计算机组成原理全部实验
计算机组成原理实验(接线、实验步骤)

计算机组成原理实验(接线、实验步骤)实验⼀运算器[实验⽬的]1.掌握算术逻辑运算加、减、乘、与的⼯作原理;2.熟悉简单运算器的数据传送通路;3.验证实验台运算器的8位加、减、与、直通功能;4.验证实验台4位乘4位功能。
[接线]功能开关:DB=0 DZ=0 DP=1 IR/DBUS=DBUS接线:LRW:GND(接地)IAR-BUS# 、M1、M2、RS-BUS#:接+5V控制开关:K0:SW-BUS# K1:ALU-BUSK2:S0 K3:S1 K4:S2K5:LDDR1 K6:LDDR2[实验步骤]⼀、(81)H与(82)H运算1.K0=0:SW开关与数据总线接通K1=0:ALU输出与数据总线断开2.开电源,按CLR#复位3.置数(81)H:在SW7—SW0输⼊10000001→LDDR2=1,LDDR1=0→按QD:数据送DR2置数(82)H:在SW7—SW0输⼊10000010→LDDR2=0,LDDR1=1→按QD:数据送DR1 4.K0=1:SW开关与数据总线断开K1=1:ALU输出与数据总线接通5. S2S1S0=010:运算器做加法(观察结果在显⽰灯的显⽰与进位结果C的显⽰)6.改变S2S1S0的值,对同⼀组数做不同的运算,观察显⽰灯的结果。
⼆、乘法、减法、直通等运算1.K0K1=002.按CLR#复位3.分别给DR1和DR2置数4.K0K1=115. S2S1S0取不同的值,执⾏不同的运算[思考]M1、M2控制信号的作⽤是什么?运算器运算类型选择表选择操作S2 S1 S00 0 0 A&B0 0 1 A&A(直通)0 1 0 A+B0 1 1 A-B1 0 0 A(低位)ΧB(低位)完成以下表格ALU-BUS SW-BUS# 存储器内容S2S1S0 DBUS C输⼊时:计算时:DR1:01100011DR2:10110100(与)DR1:10110100DR2:01100011(直通)DR1:01100011DR2:01100011(加)DR1:01001100DR2:10110011(减)DR1:11111111DR2:11111111(乘)实验⼆双端⼝存储器[实验⽬的]1.了解双端⼝存储器的读写;2.了解双端⼝存储器的读写并⾏读写及产⽣冲突的情况。
计算机组成原理实验报告

实验一:数字逻辑——交通灯系统设计子实验1:7 段数码管驱动电路设计(1)理解利用真值表的方式设计电路的原理;(2)利用Logisim 真值表自动生成电路的功能,设计一个 7 段数码管显示驱动。
二、实验方案设计7 段数码管显示驱动的设计方案:(1)输入:4 位二进制(2)输出:7 段数码管 7 个输出控制信号(3)电路引脚:(4)实现功能:利用 7 段数码管显示 4 位二进制的 16 进制值(5)设计方法:由于该实验若直接进行硬件设计会比较复杂,而7 段数码管显示的真值表较容易掌握,所以我们选择由真值表自动生成电路的方法完成该实验。
先分析设计 7 段数码管显示驱动的真值表,再利用Logisim 中的“分析组合逻辑电路”功能,将真值表填入,自动生成电路。
(6)真值表的设计:由于是 4输入 7输出,真值表共有 16 行。
7输出对应 7个引脚,所以需要依次对照LED 灯的引脚顺序进行设计,如下图所示(注意LED 的引脚顺序):三、实验步骤(1)在实验平台下载实验框架文件RGLED.circ;(2)在Logisim 中打开RGLED.circ 文件,选择数码管驱动子电路;(3)点击“工程”中的“分析组合逻辑电路”功能,先构建4输入和7输出,再在“真值表”中,将已设计好的真值表的所有数值仔细对照着填入表格中,确认无误后点击“生成电路”,自动生成的电路如下图所示:(4)将子电路封装为如下形式:(5)进行电路测试:·自动测试在数码管驱动测试子电路中进行测试;·平台评测自动测试结果满足实验要求后,再利用记事本打开RGLED.circ 文件,将所有文字信息复制粘贴到Educoder 平台代码区域,点击评测按钮进行测试。
四、实验结果测试与分析(1)自动测试的部分结果如下:(2)平台测试结果如下:综上,本实验测试结果为通过,无故障显示。
本实验的关键点在于:在设计时需要格外注重LED 灯的引脚顺序,保证0-9 数字显示的正确性,设计出正确的真值表。
计算机组成原理实验2.1总线与寄存器

1) 令#R0_BUS= #DR_BUS= #SFT_BUS=1,#SW_BUS=0;启动仿 真,通过拨码开关送入总线BUS任意八位二进制数,赋值 74LS194的输入端D0D1D2D3。按照后页的逻辑功能表置位 74LS194的MR、S1、S0 、SL、SR端,观察并记录CLK端上升 沿和下降沿跳变时刻输出端Q0Q1Q2Q3的状态。
2) 令#SW_BUS=0,三态门74LS244导通,记录BUS总线上的数 据,与总线BIN相比较:
BUS_7 BUS_6 BUS_5 BUS_4 BUS_3 BUS_2 BUS_1 BUS_0 BUS总线
单位D触发器:74LS74 四位D触发器:74LS175
D触发器逻辑功能 表
【2】D触发器实验(一Fra bibliotek总线与寄存器 实验 电路图
三态门74LS244
拨码开关与总线缓冲器(注意观察74LS244左右电平)
【1】总线实验
实验步骤:
1) #SW_BUS = #R0_BUS= #DR_BUS= #SFT_BUS=1;启动仿真, 手动拨码开关在总线DIN上置位数据0x55。比较拨码开关 所在的总线DIN与总线BUS上的数据。
实验步骤:
1) 令#R0_BUS= #DR_BUS= #SFT_BUS=1, #SW_BUS=0,启动 仿真,手动拨码开关输入数据到BUS总线,改变74LS74的 D端(即BUS总线的BUS_0)状态,按照后页逻辑功能表置 位74LS74的#Sd端、#Rd端,观察并记录CLK端上升沿 、 下降沿跳变时刻的Q端和#Q端状态。
的0xAA数据存入DR。观察寄存器74LS273的输出端。 6) 再令#R0_BUS=1;观察寄存器74LS374的输出端,请比较器
计算机组成实验报告

计算机组成实验报告计算机组成实验报告(共3篇)篇一:《计算机组成与结构》实验报告11 .实验目的:1).学习和了解TEC-2000 十六位机监控命令的用法;2).学习和了解TEC-2000 十六位机的指令系统;3).学习简单的TEC-2000 十六位机汇编程序设计;2.实验内容:1).使用监控程序的R 命令显示/修改寄存器内容、D 命令显示存储器内容、E 命令修改存储器内容;2).使用 A 命令写一小段汇编程序,U 命令反汇编刚输入的程序,用G 命令连续运行该程序,用T、P 命令单步运行并观察程序单步执行情况;3、实验步骤1).关闭电源,将大板上的COM1 口与PC 机的串口相连;2).接通电源,在PC 机上运行PCEC.EXE 文件,设置所用PC 机的串口为“1”或“2”, 其它的设置一般不用改动,直接回车即可;3).置控制开关为00101(连续、内存读指令、组合逻辑、16 位、联机),开关拨向上方表示“1”,拨向下方表示“0”,“X”表示任意。
其它实验相同;4).按一下“RESET”按键,再按一下“START”按键,主机上显示:TEC-2000 CRT MONITOR Version 1.0 April 2001Computer Architectur Lab.,Tsinghua University Programmed by He Jia >5).用R 命令查看寄存器内容或修改寄存器的内容a.在命令行提示符状态下输入:R↙;显示寄存器的内容图片已关闭显示,点此查看图片已关闭显示,点此查看b.在命令行提示符状态下输入:R R0↙;修改寄存器R0 的内容,被修改的寄存器与所赋值之间可以无空格,也可有一个或数个空格主机显示:寄存器原值:_在该提示符下输入新的值,再用R 命令显示寄存器内容,则R0 的内容变为0036。
图片已关闭显示,点此查看6).用D 命令显示存储器内容在命令行提示符状态下输入:D 2000↙会显示从2000H 地址开始的连续128 个字的内容;连续使用不带参数的 D 命令,起始地址会自动加128(即80H)。
计算机组成原理实验报告(四个实验 图)

福建农林大学计算机与信息学院计算机类实验报告课程名称:计算机组成原理姓名:周孙彬系:计算机专业:计算机科学与技术年级:2012级学号:3126010050指导教师:张旭玲职称:讲师2014年06 月22日实验项目列表序号实验项目名称成绩指导教师1 算术逻辑运算单元实验张旭玲2 存储器和总线实验张旭玲3 微程序控制单元实验张旭玲4 指令部件模块实验张旭玲福建农林大学计算机与信息学院信息工程类实验报告系:计算机专业:计算机科学与技术年级: 2012级姓名:周孙彬学号: 3126010050 实验课程:实验室号:_______ 实验设备号:实验时间:指导教师签字:成绩:实验一算术逻辑运算单元实验实验目的1、掌握简单运算器的数据传输方式2、掌握74LS181的功能和应用实验要求完成不带进位位算术、逻辑运算实验。
按照实验步骤完成实验项目,了解算术逻辑运算单元的运行过程。
实验说明1、ALU单元实验构成(如图2-1-1)1、运算器由2片74LS181构成8位字长的ALU单元。
2、2片74LS374作为2个数据锁存器(DR1、DR2),8芯插座ALU-IN作为数据输入端,可通过短8芯扁平电缆,把数据输入端连接到数据总线上。
运算器的数据输出由一片74LS244(输出缓冲器)来控制,8芯插座ALU-OUT 作为数据输出端,可通过短8芯扁平电缆把数据输出端连接到数据总线上。
图2-1-1图2-1-22、ALU单元的工作原理(如图2-1-2)数据输入锁存器DR1的EDR1为低电平,并且D1CK有上升沿时,把来自数据总线的数据打入锁存器DR1。
同样使EDR2为低电平、D2CK有上升沿时把数据总线上的数据打入数据锁存器DR2。
算术逻辑运算单元的核心是由2片74LS181组成,它可以进行2个8位二进制数的算术逻辑运算,74LS181的各种工作方式可通过设置其控制信号来实现(S0、S1、S2、S3、M、CN)。
当实验者正确设置了74LS181的各个控制信号,74LS181会运算数据锁存器DR1、DR2内的数据。
计组实验报告(共10篇)

计组实验报告(共10篇)计组实验报告计算机组成原理实验报告一一、算术逻辑运算器1. 实验目的与要求:目的:①掌握算术逻辑运算器单元ALU(74LS181)的工作原理。
②掌握简单运算器的数据传输通道。
③验算由74LS181等组合逻辑电路组成的运输功能发生器运输功能。
④能够按给定数据,完成实验指定的算术/逻辑运算。
要求:完成实验接线和所有练习题操作。
实验前,要求做好实验预习,掌握运算器的数据传送通道和ALU 的特性,并熟悉本实验中所用的模拟开关的作用和使用方法。
实验过程中,要认真进行实验操作,仔细思考实验有关的内容,把自己想得不太明白的问题通过实验去理解清楚,争取得到最好的实验结果,达到预期的实验教学目的。
实验完成后,要求每个学生写出实验报告。
2. 实验方案:1.两片74LS181(每片4位)以并/串联形式构成字长为8为的运算器。
2.8为运算器的输出经过一个输入双向三态门(74LS245)与数据总线相连,运算器的两个数据输入端分别与两个8位寄存器(74LS273)DR1和DR2的输出端相连,DR1和DR2寄存器是用于保存参加运算的数据和运算的结果。
寄存器的输入端于数据总线相连。
3.8位数据D7~D0(在“INPUT DEVICE”中)用来产生参与运算的数据,并经过一个输出三态门(74LS245)与数据总线相连。
数据显示灯(BUS UNIT)已与数据总线相连,用来显示数据总线上所内容。
4.S3、S2、S1、S0是运算选择控制端,由它们决定运算器执行哪一种运算(16种算术运算或16种逻辑运算)。
5.M是算术/逻辑运算选择,M=0时,执行算术运算,M=1时,执行逻辑运算。
6.Cn是算术运算的进位控制端,Cn=0(低电平),表示有进位,运算时相当于在最低位上加进位1,Cn=1(高电平),表示无进位。
逻辑运算与进位无关。
7.ALU-B是输出三态门的控制端,控制运算器的运算结果是否送到数据总线BUS上。
低电平有效。
计算机组成原理全部实验

计算机科学技术系王玉芬2012年11月3日基础实验部分该篇章共有五个基础实验组成,分别是:实验一运算器实验实验二存储器实验实验三数据通路组成与故障分析实验实验四微程序控制器实验实验五模型机CPU组成与指令周期实验实验一运算器实验运算器又称作算术逻辑运算单元(ALU),是计算机的五大基本组成部件之一,主要用来完成算术运算和逻辑运算。
运算器的核心部件是加法器,加减乘除运算等都是通过加法器进行的,因此,加快运算器的速度实质上是要加快加法器的速度。
机器字长n位,意味着能完成两个n位数的各种运算。
就应该由n个全加器构成n位并行加法器来实现。
通过本实验可以让学生对运算器有一个比较深刻的了解。
一、实验目的1.掌握简单运算器的数据传输方式。
2.掌握算术逻辑运算部件的工作原理。
3. 熟悉简单运算器的数据传送通路。
4. 给定数据,完成各种算术运算和逻辑运算。
二、实验内容:完成不带进位及带进位的算术运算、逻辑运算实验。
总结出不带进位及带进位运算的特点。
三、实验原理:1.实验电路图图4-1 运算器实验电路图2.实验数据流图图4-2 运算器实验数据流图3.实验原理运算器实验是在ALU UNIT单元进行;单板方式下,控制信号,数据,时序信号由实验仪的逻辑开关电路和时序发生器提供,SW7-SW0八个逻辑开关用于产生数据,并发送到总线上;系统方式下,其控制信号由系统机实验平台可视化软件通过管理CPU来进行控制,SW7-SW0八个逻辑开关由可视化实验平台提供数据信号。
(1)DR1,DR2:运算暂存器,(2)LDDR1:控制把总线上的数据打入运算暂存器DR1,高电平有效。
(3)LDDR2:控制把总线上的数据打入运算暂存器DR2,高电平有效。
(4)S3,S2,S1,S0:确定执行哪一种算术运算或逻辑运算(运算功能表见附录1或者课本第49页)。
(5)M:M=0执行算术操作;M=1执行逻辑操作。
(6)/CN :/CN=0表示ALU运算时最低位加进位1;/CN=1则表示无进位。
计算机组成原理实验报告精品9篇

计算机组成原理实验报告课程名称计算机组成原理实验学院计算机专业班级学号学生姓名指导教师20年月日实验一:基础汇编语言程序设计实验1实验目的●学习和了解TEC-XP+教学实验监控命令的用法;●学习和了解TEC-XP+教学实验系统的指令系统;●学习简单的TEC-XP+教学实验系统汇编程序设计。
2实验设备及器材●工作良好的PC机;●TEC-XP+教学实验系统和仿真终端软件PCEC。
3实验说明和原理实验原理在于汇编语言能够直接控制底层硬件的状态,通过简单的汇编指令查看、显示、修改寄存器、存储器等硬件内容。
实验箱正如一集成的开发板,而我们正是通过基础的汇编语言对开发板进行使用和学习,过程中我们不仅需要运用汇编语言的知识,还需要结合数字逻辑中所学的关于存储器、触发器等基本器件的原理,通过串口通讯,实现程序的烧录,实验箱与PC端的通讯。
4实验内容1)学习联机使用TEC-XP+教学实验系统和仿真终端软件PCEC;2)学习使用WINDOWS界面的串口通讯软件;3)使用监控程序的R命令显示/修改寄存器内容、D命令显示存储内容、E命令修改存储内容;4)使用A命令写一小段汇编程序,U命令反汇编输入的程序,用G命令连续运行该程序,用T、P命令单步运行并观察程序单步执行情况。
5实验步骤1)准备一台串口工作良好的PC机器;2)将TEC-XP+放在实验台上,打开实验箱的盖子,确定电源处于断开状态;3)将黑色的电源线一段接220V交流电源,另一端插在TEC-XP+实验箱的电源插座里;4)取出通讯线,将通讯线的9芯插头接在TEC-XP+实验箱上的串口"COM1"或"COM2"上,另一端接到PC机的串口上;5)将TEC-XP+实验系统左下方的六个黑色的控制机器运行状态的开关置于正确的位置,再找个实验中开关应置为001100(连续、内存读指令、组合逻辑、联机、16位、MACH),6)控制开关的功能在开关上、下方有标识;开关拨向上方表示"1",拨向下方表示"0","X"表示任意,其他实验相同;7)打开电源,船型开关盒5V电源指示灯亮;8)在PC机上运行PCEC16.EXE文件,根据连接的PC机的串口设置所用PC机的串口为"1"或"2",其他的设置一般不用改动,直接回车即可; (8)按一下"RESET"按键,再按一下"START"按键,主机上显示:6实验截图及思考题【例3】计算1到10的累加和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机科学技术系王玉芬2012年11月3日基础实验部分该篇章共有五个基础实验组成,分别是:实验一运算器实验实验二存储器实验实验三数据通路组成与故障分析实验实验四微程序控制器实验实验五模型机CPU组成与指令周期实验实验一运算器实验运算器又称作算术逻辑运算单元(ALU),是计算机的五大基本组成部件之一,主要用来完成算术运算和逻辑运算。
运算器的核心部件是加法器,加减乘除运算等都是通过加法器进行的,因此,加快运算器的速度实质上是要加快加法器的速度。
机器字长n位,意味着能完成两个n位数的各种运算。
就应该由n个全加器构成n位并行加法器来实现。
通过本实验可以让学生对运算器有一个比较深刻的了解。
一、实验目的1.掌握简单运算器的数据传输方式。
2.掌握算术逻辑运算部件的工作原理。
3. 熟悉简单运算器的数据传送通路。
4. 给定数据,完成各种算术运算和逻辑运算。
二、实验内容:完成不带进位及带进位的算术运算、逻辑运算实验。
总结出不带进位及带进位运算的特点。
三、实验原理:1.实验电路图图4-1 运算器实验电路图精彩文档精彩文档2.实验数据流图图4-2 运算器实验数据流图3.实验原理运算器实验是在ALU UNIT单元进行;单板方式下,控制信号,数据,时序信号由实验仪的逻辑开关电路和时序发生器提供,SW7-SW0八个逻辑开关用于产生数据,并发送到总线上;系统方式下,其控制信号由系统机实验平台可视化软件通过管理CPU来进行控制,SW7-SW0八个逻辑开关由可视化实验平台提供数据信号。
(1)DR1,DR2:运算暂存器,(2)LDDR1:控制把总线上的数据打入运算暂存器DR1,高电平有效。
(3)LDDR2:控制把总线上的数据打入运算暂存器DR2,高电平有效。
(4)S3,S2,S1,S0:确定执行哪一种算术运算或逻辑运算(运算功能表见附录1或者课本第49页)。
(5)M:M=0执行算术操作;M=1执行逻辑操作。
(6)/CN :/CN=0表示ALU运算时最低位加进位1;/CN=1则表示无进位。
(7)ALU-BUS:控制运算器的运算结果是否送到总线BUS,低电平有效。
(8)SW-BUS:控制8位数据开关SW7-SW0的开关量是否送到总线,低电平有效。
四、实验步骤:实验前首先确定实验方式(是手动方式还是系统方式),如果在做手动方式实验则将方式选择开关置手动方式位置(31个开关状态置成单板方式)。
实验箱已标明手动方式和系统方式标志。
所有的实验均由手动方式来实现。
如果用系统方式,则必须将系统软件安装到系统机上。
将方式标志置系统模式位置。
学生所做的实验均在系统机上完成。
其中包括高低电平的按钮开关信号输入,状态显示均在系统机上进行。
下面实验以手动方式为例进行。
我们相信学生在手动方式下完成各项实验后,进入系统方式会变的更加得心应手。
具体步骤如下:1.实验前应将MF-OUT输出信号与MF相连接。
2.如果进行单板方式状态实验,应将开关方式状态设置成单板方式;同时将位于EDA 设计区一上方P0K开关设置成手动方式位置,P1K,P2K开关位置均设置成手动方式位置。
3.如果进行系统方式调试,则按上述方式相反状态设置。
4.频率信号输出设置:在CPU1 UNIT区有四个f0-f4状态设置,在进行实验时应保证f0-f4四个信号输出只能有一个信号输出,及f0-f4只有一开关在On的位置。
5.不管是手动方式还是系统方式,31个按钮开关初始状态应为“1”即对应的指示灯处于发光的状态。
6.位于UPC UNIT区的J1跳线开关应在右侧状态。
说明:开关AL-BUS;SW-BUS标识符应为“/AL-BUS;/SW-BUS”注意事项:AL-BUS;SW-BUS不能同时按下;因为同时按下会发生总线冲突,损坏器件。
实验前把TJ,DP对应的逻辑开关置成11状态(高电平输出),并预置下列逻辑电平状态:/ALU-BUS=1,/PC-BUS=1,R0-BUS=1,R1-BUS=1,R2-BUS=1时序发生器处于单拍输出状态,实验是在单步状态下进行DR1,DR2的数据写入及运算,以便能清楚地看见每一步的运算过程。
实验步骤按表1进行。
实验时,对表中的逻辑开关进行操作置1或清0,在对DR1,DR2存数据时,按单次脉冲P0(产生单拍T4信号)。
表1中带X的为随机状态,无论是高电平还是低电平,它都不影响运算器的运算操作。
总线D7-D0上接电平指示灯,显示参与运算的数据结果。
表中列出运算器实验任务的步骤同表4相同,16种算术操作和16种逻辑操作只列出了前面4种,其它实验步骤同表4相同。
带“↑”的地方表示需要按一次单次脉冲P0,无“↑”的地方表示不需要按单次脉冲P0。
表1 运算器实验步骤与显示结果表注意:运算器实验时,把与T4信号相关而本实验不用的LDR0,LDR1,LDR2接低电平,否则影响实验结果。
其它注意事项:进行系统方式实验时应注意如下几点:实验前应将MF-OUT输出信号与MF相连接。
1、检查通讯电缆是否与计算机连接正确。
2、开关方式状态应置成系统方式;(31个开关)。
3、P0K、P1K、P2K都置成系统方式;4、信号连接线必须一一对应连接好。
即在实验机左上方的信号接口与实验机右下方的信号接口分别一一对应连接。
左上方右下方地址指针―――――――――――地址指针地址总线―――――――――――地址总线(在实验机右侧中部)数据总线―――――――――――数据总线(在实验机右侧中部)运算暂存器DR1―――――――――运算暂存器DR1运算暂存器DR2―――――――――运算暂存器DR2微地址―――――――――――――微地址检查完毕可以通电;注意事项:1、计算机屏幕上所有的按钮与实验机上的按钮完全对应。
2、在做实验时,要保证总线不发生冲突。
即对总线操作时只有一个操作状态有效。
3、运算器、存储器、数据通路,三个实验按操作步骤操作即可实验二、存储器实验一、实验目的1.掌握存储器的数据存取方式。
2.了解CPU与主存间的读写过程。
3.掌握半导体存储器读写时控制信号的作用。
二、实验内容:向RAM中任一存储单元存入数据;并读出任一单元的数据。
三、实验原理1.实验电路(见下图)2.实验原理存贮器实验电路由RAM(6116),AR(74LS273)等组成。
SW7-SW0为逻辑开关量,与产生地址和数据;寄存器AR输出A7-A0提供存贮器地址,通过显示灯可以显示地址,D7-D0为总线,通过显示灯可以显示数据。
当LDAR为高电平,SW-BUS为低电平,T3信号上升沿到来时,开关SW7-SW0产生的地址信号送入地址寄存器AR。
当CE为低电平,WE为高电平,SW-BUS为低电平,T3上升沿到来时,开关SW7-SW0产生的数据写入存贮器的存贮单元内,存贮器为读出数据,D7-D0显示读出数据。
实验中,除T3信号外,CE,WE,LDAR,SW-BUS为电位控制信号,因此通过对应开关来模拟控制信号的电平,而LDAR,WE控制信号受时序信号T3定时。
四、实验步骤(在完成一个实验后,应将所有的信号状态置成“1”高电平状态)实验前将TJ,DP对应的逻辑开关置成11状态(高电平输出),使时序发生器处于单拍输出状态,每按一次P0输出一拍时序信号,实验处于单步状态,并置ALU-BUS=1。
实验步骤按表2进行,实验对表中的开关置1或清0,即对有关控制信号置1或清0。
表格中只列出了存贮器实验步骤中的一部分,即对几个存贮器单元进行了读写,其它单元的步骤同表格相同。
表中带-的地方表示需要按一次单次脉冲P0。
注意:表中列出的总线显示D7-D0及地址显示A7-A0,显示情况是:在写入RAM 地址时,由SW7-SW0开关量地址送至D7-D0,总线显示SW7-SW0开关量,而A7-A0则显示上一个地址,在按P后,地址才进入RAM,即在单次脉冲(T3)作用后,A7-A0同D7-D0才显示一样。
表2 存贮器实验步骤显示结果表说明:实验机中符号“CE”;当CE信号为“0”低电平时,表示存储器6264的数据输入为有效状态。
实验三、数据通路组成与故障分析实验一、实验目的熟悉计算机的数据通路掌握数据运算及相关数据和结果的存储的工作原理二、实验内容:利用sw0-sw7数据输入开关向DR1、DR2预置数据,做运算后将结果存入RAM,并实现任一单元的读出。
例如:将数据做如下操作44H+AAH=EEH 结果放在RAM的AAH单元44H⊕EEH=AAH 结果放在RAM的ABH单元三、实验原理:1.实验电路2.实验原理数据通路实验是将前面进行过的运算器实验模块和存贮器实验模块两部分电路连在一起组成的。
原理图见图7。
实验中,除T4,T3信号外,所有控制信号为电平控制信号,这些信号由逻辑开关来模拟,其信号的含义与前两个实验相同。
我们按图7进行实验。
四、实验步骤(在完成一个实验后,应将所有的信号状态置成“1”高电平状态)实验前将TJ,DP开关置11,使时序发生器处于单拍状态,按一次P时序信号输出一拍信号,使实验为单步执行。
实验步骤见表3。
表3 数据通路实验过程表精彩文档精彩文档实用标准文案表3中,列出了数据通路组成实验的一部分实验步骤,其它部分同表中的实验步骤相同,只是实验的数据及存贮单元不同。
表中带X的内容是随机状态,它的电平不影响实验结果。
表中带“-”的地方表示需要按单次脉冲P,无“-”的地方则表示不需要按单次脉冲P。
注意:A7-A0所接的地址显示情况是按单次脉冲P后的状态,A7-A0的显示才与表中相同,否则显示的是上一个地址。
实验四微程序控制器实验一、实验目的熟悉微指令格式的定义。
掌握微程序控制器的基本原理。
二、实验内容:分别完成输入指令、加法指令、存数指令、输出指令、无条件转移指令、强迫RAM读、强迫RAM写的微指令流程,并观察微地址的变化。
三、实验原理:3.1实验电路图图4-4微程序控制器电路图3.2实验原理一条指令由若干条微指令组成,而每一条微指令由若干个微指令及下一微地址信号组成。
不同的微指令由不同的微命令和下一微指令地址组成。
它们存放在控制存贮器(2764)中,因此,用不同的微指令地址读出不同的微命令,输出不同的控制信号。
微程序控制器的电路图见图4-4,UA4-UA0为微地址寄存器。
控制存贮器由3片2764组成,从而微指令长度为24位。
微命令寄存器为20位,由2片8D触发器74LS273和1片4D触发器74LS175组成。
微地址寄存器5位,由3片正沿触发的双D触发器74LS74组成,它们带有清零端和预置端。
在不判别测试的情况下,T2时刻打入的微地址寄存器内容为下一条指令地址。
在需要判别测试的情况下,T2时刻给出判别信号P(1)=1及下一条微指令地址01000。
在T4上升沿到来时,根据P(1)IR7,IR6,IR5的状态条件对微地址01000进行修改,然而按修改的微地址读出下一条微指令,并在下一个T2时刻将读出的微指令打入到微指令寄存器和微地址寄存器。