计算机组成原理实验指导书

合集下载

《计算机组成原理》实验指导书

《计算机组成原理》实验指导书

《计算机组成原理》实验指导书实验一、3~8译码器的设计1.实验目的和要求熟悉ispEXPERT SYSTEM 软件的原理图绘制和编程方法。

了解计算机硬件电路的设计和调试方法。

熟悉、掌握组合逻辑电路的设计方法。

2.实验内容由组合逻辑电路知识可知,采用与门实现的3线~8线译码器的逻辑方程如下: 利用组合逻辑门电路,设计一个3~8译码器,原理图如下:并验证逻辑是否正确。

3.实验提示先根据附录一熟悉ispEXPERT SYSTEM用原理图方式输入组合逻辑门电路连接计算机组成原理实验装置,编程下载ispLSI1032E 拨动开关观察记录LED 显示结果完成实验后,每位同学提交一份实验报告(手写),格式参照附件一。

注:引脚1.开关(输入):K0~K7: 53~60K8~K15 : 26~33 开关向上为1,向下为0 灯(输出):LED0~LED7 :76~83 LED8~LED15:3~10 L0~L7: 45~52 L8~L15: 34~412.输入输出都要添加缓冲器:在器件库中选择C :\…\GENERIC\IOPADS.LIB1270126012501240123012201210120a a a y a a a y a a a y a a a y a a a y a a a y a a a y a a a y ========3.引脚锁定:菜单项ADD ,选命令,出现Symbol Attribute Editor 对话框,单击需要定义属性的输入输出PAD ,在对话框中选SynarioPin 属性,输入引脚号。

(2)选择器件 (3)输入源文件(4)编译、仿真源文件 (5)适配在项目管理器窗口,点击左边窗口中的ispLSI1032E-70LJ84,右边窗口双击FitDesign,出现绿色对号,则设计正确,红色错号,存在严重错误。

(6)下载(烧录)将实验系统电源连好使用专用下载电缆将实验系统和微机连好。

计算机组成原理实验指导书CP226

计算机组成原理实验指导书CP226

目录第一章系统概述 (2)1.1DICE-CP226简介 (2)1.2DICE-CP226特点 (2)1.3实验系统组成 (3)第二章模型机模块实验 (4)2.1寄存器实验 (4)实验1:A,W 寄存器实验 (5)实验2:R0,R1,R2,R3 寄存器实验 (8)实验3:MAR 地址寄存器,ST 堆栈寄存器,OUT输出寄存器 (13)2.2运算器实验 (16)2.3数据输出实验/移位门实验 (18)实验1:数据输出实验 (20)实验2:移位实验 (21)2.4微程序计数器U PC实验 (23)实验1:uPC 加一实验 (25)实验2:uPC 打入实验 (26)2.5PC实验 (26)实验1:PC 加一实验 (29)实验2:PC 打入验 (29)2.6存储器EM实验 (30)实验1:PC/MAR 输出地址选择 (31)实验2:存储器EM 写实验 (31)实验3:存储器EM 读实验 (33)实验4:存储器打入IR指令寄存器/uPC实验 (34)实验5:使用实验仪小键盘输入EM (36)2.7微程序存储器U M实验 (36)实验1:微程序存储器uM 读出 (38)实验2:使用实验仪小键盘输入uM (38)2.8中断实验 (39)第三章CP226 模型机 (40)3.1模型机总体结构 (40)3.2模型机寻址方式 (41)3.3模型机指令集 (42)3.4模型机微指令集 (44)第四章模型机综合实验(微程序控制器) (55)实验1:数据传送实验/输入输出实验 (55)实验2:数据运算实验(加/减/与/或) (58)实验3:移位/取反实验 (60)实验4:转移实验 (62)实验5:调用实验 (60)实验6:中断实验 (61)实验7:指令流水实验 (64)实验8 RISC 模型机 (66)第五章组合逻辑控制 (68)5.1组合逻辑控制器 (68)5.2用CPLD实现运算器功能 (76)第六章设计指令/微指令系统 (79)第七章扩展实验 (83)扩展实验一:用8255 扩展I/O 端口实验 (83)扩展实验二:用8253扩展定时器试验 (84)第八章实验仪键盘使用 (87)1、观察内部寄存器: (88)2、观察、修改程序存储器内容: (88)3.观察、修改微程序存储器内容: (89)4.用小键盘调试实验一 (91)第九章CP226 集成开发环境使用 (93)1)主菜单 (94)2)快捷键图标 (95)3)调试窗口区 (95)4)结构图区 (96)5)指令/微程序/跟踪窗口 (96)6)寄存器状态 (97)附录一实验用芯片介绍 (98)第一章系统概述1.1 DICE-CP226简介DICE-CP226型计算机组成原理实验系统<以下简称系统>,是由江苏启东计算机总厂有限公司继C2000/CH2000成功开发之后,结合国内同类产品的优点,最新研制开发的超强型实验计算机装置<以下简称模型机>。

计算机组成原理实验指导书

计算机组成原理实验指导书

计算机组成原理实验指导书一、实验目的。

本实验旨在通过实际操作,加深学生对计算机组成原理的理解,掌握计算机硬件的基本组成和工作原理,提高学生的动手能力和实际操作能力。

二、实验器材。

1. 计算机主机。

2. 显示器。

3. 键盘。

4. 鼠标。

5. 逻辑分析仪。

6. 示波器。

7. 电源。

8. 万用表。

9. 逻辑门集成电路。

10. 接线板。

11. 连接线。

三、实验内容。

1. 计算机硬件基本组成的实验。

通过拆卸计算机主机,了解各个硬件组件的作用和连接方式,包括主板、CPU、内存、硬盘、显卡、电源等。

并通过重新组装,加深对计算机硬件组成的理解。

2. 逻辑门电路实验。

使用逻辑门集成电路和连接线搭建基本的逻辑门电路,包括与门、或门、非门等,并通过逻辑分析仪观察输入输出的关系,加深对逻辑门原理的理解。

3. 示波器使用实验。

学习示波器的基本使用方法,观察不同信号的波形,了解数字信号和模拟信号的特点,加深对计算机输入输出原理的理解。

4. 电源电压测量实验。

使用万用表测量计算机主板各个电源接口的电压值,了解各个电源接口的作用和电压标准,加深对计算机电源原理的理解。

四、实验步骤。

1. 计算机硬件基本组成的实验步骤。

(1)拆卸计算机主机,观察各个硬件组件的位置和连接方式。

(2)了解各个硬件组件的作用和特点。

(3)重新组装计算机主机,检查各个硬件组件的连接是否正确。

2. 逻辑门电路实验步骤。

(1)根据实验指导书搭建与门、或门、非门电路。

(2)使用逻辑分析仪观察输入输出的关系,记录实验数据。

3. 示波器使用实验步骤。

(1)学习示波器的基本使用方法。

(2)使用示波器观察不同信号的波形,记录实验数据。

4. 电源电压测量实验步骤。

(1)使用万用表测量各个电源接口的电压值。

(2)比较测量结果与电压标准的差异,记录实验数据。

五、实验注意事项。

1. 在拆卸和重新组装计算机主机时,注意防止静电干扰,避免损坏硬件组件。

2. 在搭建逻辑门电路时,注意连接线的接触是否良好,避免信号传输不畅。

(完整版)《计算机组成原理》实验指导书

(完整版)《计算机组成原理》实验指导书

《计算机组成原理》实验指导书目录第一部分EL-JY-II计算机组成原理实验系统简介 (1)第二部分使用说明及要求 (5)实验一运算器实验 (12)实验二移位运算实验 (24)实验三存储器实验和数据通路实验 (29)实验四微程序控制器的组成与实现实验 (36)实验五微程序设计实验 (45)实验六、简单实验计算机组成与程序运行实验 (53)实验七、带移位运算实验计算机组成与程序运行实验 (65)实验八、复杂实验计算机组成与程序运行实验 (77)实验九、实验计算机的I/O实验 (93)实验十、总线控制实验(选做) (103)实验十一、可重构原理计算机组成实验(选做) (105)实验十二、简单中断处理实验(选做) (110)实验十三、基于重叠和流水线技术的CPU结构实验(选做) (116)实验十四、RISC模型机实验(选做) (122)第一部分EL-JY-Ⅱ计算机组成原理实验系统简介EL-JY-Ⅱ型计算机组成原理实验系统是为计算机组成原理课的教学实验而研制的,涵盖了目前流行教材的主要内容,能完成主要的基本部件实验和整机实验,可供大学本科、专科、成人高校以及各类中等专业学校学习《计算机组成原理》、《微机原理》和《计算机组成和结构》等课程提供基本的实验条件,同时也可供计算机其它课程的教学和培训使用。

一、基本特点:1、本系统采用了新颖开放的电路结构:(1)、在系统的总体构造形式上,采用“基板+ CPU板”的形式,将系统的公共部分,如数据的输入、输出、显示单片机控制及与PC机通讯等电路放置在基板上,它兼容8位机和16位机,将微程序控制器、运算器、各种寄存器、译码器等电路放在CPU板上,而CPU板分为两种:8位和16位,它们都与基板兼容,同一套系统通过更换不同的CPU板即可完成8位机或16位机的实验,用户可根据需要分别选用8位的CPU 板来构成8位计算机实验系统或选用16位的CPU板来构成16位计算机实验系统;也可同时选用8位和16位的CPU板,这样就可用比一套略多的费用而拥有两套计算机实验系统,且使用时仅需更换CPU板,而不需做任何其它的变动或连接,使用十分方便。

CCT-IV计算机组成原理实验指导书

CCT-IV计算机组成原理实验指导书

CCT-IV计算机组成原理实验指导书目录实验一运算器实验 (3)(一) 算术逻辑运算实验 (3)(二) 进位控制实验 (7)(三) 移位运算实验 (10)实验二存储器实验 (12)实验三微控器实验 (16)实验四基本模型机设计与实现 (23)实验五带移位运算的模型机的设计与实现 (30)实验六复杂模型机的设计与实现 (37)实验七可重构原理计算机组成设计实验 (46)实验八扩展8255并行口实验 (52)实验九PLD应用实验 (57)实验一运算器实验(一)算术逻辑运算实验一. 实验目的1. 掌握简单运算器的数据传送通路。

2. 验证运算功能发生器( 74LS181)的组合功能。

二. 实验设备CCT-IV计算机组成原理教学实验系统一台,排线若干。

三. 实验内容1. 实验原理实验中所用的运算器数据通路图1-1所示。

其中运算器由两片74LS181以并/串形成构成8位字长的ALU。

运算器的输出经过一个三态门(74LS245)和数据总线相连,运算器的两个数据输入端分别由二个锁存器(74LS373)锁存,锁存器的输入连至数据总线,数据开并(“INPUT DEVICE”)用来给出参与运算的数据,并经过一三态门(74LS245)和数据总线相连,数据显示灯(“BUS UNIT”)已必数据总线相连,用来显示数据总线内容。

图中已将用户需要连接的控制信与用圆圈标明(其他实验相同,不再说明),其中除T4为脉冲信与,其它均为电平信号。

由于电路中的时序信号均已连至“W/R UNIT”的相应时序信号引出端,因此,在进行实验时,只需将“W/R UNIT”的T4接至“STATE UNIT”的微动开关KK2的输出端,按动微动开关,即可获得实验所需的单脉冲,而S3、S2、S1、S0、Cn、M、LDDR1、LDDR2、ALU-B、SW-B各电平控制信号用“SWITCH UNIT”中的二进制数据开关来模拟,其中Cn、ALU-B、SW-B为电低电平有效,LDDR1、LDDR2为高电平有效。

实验指导书_计算机组成原理

实验指导书_计算机组成原理

●李英王强编●杨勇审《计算机组成原理》实验指导书东华理工学院自编教材 20080XX计算机组成原理实验指导书编写:李英王强审校:杨勇东华理工大学信工学院二○○八年十月目录实验一运算器数据通路实验 (1)实验二总线存储器实验 (11)实验三运算器仿真实验 (20)实验四存储器仿真实验 (25)实验五输入输出接口仿真实验 (29)实验六数据通路仿真实验 (34)实验七微程序实验 (38)实验一 运算器数据通路实验一、实验预习1、复习本次实验所用的各种数字集成电路的性能及工作原理。

2、复习74LS181的工作原理,熟悉各管脚的逻辑功能。

3、按实验原理要求设计运算器,画出逻辑电路图及实验连线图。

4、预先拟订好实验步骤,考虑好可能产生的故障,并想好采取哪些实验技术手段进行排除。

5、74LS181是一个带有输入函数发生器的四位并行加法器,如果要进行8位或更多位的运算,应如何处理?6、实验中挂在总线上的器件(如运算器、寄存器、开关等)向总线发信息时应注意些什么问题?二、实验目的1、熟悉74LS181函数功能发生器的功能,提高器件在系统中应用的能力。

2、熟悉运算器的数据传送通路。

3、完成几种算术/逻辑运算器操作,加深对运算器工作原理的理解。

三、实验仪器实验仪器:1、综合硬件公共箱NS-GG12、逻辑电路搭试板NS-DS13、接线工具和连接导线 实验器件:1、四位函数功能发生器74LS181 2片2、八D 锁存器74LS373 1片3、八D 触发器74LS273 2片4、八缓冲器74LS244 1片器件介绍:1、八D 锁存器74LS3732、八D 触发器74LS2733、八缓冲器74LS244图1-1 八D 锁存器74LS373四、实验原理1.运算器基本结构运算器是计算机中对数据进行加工处理的部件,是中央处理单元(CPU )的主要组成部分之一。

运算器基本结构一般由算术逻辑运算单元(ALU )、输入数据选择电路、通用寄存器组、输出数据控制电路等组成。

计算机组成原理实验指导书

计算机组成原理实验指导书

TEC-4计算机组成原理实验系统TEC-4计算机组成原理实验系统由北京邮电大学计算机学院、清华大学同方教学仪器设备公司、深圳拓普威电子技术有限公司联合研制。

它是一个8位的计算机模型实验仪器,可用于大专、本科、硕士研究生计算机组成原理课程、计算机系统结构课程的教学实验。

该仪器将提高学生的动手能力,提高学生对计算机整体和各组成部分的理解,提高学生对计算机系统的综合设计能力。

一、TEC-4计算机组成原理实验系统特点1.计算机模型简单、实用,运算器数据通路、控制器、控制台各部分划分清晰。

2.计算机模型采用了数据总线和指令总线双总线体制,能够实现流水控制。

3.控制器有微程序控制器、硬联线控制器两种类型,每种类型又有流水和非流水两种方案。

4.寄存器堆由1片ispLSI1016组成,运算器由1片ispLSI1024组成,设计新颖。

5.实验台上包括了1片在系统编程芯片ispLSI1032,学生可用它实现硬联线控制器等多种设计。

6.该系统能做运算器组成、双端口存储器、数据通路、微程序控制器、中断、CPU组成与指令执行等六个基本教学实验。

7.该系统能完成流水微程序控制器、硬联线控制器、流水硬联线控制器等三个大型课程设计实验。

8.电源部分采用模块电源,重量轻,具有抗电源对地短路能力。

9.器件外部采用自锁紧累接接线方式,可靠性比面包板提高5倍。

图1 TEC-4计算机组成原理实验系统二、TEC-4计算机组成原理实验系统的组成TEC-4计算机组成原理实验系统由下述六部分组成:1.控制台2.数据通路3.控制器4.用户自选器件试验区5.时序电路6.电源部分下面分别对各组成部分予以介绍。

三、电源电源部分由一个模块电源、一个电源插座、一个电源开关和一个红色指示灯组成。

电源模块通过四个螺栓安装在实验台下面,它输出+5V电压,最大负载电流3A,内置自恢复保险功能,具有抗+5V对地短路能力。

电源插座用于接交流220V市电,插座内装有保险丝。

计算机组成原理实验指导

计算机组成原理实验指导

《计算机组成原理》实验指导实验一监控程序与汇编语言程序设计实验教学机的监控程序是用教学机的汇编语言实现的,运行在教学机的硬件系统之上。

它的主要功能是支持把计算机终端或PC机仿真终端接入教学机系统,使用这样的设备执行输入/输出操作,运行教学机的有关程序,以更方便直观的形式支持教学机上的各项实验功能,提供教学机汇编语言的可用子程序。

监控程序提供类似PC机DOS系统下的Debug程序的功能,支持A、U、G、P、T、R、D和E共8个监控命令。

监控命令的格式为:单字母的命令名后跟回车,或命令名后跟一个地址参数,或寄存器名(编号)参数。

当有些命令运行时需要参数,但命令名后又不跟参数时,监控程序会从内存指定单元取一个默认的地址参数值,通常为该命令前一次运行后所接收地址。

TEC—2机从终端接收地址、指令,数值时,均用最多4位的16进制数输入与显示,并且不能(或说不必)用跟字符h加以标志。

⑴单条汇编命令A格式:A[adr]这里的[adr]表示此处的地址参数adr为任选项(但选择范围必须为0800H—0FFFH)。

无此参数时,系统将取默认值。

该规则下同。

功能:完成单条指令的汇编操作,把产生出来的TEC—2机的执行代码放入对应的内存单元中。

命令名后的地址是头一条汇编语句的执行码的内存单元地址。

每条语句汇编完成之后,系统将相应修改地址值,以便正确处理下条汇编语句。

在应该输入汇编语句时,不给出汇编语句而直接回车,则结束A命令的运行过程。

若汇编中发现语法错误,用ˆ指明出错位置后请求重新给出正确语句。

要说明,这里的单条汇编功能不很完善,例如不支持语句标号,也不能使用伪指令等。

遇到这些问题,要求使用者直接使用机器码,并通过E命令将其送入相应内存单元。

⑵反汇编命令U格式:U[adr]功能:每次从指定的(或默认的)地址反汇编15条命令,并将结果显示在终端屏幕上。

反汇编完成之后,已将该命令的默认地址修改好。

接下来再键入不带参数的U命令,保证接着从上一次反汇编的最后一条语句之后继续反汇编。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机组成原理实验指导书适用TD-CMA实验设备
实验一基本运算器实验
一、实验原理
运算器内部含有三个独立运算部件,分别为算术、逻辑和移位运算部件,要处理的数据存于暂存器A和暂存器B,三个部件同时接受来自A和B的数据(有些处理器体系结构把移位运算器放于算术和逻辑运算部件之前,如ARM),各部件对操作数进行何种运算由控制信号S3 0
CN来决定,任何时候,多路选择开关只选择三部件中一个部件的结果作为ALU的输出。

如果是影响进位的运算,还将置进位标志FC,在运算结果输出前,置ALU零标志。

ALU中所有模块集成在一片CPLD中。

逻辑运算部件由逻辑门构成,较为简单,而后面又有专门的算术运算部件设计实验,在此对这两个部件不再赘述。

移位运算采用的是桶形移位器,一般采用交叉开关矩阵来实现,交叉开关的原理如图1-1-2所示。

图中显示的是一个4X4的矩阵(系统中是一个8X8的矩阵)。

每一个输入都通过开关与一个输出相连,把沿对角线的开关导通,就可实现移位功能,即:
(1) 对于逻辑左移或逻辑右移功能,将一条对角线的开关导通,这将所有的输入位与所使用的输出分别相连,而没有同任何输入相连的则输出连接0。

(2) 对于循环右移功能,右移对角线同互补的左移对角线一起激活。

例如,在4位矩阵中使用‘右1’和‘左3’对角线来实现右循环1位。

(3) 对于未连接的输出位,移位时使用符号扩展或是0填充,具体由相应的指令控制。

使用另外的逻辑进行移位总量译码和符号判别。

原理如图1-1-1所示
图1-1-1 运算器原理图
运算器内部含有三个独立运算部件,分别为算术、逻辑和移位运算部件,要处理的数据存于暂存器A和暂存器B,三个部件同时接受来自A和B的数据(有些处理器体系结构把移位运算器放于算术和逻辑运算部件之前,如ARM),各部件对操作数进行何种运算由控制信号S3 0
决定,任何时候,多路选择开关只选择三部件中一个部件的结果作为ALU的输出。

如果是算术运算,还将置进位标志FC,在运算结果输出前,置ALU零标志。

ALU中所有模块集成在一片CPLD(MAXII EPM240)中。

逻辑运算部件由逻辑门构成,较为简单,而后面又有专门的算术运算部件设计实验,在此对这两个部件不再赘述。

移位运算采用的是桶形移位器,一般采用交叉开关矩阵来实现,交叉开关的原理如图1-1-2所示。

图中显示的是一个4X4的矩阵(系统中是一个8X8的矩阵)。

每一个输入都通过开关与一个输出相连,把沿对角线的开关导通,就可实现移位功能,即:
(1) 对于逻辑左移或逻辑右移功能,将一条对角线的开关导通,这将所有的输入位与所使用的输出分别相连,而没有同任何输入相连的则输出连接0。

(2) 对于循环右移功能,右移对角线同互补的左移对角线一起激活。

例如,在4位矩阵中使用‘右1’和‘左3’对角线来实现右循环1位。

(3) 对于未连接的输出位,算术右移使用符号扩展而不是0填充。

使用另外的逻辑进行移位总量译码和符号判别。

图1-1-2 交叉开关桶形移位器原理图
运算器部件由一片CPLD实现。

ALU的输入和输出通过三态门74LS245连到CPU内总线上,另外还有指示灯标明进位标志FC和零标志FZ。

请注意:实验箱上凡丝印标注有马蹄形标记
‘|_|’,表示这两根排针之间是连通的。

图中除T4和CLR,其余信号均来自于ALU单元的排线座,实验箱中所有单元的T1、T2、T3、T4都连接至控制总线单元的T1、T2、T3、T4,CLR都连接至CON单元的CLR按钮。

T4由时序单元的TS4提供(时序单元的介绍见附录二),其余控制信号均由CON单元的二进制数据开关模拟给出。

控制信号中除T4为脉冲信号外,其余均为电平信号,其中ALU_B为低有效,其余为高有效。

暂存器A和暂存器B的数据能在LED灯上实时显示,原理如图1-1-3所示(以A0为例,其它相同)。

进位标志FC、零标志FZ和数据总线D7…D0的显示原理也是如此。

图1-1-3 A0显示原理图
ALU和外围电路的连接如图1-1-4所示,图中的小方框代表排针座。

运算器的逻辑功能表如表1-1-1所示,其中S3 S2 S1 S0 CN为控制信号,FC为进位标志,FZ 为运算器零标志,表中功能栏内的FC、FZ表示当前运算会影响到该标志。

图1-1-4 ALU和外围电路连接原理图
表1-1-1 运算器逻辑功能表
二、实验步骤
(1) 按图1-1-5连接实验电路,并检查无误。

图中将用户需要连接的信号用圆圈标明(其它实验相同)。

图1-1-5 实验接线图
(2) 将时序与操作台单元的开关KK2置为‘单拍’档,开关KK1、KK3置为‘运行’档。

(3) 打开电源开关,如果听到有‘嘀’报警声,说明有总线竞争现象,应立即关闭电源,重新检查接线,直到错误排除。

然后按动CON单元的CLR按钮,将运算器的A、B和FC、FZ清零。

(4) 用输入开关向暂存器A置数。

① 拨动CON单元的SD27…SD20数据开关,形成二进制数01100101(或其它数值),数据显示亮为‘1’,灭为‘0’。

② 置LDA=1,LDB=0,连续按动时序单元的ST按钮,产生一个T4上沿,则将二进制数01100101置入暂存器A中,暂存器A的值通过ALU单元的A7…A0八位LED灯显示。

(5) 用输入开关向暂存器B置数。

① 拨动CON单元的SD27…SD20数据开关,形成二进制数10100111(或其它数值)。

② 置LDA=0,LDB=1,连续按动时序单元的ST按钮,产生一个T4上沿,则将二进制数10100111 置入暂存器B中,暂存器B的值通过ALU单元的B7…B0八位LED灯显示。

(6) 改变运算器的功能设置,观察运算器的输出。

置ALU_B=0、LDA=0、LDB=0,然后按表1-1-1置S3、S2、S1、S0和Cn的数值,并观察数据总线LED显示灯显示的结果。

如置S3、S2、S1、S0为0010,运算器作逻辑与运算,置S3、S2、S1、S0为1001,运算器作加法运算。

如果实验箱和PC联机操作,则可通过软件中的数据通路图来观测实验结果(软件使用说明请看附录一),方法是:打开软件,选择联机软件的“【实验】—【运算器实验】”,打开运算器实验的数据通路图,如图1-1-6所示。

进行上面的手动操作,每按动一次ST按钮,数据通路图会有数据的流动,反映当前运算器所做的操作,或在软件中选择“【调试】—【单节拍】”,其作用相当于将时序单元的状态开关KK2置为‘单拍’档后按动了一次ST按钮,数据通路图也会反映当前运算器所做的操作。

重复上述操作,并完成表1-1-2。

然后改变A、B的值,验证FC、FZ的锁存功能。

图1-1-6 数据通路图
重复上述操作,并完成表1-1-2。

然后改变A、B的值,验证FC、FZ的锁存功能。

表1-1-2 运算结果表
实验二、超前进位加法器设计实验一、实验原理
图1-2-5 EMP1270 引脚分配图
EPM1270T144共有116个I/O脚,本单元引出110个,其中60个以排针形式引出,供实验使用,其余50个以双列扩展插座形式给出,并标记为JP,JP座的I/O分配如图1-2-6所示。

图1-2-6 JP座I/O分配图
实验步骤
(1)根据上述加法器的逻辑原理使用Quartus II软件编辑相应的电路原理图并进行编译,其在EPM1270芯片中对应的引脚如图1-2-7所示,框外文字表示I/O号,框内文字表示该引脚的含义(本实验例程见‘安装路径\Cpld\Adder\Adder.qpf’工程)。

图1-2-7 引脚分配图
(2)关闭实验系统电源,按图1-2-8连接实验电路,图中将用户需要连接的信号用圆圈标明。

图1-2-8 实验接线图
(3) 打开实验系统电源,将生成的POF文件下载到EPM1270中去。

(4) 以CON单元中的SD17…SD10八个二进制开关为被加数A,SD07…SD00八个二进制开关为加数B,K7用来模拟来自低位的进位信号,相加的结果在CPLD单元的L7…L0八个LED灯显示,相加后向高位的进位用CPLD单元的L8灯显示。

给A和B 置不同的数,观察相加的结果。

相关文档
最新文档