者还探讨了土壤样品采集和预处理方 法的标准化和参照物制备等问题。
BCR连续提取法分析土壤中重 金属的形态
胥思勤
李勤奋.环境科学研究实验教程.中国农业 大学出版社,2006
1、重金属形态 2、重金属形态研究方法及发展历程 3、本实验的目的 4、实验原理 5、实验步骤 6、数据处理
1.重金属形态
重金属形态是指重金属的价态、化合态、结合 态、和结构态四个方面,即某一重金属元素在 环境中以某种离子或分子存在的实际形式。 重金属进入土壤后,通过溶解、沉淀、凝聚、 络合吸附等各种作用,形成不同的化学形态, 并表现出不同的活性。 元素活动性、迁移路径、生物有效性及毒性等 主要取决于其形态,而不是总量。故形态分析是 上述研究及污染防治等的关键。
5.实验步骤
(1)弱酸提取态:准确称取通过100目 筛的风干土壤样品1.0000g置于100mL离 心管中,加入40mL 0.1mol/L HOAc,放 在恒温振荡器中22℃±5℃下连续震荡 16h,然后放入离心机中3000r/min下离心 20min。将离心管中的上清液移入50mL 容量瓶中,用水稀释到刻度,摇匀。用 原子吸收分光光度计测量浓度,表示为C1。
土壤重金属形态分析方法中共有的或是比较重要 的形态的定义如下:
可交换态重金属:是指吸附在土、腐殖 质及其他成分上的金属,对环境变化敏 感,易于迁移转化,能被植物吸收。反 映了人类近期排污影响即对生物毒性作 用。
碳酸盐结合态重金属:指土壤中的重金 属元素在碳酸盐矿物上形成的共沉淀结 合态,对环境条件特别是pH值最敏感: 当pH下降时,易重新释放出来而进入环 境;当pH升高时,有利于碳酸盐的形成。