计算机组成原理实验

合集下载

计算机组成原理实验(接线、实验步骤)

计算机组成原理实验(接线、实验步骤)

计算机组成原理实验(接线、实验步骤)实验⼀运算器[实验⽬的]1.掌握算术逻辑运算加、减、乘、与的⼯作原理;2.熟悉简单运算器的数据传送通路;3.验证实验台运算器的8位加、减、与、直通功能;4.验证实验台4位乘4位功能。

[接线]功能开关:DB=0 DZ=0 DP=1 IR/DBUS=DBUS接线:LRW:GND(接地)IAR-BUS# 、M1、M2、RS-BUS#:接+5V控制开关:K0:SW-BUS# K1:ALU-BUSK2:S0 K3:S1 K4:S2K5:LDDR1 K6:LDDR2[实验步骤]⼀、(81)H与(82)H运算1.K0=0:SW开关与数据总线接通K1=0:ALU输出与数据总线断开2.开电源,按CLR#复位3.置数(81)H:在SW7—SW0输⼊10000001→LDDR2=1,LDDR1=0→按QD:数据送DR2置数(82)H:在SW7—SW0输⼊10000010→LDDR2=0,LDDR1=1→按QD:数据送DR1 4.K0=1:SW开关与数据总线断开K1=1:ALU输出与数据总线接通5. S2S1S0=010:运算器做加法(观察结果在显⽰灯的显⽰与进位结果C的显⽰)6.改变S2S1S0的值,对同⼀组数做不同的运算,观察显⽰灯的结果。

⼆、乘法、减法、直通等运算1.K0K1=002.按CLR#复位3.分别给DR1和DR2置数4.K0K1=115. S2S1S0取不同的值,执⾏不同的运算[思考]M1、M2控制信号的作⽤是什么?运算器运算类型选择表选择操作S2 S1 S00 0 0 A&B0 0 1 A&A(直通)0 1 0 A+B0 1 1 A-B1 0 0 A(低位)ΧB(低位)完成以下表格ALU-BUS SW-BUS# 存储器内容S2S1S0 DBUS C输⼊时:计算时:DR1:01100011DR2:10110100(与)DR1:10110100DR2:01100011(直通)DR1:01100011DR2:01100011(加)DR1:01001100DR2:10110011(减)DR1:11111111DR2:11111111(乘)实验⼆双端⼝存储器[实验⽬的]1.了解双端⼝存储器的读写;2.了解双端⼝存储器的读写并⾏读写及产⽣冲突的情况。

计算机组成原理实验报告

计算机组成原理实验报告

实验一:数字逻辑——交通灯系统设计子实验1:7 段数码管驱动电路设计(1)理解利用真值表的方式设计电路的原理;(2)利用Logisim 真值表自动生成电路的功能,设计一个 7 段数码管显示驱动。

二、实验方案设计7 段数码管显示驱动的设计方案:(1)输入:4 位二进制(2)输出:7 段数码管 7 个输出控制信号(3)电路引脚:(4)实现功能:利用 7 段数码管显示 4 位二进制的 16 进制值(5)设计方法:由于该实验若直接进行硬件设计会比较复杂,而7 段数码管显示的真值表较容易掌握,所以我们选择由真值表自动生成电路的方法完成该实验。

先分析设计 7 段数码管显示驱动的真值表,再利用Logisim 中的“分析组合逻辑电路”功能,将真值表填入,自动生成电路。

(6)真值表的设计:由于是 4输入 7输出,真值表共有 16 行。

7输出对应 7个引脚,所以需要依次对照LED 灯的引脚顺序进行设计,如下图所示(注意LED 的引脚顺序):三、实验步骤(1)在实验平台下载实验框架文件RGLED.circ;(2)在Logisim 中打开RGLED.circ 文件,选择数码管驱动子电路;(3)点击“工程”中的“分析组合逻辑电路”功能,先构建4输入和7输出,再在“真值表”中,将已设计好的真值表的所有数值仔细对照着填入表格中,确认无误后点击“生成电路”,自动生成的电路如下图所示:(4)将子电路封装为如下形式:(5)进行电路测试:·自动测试在数码管驱动测试子电路中进行测试;·平台评测自动测试结果满足实验要求后,再利用记事本打开RGLED.circ 文件,将所有文字信息复制粘贴到Educoder 平台代码区域,点击评测按钮进行测试。

四、实验结果测试与分析(1)自动测试的部分结果如下:(2)平台测试结果如下:综上,本实验测试结果为通过,无故障显示。

本实验的关键点在于:在设计时需要格外注重LED 灯的引脚顺序,保证0-9 数字显示的正确性,设计出正确的真值表。

计算机组成原理数据通路实验报告

计算机组成原理数据通路实验报告

计算机组成原理数据通路实验报告计算机组成原理实验报告计算机组成原理实验报告实验一基本运算器实验一、实验目的1. 了解运算器的组成结构2. 掌握运算器的工作原理3. 深刻理解运算器的控制信号二、实验设备PC机一台、TD-CMA实验系统一套三、实验原理1. (思考题)运算器的组成包括算数逻辑运算单元ALU(Arithmetic and Logic Unit)、浮点运算单元FPU(Floating Point Unit)、通用寄存器组、专用寄存器组。

①算术逻辑运算单元ALU (Arithmetic and Logic Unit)ALU主要完成对二进制数据的定点算术运算(加减乘除)、逻辑运算(与或非异或)以及移位操作。

在某些CPU中还有专门用于处理移位操作的移位器。

通常ALU由两个输入端和一个输出端。

整数单元有时也称为IEU(IntegerExecution Unit)。

我们通常所说的“CPU 是XX位的”就是指ALU所能处理的数据的位数。

②浮点运算单元FPU(Floating Point Unit)FPU主要负责浮点运算和高精度整数运算。

有些FPU还具有向量运算的功能,另外一些则有专门的向量处理单元。

③通用寄存器组通用寄存器组是一组最快的存储器,用来保存参加运算的操作数和中间结果。

④专用寄存器专用寄存器通常是一些状态寄存器,不能通过程序改变,由CPU自己控制,表明某种状态。

而运算器内部有三个独立运算部件,分别为算术、逻辑和移位运算部件,逻辑运算部件由逻辑门构成,而后面又有专门的算术运算部件设计实验。

下图为运算器内部原理构造图2. 运算器的控制信号实验箱中所有单元的T1、T2、T3、T4都连接至控制总线单元的T1、T2、T3、T4,CLR都连接至CON单元的CLR按钮。

T4由时序单元的TS4提供(脉冲信号),其余控制信号均由CON单元的二进制数据开关模拟给出。

控制信号中除T4为脉冲信号外,其余均为电平信号,其中ALU_B为低有效,其余为高有效。

计算机组成原理实验2.1总线与寄存器

计算机组成原理实验2.1总线与寄存器
实验步骤:
1) 令#R0_BUS= #DR_BUS= #SFT_BUS=1,#SW_BUS=0;启动仿 真,通过拨码开关送入总线BUS任意八位二进制数,赋值 74LS194的输入端D0D1D2D3。按照后页的逻辑功能表置位 74LS194的MR、S1、S0 、SL、SR端,观察并记录CLK端上升 沿和下降沿跳变时刻输出端Q0Q1Q2Q3的状态。
2) 令#SW_BUS=0,三态门74LS244导通,记录BUS总线上的数 据,与总线BIN相比较:
BUS_7 BUS_6 BUS_5 BUS_4 BUS_3 BUS_2 BUS_1 BUS_0 BUS总线
单位D触发器:74LS74 四位D触发器:74LS175
D触发器逻辑功能 表
【2】D触发器实验(一Fra bibliotek总线与寄存器 实验 电路图
三态门74LS244
拨码开关与总线缓冲器(注意观察74LS244左右电平)
【1】总线实验
实验步骤:
1) #SW_BUS = #R0_BUS= #DR_BUS= #SFT_BUS=1;启动仿真, 手动拨码开关在总线DIN上置位数据0x55。比较拨码开关 所在的总线DIN与总线BUS上的数据。
实验步骤:
1) 令#R0_BUS= #DR_BUS= #SFT_BUS=1, #SW_BUS=0,启动 仿真,手动拨码开关输入数据到BUS总线,改变74LS74的 D端(即BUS总线的BUS_0)状态,按照后页逻辑功能表置 位74LS74的#Sd端、#Rd端,观察并记录CLK端上升沿 、 下降沿跳变时刻的Q端和#Q端状态。
的0xAA数据存入DR。观察寄存器74LS273的输出端。 6) 再令#R0_BUS=1;观察寄存器74LS374的输出端,请比较器

计算机组成原理实验1_脱机运算器

计算机组成原理实验1_脱机运算器

实验一.脱机运算器部件实验一、教学计算机的通电启动和关闭操作1.教学计算机系统通电启动的操作步骤:(1) 准备一台串行接口运行正常的PC机;(2) 将TH-union计原16放在实验台上,打开实验箱的盖子,确定电源处于断开状态;(3) 将黑色的电源线一端接220V交流电源,另一端插在计原16实验箱的电源插座;(4) 取出通讯线,将通讯线的9芯插头接在计原16实验箱后板上左侧位置的串口插座,另一端接到PC机的串口上;(5) 将计原16实验系统左下方的五个黑色的功能控制开关置于00010的位置(连续、内存读指令、微程序、联机、16位),开关拨向上方表示“1”,拨向下方表示“0”;(6) 接通电源,船形开关和5V电源指示灯亮。

(7) 在PC机上运行PCEC16.EXE文件,根据使用的PC机的串口情况选“1”或“2”,其它的设置一般不用改动,直接回车即可。

(具体步骤附后)(8) 按一下“RESET”按键,再按一下“START”按键,PC机屏幕上显示:TH-union CRT MONITORVersion 1.0 April 2001Computer Architectur Lab., Tsinghua UniversityProgrammed by He Jia>这个版权信息显示出来之后,表示教学机已经进入正常运行状态,等待输入监控命令。

实验注意事项:1.连接电源线和通讯线前TH-union计原16实验系统的电源开关一定要处于断开状态,否则可能损坏教学计算机系统的或PC机的串行接口电路;2.五个黑色控制开关的功能示意图如下:开关位置,自左向右共5个,分别控制1 2 3 4 5向上拨:单步手工拨指令组合逻辑运算器联机 8位向上拨:连续读内存指令微程序运算器脱机 16位几种常用的工作方式,(开关向上拨表示为1,向下拨表示0)工作方式功能开关状态连续运行程序、硬连线控制器、联机、16位机 00110连续运行程序、微程序控制器、联机、16位机 00010单步、手拨指令、硬连线控制器、联机、16位机 11110单步、手拨指令、微程序控制器、联机、16位机 11010单步、脱机运算器实验、16位机 100002.关闭教学计算机系统在需要关闭教学计算机系统时,应首先通过安装在机箱右侧板上的开关关闭交流电源,教学机上的全部指示灯都会熄灭。

计算机组成原理实验介绍

计算机组成原理实验介绍

计算机组成原理实验介绍《计算机组成原理实验介绍》1. 引言嘿,你有没有想过,当你打开电脑玩游戏或者处理文档的时候,电脑内部到底在发生着什么样神奇的事情呢?就像一个神秘的黑盒子,我们只看到了它呈现出来的效果,却不太清楚里面的构造和运行机制。

今天啊,咱们就来一起探索计算机组成原理实验的那些事儿,从最基础的概念到实际的应用,再到一些常见的问题,就像给这个神秘的黑盒子打开一道缝,好好地瞧一瞧里面的奥秘。

在这篇文章里,我们会先讲讲计算机组成原理实验的基本概念和理论背景,然后分析它的运行机制,还会看看在生活和高端技术领域的应用,也会聊聊大家对它可能存在的误解,最后再补充一些相关知识,总结一下并且展望未来。

2. 核心原理2.1基本概念与理论背景计算机组成原理啊,说白了就是研究计算机到底是由哪些部分组成的,以及这些部分是怎么协同工作的这么一门学科。

它的理论来源可以追溯到计算机诞生的时候,最早的那些计算机科学家们就开始琢磨怎么把一些基本的计算功能通过硬件组合起来。

就好比盖房子,你得先有砖头、水泥这些基本的材料(也就是计算机的各种硬件组件),然后还得知道怎么把它们搭在一起(各组件的连接和协同工作方式)。

从发展历程来看,最开始的计算机可不像现在这么小巧玲珑、功能强大。

早期的计算机那可是庞大无比,像个巨兽一样,而且功能还很单一。

随着时间的推移,计算机组成的理论不断发展,各种新的组件被发明出来,它们之间的协作也变得越来越高效。

比如说,从简单的算术逻辑单元,发展到现在复杂的中央处理器(CPU),这里面包含了无数科学家和工程师的智慧结晶。

2.2运行机制与过程分析咱们先把计算机想象成一个超级大的工厂。

首先是输入设备,这就像是工厂的原材料进货口。

比如说你敲键盘输入信息,就相当于把原材料送进了工厂。

这些原材料(数据)通过系统总线这个“传送带”,被送到了CPU 这个“加工中心”。

CPU呢,就像是工厂里最聪明的工程师,它能根据接收到的数据进行各种运算和处理。

计组实验报告(共10篇)

计组实验报告(共10篇)

计组实验报告(共10篇)计组实验报告计算机组成原理实验报告一一、算术逻辑运算器1. 实验目的与要求:目的:①掌握算术逻辑运算器单元ALU(74LS181)的工作原理。

②掌握简单运算器的数据传输通道。

③验算由74LS181等组合逻辑电路组成的运输功能发生器运输功能。

④能够按给定数据,完成实验指定的算术/逻辑运算。

要求:完成实验接线和所有练习题操作。

实验前,要求做好实验预习,掌握运算器的数据传送通道和ALU 的特性,并熟悉本实验中所用的模拟开关的作用和使用方法。

实验过程中,要认真进行实验操作,仔细思考实验有关的内容,把自己想得不太明白的问题通过实验去理解清楚,争取得到最好的实验结果,达到预期的实验教学目的。

实验完成后,要求每个学生写出实验报告。

2. 实验方案:1.两片74LS181(每片4位)以并/串联形式构成字长为8为的运算器。

2.8为运算器的输出经过一个输入双向三态门(74LS245)与数据总线相连,运算器的两个数据输入端分别与两个8位寄存器(74LS273)DR1和DR2的输出端相连,DR1和DR2寄存器是用于保存参加运算的数据和运算的结果。

寄存器的输入端于数据总线相连。

3.8位数据D7~D0(在“INPUT DEVICE”中)用来产生参与运算的数据,并经过一个输出三态门(74LS245)与数据总线相连。

数据显示灯(BUS UNIT)已与数据总线相连,用来显示数据总线上所内容。

4.S3、S2、S1、S0是运算选择控制端,由它们决定运算器执行哪一种运算(16种算术运算或16种逻辑运算)。

5.M是算术/逻辑运算选择,M=0时,执行算术运算,M=1时,执行逻辑运算。

6.Cn是算术运算的进位控制端,Cn=0(低电平),表示有进位,运算时相当于在最低位上加进位1,Cn=1(高电平),表示无进位。

逻辑运算与进位无关。

7.ALU-B是输出三态门的控制端,控制运算器的运算结果是否送到数据总线BUS上。

低电平有效。

《计算机组成原理》实验

《计算机组成原理》实验

《计算机组成原理》实验一、实验的性质、任务和基本要求(一)本实验课的性质、任务《计算机组成原理》是计算机科学与技术、网络工程专业的核心专业基础课,本课程旨在培养学生对计算机系统的分析、设计能力,同时为后续专业课程的学习打下坚实的基础。

实验是巩固课堂教学质量必不可少的重要手段。

本实验课的任务是通过实验进一步加深对计算机各部件组成以及工作原理的掌握,培养学生计算机硬件动手能力。

(二)基本要求1、掌握运算器的基本组成和工作原理;2、掌握半导体存储器的工作原理与使用方法,掌握半导体存储器如何存储和读取数据;3、掌握微程序控制器的组成以及工作过程,掌握用单步方式执行一段微程序以及如何检查每一条微指令正确与否的方法;4、掌握数据传送通路工作原理;5、能够将运算器、微程序控制器和存储器三个部件连机,形成一个基本模型机系统。

同时,掌握机器指令与微指令的关系。

(三)实验学时分配表(表格说明)二、实验教学内容实验一运算器实验一、实验目的:(1)结合学过的有关运算器的基本知识,掌握运算器的基本组成、工作原理。

特别是了解算术逻辑运算单元ALU的工作原理;(2)验证多功能算术单元74181、74182的运算功能;(3)熟悉掌握本实验中运算器的数据传输通路。

二、实验要求(1)预习74181、74182的工作原理及逻辑关系;(2)测量数据要求准确;(3)写出实验报告。

三、实验内容1、实验原理实验中的运算器由两片74LS181以并/串形成8位字长的ALU构成。

运算器的输出经过一个三态门74LS245到ALUO1插座,实验时用8芯排线和内部数据总线BUSD0~D7插座BUS1~6中的任一个相连,内部数据总线通过LZD0~LZD7显示灯显示;运算器的两个数据输入端分别由二个锁存器74LS273锁存,两个锁存器的输入并联后连至插座ALUBUS,实验时通过8芯排线连至外部数据总线EXD0~D7插座EXJ1~EXJ3中的任一个;参与运算的数据来自于8位数据开关KD0~KD7,并经过一三态门74LS245直接连至外部数据总线EXD0~EXD7,通过数据开关输入的数据由LD0~LD7显示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一基础汇编语言程序设计一、实验目的:1、学习和了解TEC-XP16教学实验系统监控命令的用法。

2、学习和了解TEC-XP16教学实验系统的指令系统。

3、学习简单的TEC-XP16教学实验系统汇编程序设计。

二、预习要求:1、学习TEC-XP16机监控命令的用法。

2、学习TEC-XP16机的指令系统、汇编程序设计及监控程序中子程序调用。

3、学习TEC-XP16机的使用,包括开关、指示灯、按键等。

4、了解实验内容、实验步骤和要求。

三、实验步骤:在教学计算机硬件系统上建立与调试汇编程序有几种操作办法。

第一种办法,是使用监控程序的A命令,逐行输入并直接汇编单条的汇编语句,之后使用G命令运行这个程序。

缺点是不支持汇编伪指令,修改已有程序源代码相对麻烦一些,适用于建立与运行短小的汇编程序。

第二种办法,是使用增强型的监控程序中的W命令建立完整的汇编程序,然后用M命令对建立起来的汇编程序执行汇编操作,接下来用G命令运行这个程序。

适用于比较短小的程序。

此时可以支持汇编伪指令,修改已经在内存中的汇编程序源代码的操作更方便一些。

第三种办法,是使用交叉汇编程序ASEC,首先在PC机上,用PC机的编辑程序建立完整的汇编程序,然后用ASEC对建立起来的汇编程序执行汇编操作,接下来把汇编操作产生的二进制的机器指令代码文件内容传送到教学机的内存中,就可以运行这个程序了。

适用于规模任意大小的程序。

在这里我们只采用第一种方法。

在TEC-XP16机终端上调试汇编程序要经过以下几步:1、使教学计算机处于正常运行状态(具体步骤见附录联机通讯指南)。

2、使用监控命令输入程序并调试。

⑴用监控命令A输入汇编程序>A 或>A 主存地址如:在命令行提示符状态下输入:A 2000↙;表示该程序从2000H(内存RAM区的起始地址)地址开始屏幕将显示:2000:输入如下形式的程序:2000: MVRD R0,AAAA ;MVRD 与R0 之间有且只有一个空格,其他指令相同2002: MVRD R1,55552004: ADD R0,R12005: AND R0,R12006: RET ;程序的最后一个语句,必须为RET 指令2007:(直接敲回车键,结束A 命令输入程序的操作过程)若输入有误,系统会给出提示并显示出错地址,用户只需在该地址重新输入正确的指令即可。

⑵用监控命令U调出输入过的程序并显示在屏幕上>U 或>U 主存地址如:在命令行提示符状态下输入:U 2000↙在相应的地址会得到输入的指令及其操作码注意:连续使用不带参数的U命令时,将从上一次反汇编的最后一条语句之后接着继续反汇编。

通过这一步进一步检查程序是否有除了语法外的其它错误。

⑶通过监控命令G(连续执行)或T/P(单步执行)执行程序>G/T/P 或>G/T/P 主存地址如:在命令行提示符状态下输入:G 2000↙程序运行结束后,可以看到程序的运行结果,屏幕显示各寄存器的值,其中R0和R1的值均为5555H,说明程序运行正确。

⑷修改或显示寄存器或内存值的命令。

R、D、E命令的使用1)用R命令查看寄存器内容或修改寄存器的内容a.在命令行提示符状态下输入:R↙;显示寄存器的内容注意:寄存器的内容在运行程序或执行命令后会发生变化。

b.在命令行提示符状态下输入:R R0↙;修改寄存器R0 的内容,被修改的寄存器与所赋值之间可以无空格,也可有一个或数个空格主机显示:寄存器原值:_在该提示符下输入新的值0036再用R命令显示寄存器内容,则R0的内容变为0036。

2)用D命令显示存储器内容在命令行提示符状态下输入:D 2000↙会显示从2000H地址开始的连续128个字的内容;连续使用不带参数的D命令,起始地址会自动加128(即80H)。

3)用E命令修改存储器内容在命令行提示符状态下输入:E 2000↙屏幕显示:2000 地址单元的原有内容:光标闪烁等待输入输入0000依次改变地址单元2001-2005的内容为:1111 2222 3333 4444 5555注意:用E命令连续修改内存单元的值时,每修改完一个,按一下空格键,系统会自动给出下一个内存单元的值,等待修改;按回车键则退出E命令。

四、实验内容:1、输入下列各汇编程序段,将结果调试出来,并回答问题。

程序1:A 2000↙2000: IN 81SHR R0SHR R0JRNC 2000IN 80OUT 80RET注意:在十六位机中,基本I/O接口的地址是确定的,数据口的地址为80,状态口的地址为81。

问题:⑴该程序段的功能是什么?从键盘上接收一个字符并在屏幕上输出显示该字符程序2:>A 2060↙2060:MVRD R1,0000MVRD R2,00OAMVRD R3,00002066:INC R3ADD R1,R3CMP R3,R2JRNZ 2066RET问题:⑴该程序段的功能是什么?计算1到10的累加和⑵如何察看结果?结果是什么?输入G 2060 结果为:R1=0037 R2=00OA R3=00OA ⑶请用一字长的指令替换程序中的MOV R3,0 写出该语句。

Mov r3,r1程序3:用次数控制在终端屏幕上输出'0'到'9'十个数字符。

>A 2020↙2020:MVRD R2,00OA ;送入输出字符个数MVRD R0,0030 ;“0”字符的ASCII 码送寄存器R0OUT 80 ;输出保存在R0 低位字节的字符DEC R2 ;输出字符个数减1JRZ 202E ;判10个字符输出完否,已完,则转到程序结束处PUSH R0 ;未完,保存R0 的值到堆栈中2028: IN 81 ;查询接口状态,判字符串行输出完成否,SHR R0 ;JRNC 2028 ;未完成, 则循环等待POP R0 ;已完成, 准备输出下一字符并从堆栈恢复R0 的值INC R0 ;得到下一个要输出的字符JR 2024 ;转去输出字符202E: RET五、思考题:⑴若把IN 81, SHR R0, JRNC 2028 三个语句换成4个MVRR R0,R0 语句, 该程序执行过程会出现什么现象? 试分析并实际执行一次。

程序改变这三条语句后,若用T 命令单条执行,会依次显示0,9 十个数字。

若用G 命令运行程序,由于程序运行速度快,端口串行输出的速度很慢,这样新会丢失某些输出的字行;如,在命令行提示符状态下输入G 2020 命令后,屏幕可能的显示为059 或069 ,而不是023456789全部的10 个字符。

⑵若要求在终端屏幕上输出'A'到'Z'共26个英文字母,应如何修改程序? 请验证之。

A 2100MVRD R2,001AMVRD R0,0041OUT 80DEC R2JRZ 210EPUSH R0IN 81SHR R0JRNC 2108POP R0INC R0JR 2104RET2、试编写程序完成两个双字长的数相加并验证之。

3、设计一个有读写内存和子程序调用指令的程序,功能是读出内存中的字符,将其显示到显示器的屏幕上,转换为小写字母后再写回存储器原存储区域。

E 20FO↙屏幕将显示:20F0:按下列格式输入:20Fo: 4120F1: 4220F2: 4320F3: 4420F4: 4520F5: 452) 在命令行提示符状态下输入A 2080↙屏幕将显示:2080:从地址2080开始输入下列程序:(2080)MVD R3, 06 :指定技读数据的个数MVD R9, 20 :指定被读、写数据内存区首地址MVD R8, F0(2086)LOD R0 :使内存中的一个字符到R0寄存器MVD RB, 21 ;指定于程序地址为2100MVD RA, 00CALL ;调用于程序,完成显示、转换并写回的功能 DEC R3 ;检查输出的字符个数JZ 2092 ;完成输出则结束程序的执行过程INC R8 ;未完成,修改内存地址JR 2086 :转移到程序的2086处,循环执行规定的处理 (2092) RETA 2100 输入用到的子程序到内存2100开始的存储区 OUT 00 :输出保存在R0寄存器中的字符MVD R1, 20 :转换保存在R0中的大写字母为小写字母ADD R0, B1STO R0 ;写R0中的字符到内存,地址同LOD所用的地址 (2105)IN 01 ;测试串行接口是否完成输出过程SHR R0JNC 2105 ;末完成输出过程则循环试RET :结束子程序执行过程,返回主程序3)在命令行提示符状态下输入:G 2080↙屏幕显示运行结果为:ABCDEF11个寄存器内容及状态标志2080: MVD R3,064)在命令行提示符状态下输入:D 20F0↙20F0—20F5内存单元的内容为:6l 62 63 64 65 664、设计一个程序在显示器屏幕上循环显示95个(包括空格字符)可打印字符。

A20A0;从内存的20A0单元开始建立用户的第一个程序20A0:MVRDR1,7E;向寄存器传送立即数20A2:MVRDR0,20;20A4:OUT80;通过串行接口输出R0低位字节内容到显示器屏幕20A5:PUSHR0;保存R0寄存器的内容到堆栈中20A6:IN81;读串行接口的状态寄存器的内容20A7:SHRR0;R0寄存器的内容右移一位,最低位的值移入标志位C20A8:JRNC20A6;条件转移指令,当标志位C不是1时就转到20A6地址20A9:POPR0;从堆栈中恢复R0寄存器的原内容20AA:CMPR0,R1;比较两个寄存器的内容是否相同,相同则标志位Z=120AB:JRZ20A0;条件转移指令,当标志位Z为1时转到200A0地址20AC:INCR0;把R0寄存器的内容增加120AE:JR20A4;无条件转移指令,一定转移到20A4地址20AF:RET;子程序返回指令,程序结束六、实验心得:。

相关文档
最新文档