计算机组成原理实验1.

合集下载

计算机组成原理实验

计算机组成原理实验

计算机组成原理实验一、实验目的本实验旨在通过实际操作,加深对计算机组成原理的理解,掌握计算机硬件的基本原理和工作方式。

二、实验设备和材料1. 计算机主机:型号为XXX,配置了XXX处理器、XXX内存、XXX硬盘等。

2. 显示器:型号为XXX,分辨率为XXX。

3. 键盘和鼠标:标准配置。

4. 实验板:包括CPU、内存、存储器、输入输出接口等模块。

5. 逻辑分析仪:用于分析和调试电路信号。

6. 示波器:用于观测电路信号的波形。

三、实验内容1. 实验一:CPU的工作原理a. 将实验板上的CPU模块插入计算机主机的CPU插槽中。

b. 连接逻辑分析仪和示波器,用于观测和分析CPU的工作信号和波形。

c. 打开计算机主机,启动操作系统。

d. 运行一段简单的程序,观察CPU的工作状态和指令执行过程。

e. 通过逻辑分析仪和示波器的数据分析,了解CPU的时钟信号、数据总线、地址总线等工作原理。

2. 实验二:内存的存储和读写a. 将实验板上的内存模块插入计算机主机的内存插槽中。

b. 打开计算机主机,启动操作系统。

c. 编写一个简单的程序,将数据存储到内存中。

d. 通过逻辑分析仪和示波器的数据分析,观察内存的写入和读取过程,了解内存的存储原理和读写速度。

3. 实验三:存储器的工作原理a. 将实验板上的存储器模块插入计算机主机的存储器插槽中。

b. 打开计算机主机,启动操作系统。

c. 编写一个简单的程序,读取存储器中的数据。

d. 通过逻辑分析仪和示波器的数据分析,观察存储器的读取过程,了解存储器的工作原理和数据传输速度。

4. 实验四:输入输出接口的工作原理a. 将实验板上的输入输出接口模块插入计算机主机的扩展插槽中。

b. 打开计算机主机,启动操作系统。

c. 编写一个简单的程序,通过输入输出接口实现数据的输入和输出。

d. 通过逻辑分析仪和示波器的数据分析,观察输入输出接口的工作过程,了解数据的传输和控制原理。

四、实验结果分析1. 实验一:通过观察CPU的工作状态和指令执行过程,可以验证CPU的时钟信号、数据总线、地址总线等工作原理是否正确。

计算机组成原理实验报告

计算机组成原理实验报告

实验一:数字逻辑——交通灯系统设计子实验1:7 段数码管驱动电路设计(1)理解利用真值表的方式设计电路的原理;(2)利用Logisim 真值表自动生成电路的功能,设计一个 7 段数码管显示驱动。

二、实验方案设计7 段数码管显示驱动的设计方案:(1)输入:4 位二进制(2)输出:7 段数码管 7 个输出控制信号(3)电路引脚:(4)实现功能:利用 7 段数码管显示 4 位二进制的 16 进制值(5)设计方法:由于该实验若直接进行硬件设计会比较复杂,而7 段数码管显示的真值表较容易掌握,所以我们选择由真值表自动生成电路的方法完成该实验。

先分析设计 7 段数码管显示驱动的真值表,再利用Logisim 中的“分析组合逻辑电路”功能,将真值表填入,自动生成电路。

(6)真值表的设计:由于是 4输入 7输出,真值表共有 16 行。

7输出对应 7个引脚,所以需要依次对照LED 灯的引脚顺序进行设计,如下图所示(注意LED 的引脚顺序):三、实验步骤(1)在实验平台下载实验框架文件RGLED.circ;(2)在Logisim 中打开RGLED.circ 文件,选择数码管驱动子电路;(3)点击“工程”中的“分析组合逻辑电路”功能,先构建4输入和7输出,再在“真值表”中,将已设计好的真值表的所有数值仔细对照着填入表格中,确认无误后点击“生成电路”,自动生成的电路如下图所示:(4)将子电路封装为如下形式:(5)进行电路测试:·自动测试在数码管驱动测试子电路中进行测试;·平台评测自动测试结果满足实验要求后,再利用记事本打开RGLED.circ 文件,将所有文字信息复制粘贴到Educoder 平台代码区域,点击评测按钮进行测试。

四、实验结果测试与分析(1)自动测试的部分结果如下:(2)平台测试结果如下:综上,本实验测试结果为通过,无故障显示。

本实验的关键点在于:在设计时需要格外注重LED 灯的引脚顺序,保证0-9 数字显示的正确性,设计出正确的真值表。

计算机组成原理实验报告

计算机组成原理实验报告

计算机组成原理实验报告实验目的,通过本次实验,深入了解计算机组成原理的相关知识,掌握计算机硬件的基本组成和工作原理。

实验一,逻辑门电路实验。

在本次实验中,我们学习了逻辑门电路的基本原理和实现方法。

逻辑门电路是计算机中最基本的组成部分,通过逻辑门电路可以实现各种逻辑运算,如与门、或门、非门等。

在实验中,我们通过搭建逻辑门电路并进行实际操作,深入理解了逻辑门的工作原理和逻辑运算的实现过程。

实验二,寄存器和计数器实验。

在本次实验中,我们学习了寄存器和计数器的原理和应用。

寄存器是计算机中用于存储数据的重要部件,而计数器则用于实现计数功能。

通过实验操作,我们深入了解了寄存器和计数器的内部结构和工作原理,掌握了它们在计算机中的应用方法。

实验三,存储器实验。

在实验三中,我们学习了存储器的原理和分类,了解了不同类型的存储器在计算机中的作用和应用。

通过实验操作,我们进一步加深了对存储器的认识,掌握了存储器的读写操作和数据传输原理。

实验四,指令系统实验。

在本次实验中,我们学习了计算机的指令系统,了解了指令的格式和执行过程。

通过实验操作,我们掌握了指令的编写和执行方法,加深了对指令系统的理解和应用。

实验五,CPU实验。

在实验五中,我们深入了解了计算机的中央处理器(CPU)的工作原理和结构。

通过实验操作,我们学习了CPU的各个部件的功能和相互之间的协作关系,掌握了CPU的工作过程和运行原理。

实验六,总线实验。

在本次实验中,我们学习了计算机的总线结构和工作原理。

通过实验操作,我们了解了总线的分类和各种总线的功能,掌握了总线的数据传输方式和时序控制方法。

结论:通过本次实验,我们深入了解了计算机组成原理的相关知识,掌握了计算机硬件的基本组成和工作原理。

通过实验操作,我们加深了对逻辑门电路、寄存器、计数器、存储器、指令系统、CPU和总线的理解,为进一步学习和研究计算机组成原理奠定了坚实的基础。

希望通过不断的实践和学习,能够更深入地理解和应用计算机组成原理的知识。

《计算机组成原理》实验报告一

《计算机组成原理》实验报告一

《计算机组成原理》实验报告一一、实验目的:编写程序、上机调试、运行程序是进一步学习和掌握汇编语言程序设计的必要手段。

通过本次实验, 学习、掌握运行汇编程序的相关知识。

1、二、实验内容:2、熟悉实验用微机的软、硬件配置(1)硬件: Intel Celeron 500GHz CPU、128M内存(8M作共享显存)、intel810芯片主板、集成i752显卡、maxtro20G硬盘、ps/2接口鼠标、PS/2接口键盘。

(2)软件:DOS 操作系统Windows98 seMASM汇编语言程序3、熟悉运行汇编语言所需的应用程序汇编程序使MASM连接程序使用LINK程序调试程序使用DEBUG程序4、熟悉汇编语言源程序上机操作过程(1)编辑源文件(选择可使用的文本编辑器)(2)汇编源程序文件(3)连接目标文件(4)运行可执行文件5、汇编操作举例用edit编辑myprog.asm文件;(见下图)用MASM.exe编译myprog.asm生成myprog.obj文件;C:\masm\bin> masm.exe由图中可以看出:0 个警告错误0个严格错误汇编通过, 生成mygrog.obj目标文件(如果有严格错误, 汇编不能通过, 必须返回编辑状态更改程序。

)用link.exe命令链接myhprog.obj生成myprog.exe文件!C:\masm\bin> link.exeC:\masm\bin> myprog.exe运行程序结果为:屏幕显示“Hi! This is a dollar sign terminated string.”三、实验总结:1.可以在DOS或Windows状态编辑汇编源程序2.可以使用EDIT 或记事本编辑汇编源程序, 源程序必须以.asm为扩展名。

在记事本中保存文件时, 可以加双引号“myprog.asm”,文件名就不会出现myprog.asm.txt的错误3.熟悉相关的DOS 命令cd 进入子目录mkdir 建立子目录xcopy *.* /s 拷贝当前目录下所有文件及子目录format a: 格式化A盘4.在Windows 系统下运行汇编程序, 有时会有问题, 建议大家熟悉DOS命令,DOS编辑工具, 在DOS状态下运行汇编程序。

计算机组成原理实验1_脱机运算器

计算机组成原理实验1_脱机运算器

实验一.脱机运算器部件实验一、教学计算机的通电启动和关闭操作1.教学计算机系统通电启动的操作步骤:(1) 准备一台串行接口运行正常的PC机;(2) 将TH-union计原16放在实验台上,打开实验箱的盖子,确定电源处于断开状态;(3) 将黑色的电源线一端接220V交流电源,另一端插在计原16实验箱的电源插座;(4) 取出通讯线,将通讯线的9芯插头接在计原16实验箱后板上左侧位置的串口插座,另一端接到PC机的串口上;(5) 将计原16实验系统左下方的五个黑色的功能控制开关置于00010的位置(连续、内存读指令、微程序、联机、16位),开关拨向上方表示“1”,拨向下方表示“0”;(6) 接通电源,船形开关和5V电源指示灯亮。

(7) 在PC机上运行PCEC16.EXE文件,根据使用的PC机的串口情况选“1”或“2”,其它的设置一般不用改动,直接回车即可。

(具体步骤附后)(8) 按一下“RESET”按键,再按一下“START”按键,PC机屏幕上显示:TH-union CRT MONITORVersion 1.0 April 2001Computer Architectur Lab., Tsinghua UniversityProgrammed by He Jia>这个版权信息显示出来之后,表示教学机已经进入正常运行状态,等待输入监控命令。

实验注意事项:1.连接电源线和通讯线前TH-union计原16实验系统的电源开关一定要处于断开状态,否则可能损坏教学计算机系统的或PC机的串行接口电路;2.五个黑色控制开关的功能示意图如下:开关位置,自左向右共5个,分别控制1 2 3 4 5向上拨:单步手工拨指令组合逻辑运算器联机 8位向上拨:连续读内存指令微程序运算器脱机 16位几种常用的工作方式,(开关向上拨表示为1,向下拨表示0)工作方式功能开关状态连续运行程序、硬连线控制器、联机、16位机 00110连续运行程序、微程序控制器、联机、16位机 00010单步、手拨指令、硬连线控制器、联机、16位机 11110单步、手拨指令、微程序控制器、联机、16位机 11010单步、脱机运算器实验、16位机 100002.关闭教学计算机系统在需要关闭教学计算机系统时,应首先通过安装在机箱右侧板上的开关关闭交流电源,教学机上的全部指示灯都会熄灭。

多思计算机组成原理实验 1 全加器实验

多思计算机组成原理实验 1  全加器实验

实验 1 全加器实验1.1 实验目的1) 熟悉多思计算机组成原理网络虚拟实验系统的使用方法。

2) 掌握全加器的逻辑结构和电路实现方法。

1.2 实验要求1) 做好实验预习,复习全加器的原理,掌握实验元器件的功能特性。

2) 按照实验内容与步骤的要求,独立思考,认真仔细地完成实验。

3) 写出实验报告。

1.3 实验电路本实验使用的主要元器件有:与非门、异或门、开关、指示灯。

图1.1 一位全加器实验电路一位全加器的逻辑结构如图 1.1 所示,图中涉及的控制信号和数据信号如下: 1) A i 、B i :两个二进制数字输入。

2) C i :进位输入。

3) S i :和输出。

4) C i+1:进位输出。

&& &=1=1Ai B i C i C i +1 Si1.4 实验原理1 位二进制加法器有三个输入量:两个二进制数字A i、B i 和一个低位的进位信号C i,这三个值相加产生一个和输出Si 以及一个向高位的进位输出C i+1,这种加法单元称为全加器,其逻辑方程如下:S i=A i⊕B i⊕C i (1.1)C i+1=A i B i+B i C i+C i A i1.5 实验内容与步骤1.运行虚拟实验系统,从左边的实验设备列表选取所需组件拖到工作区中,按照图 1.1所示搭建实验电路,得到如图 1.2 所示的实验电路。

图1.2 一位全加器虚拟实验电路2.打开电源开关,按表1-1 中的输入信号设置数据开关,根据显示在指示灯上的运算结果填写表1-1 中的输出值。

3.关闭电源开关,增加元器件,实现一个 2 位串行进位并行加法器。

用此加法器进行运算,根据运算结果填写好表1-2。

1.6 思考与分析1.串行进位并行加法器的主要缺点是什么?有改进的方法吗?高位的运算必须等到低位的进位产生才能进行,因此运算速度较慢。

改进方法:为了提高运算速度,可采用超前进位的方式,即每一位的进位根据各位的输入同时预先形成,而与低位的进位无关。

计算机组成原理实验一运算器组成实验

计算机组成原理实验一运算器组成实验

实验一 运算器组成实验一、实验目的1.熟悉双端口通用寄存器堆的读写操作。

2.熟悉简单运算器的数据传送通路。

3.验证运算器74LS181的算术逻辑功能。

4.按给定数据,完成指定的算术、逻辑运算。

二、实验电路ALU-BUS#DBUS7DBUS0Cn#C三态门(244)三态门(244)ALU(181)ALU(181)S3S2S1S0MA7A6A5A4F7F6F5F4F3F2F1F0B3B2B1B0Cn+4CnCnCn+4LDDR2T2T2LDDR1LDRi T3SW-BUS#DR1(273)DR2(273)双端口通用寄存器堆RF(ispLSI1016)RD1RD0RS1RS0WR1WR0数据开关(SW7-SW0)数据显示灯A3A2A1A0B7B6B5B4图3.1 运算器实验电路LDRi T3AB三态门R S -B U S #图3.1示出了本实验所用的运算器数据通路图。

参与运算的数据首先通过实验台操作板上的八个二进制数据开关SW7-SW0来设置,然后输入到双端口通用寄存器堆RF 中。

RF(U54)由一个ispLSI1016实现,功能上相当于四个8位通用寄存器,用于保存参与运算的数据,运算后的结果也要送到RF 中保存。

双端口寄存器堆模块的控制信号中,RS1、RS0用于选择从B 端口(右端口)读出的通用寄存器,RD1、RD0用于选择从A 端口(左端口)读出的通用寄存器。

而WR1、WR0用于选择写入的通用寄存器。

LDRi 是写入控制信号,当LDRi=1时,数据总线DBUS上的数据在T3写入由WR1、WR0指定的通用寄存器。

RF的A、B端口分别与操作数暂存器DR1、DR2相连;另外,RF的B端口通过一个三态门连接到数据总线DBUS上,因而RF中的数据可以直接通过B端口送到DBUS上。

DR1(U47)和DR2(U48)各由1片74LS273构成,用于暂存参与运算的数据。

DR1接ALU 的A输入端口,DR2接ALU的B输入端口。

计算机组成原理 实验报告

计算机组成原理 实验报告

计算机组成原理实验报告计算机组成原理实验报告引言计算机组成原理是计算机科学与技术专业中的一门重要课程,通过实验学习可以更好地理解和掌握计算机的基本原理和结构。

本实验报告将介绍我在学习计算机组成原理课程中进行的实验内容和实验结果。

实验一:二进制与十进制转换在计算机中,数据以二进制形式存储和处理。

通过这个实验,我们学习了如何将二进制数转换为十进制数,以及如何将十进制数转换为二进制数。

通过实际操作,我更深入地了解了二进制与十进制之间的转换原理,并且掌握了转换的方法和技巧。

实验二:逻辑门电路设计逻辑门电路是计算机中的基本组成部分,用于实现不同的逻辑运算。

在这个实验中,我们学习了逻辑门的基本原理和功能,并通过电路设计软件进行了实际的电路设计和模拟。

通过这个实验,我深入理解了逻辑门电路的工作原理,并且掌握了电路设计的基本方法。

实验三:组合逻辑电路设计组合逻辑电路是由多个逻辑门组合而成的电路,用于实现复杂的逻辑功能。

在这个实验中,我们学习了组合逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了多个逻辑门的组合。

通过这个实验,我进一步掌握了逻辑电路设计的技巧,并且了解了组合逻辑电路在计算机中的应用。

实验四:时序逻辑电路设计时序逻辑电路是由组合逻辑电路和触发器组合而成的电路,用于实现存储和控制功能。

在这个实验中,我们学习了时序逻辑电路的设计原理和方法,并通过实际的电路设计和模拟,实现了存储和控制功能。

通过这个实验,我进一步了解了时序逻辑电路的工作原理,并且掌握了时序逻辑电路的设计和调试技巧。

实验五:计算机指令系统设计计算机指令系统是计算机的核心部分,用于控制计算机的操作和运行。

在这个实验中,我们学习了计算机指令系统的设计原理和方法,并通过实际的指令系统设计和模拟,实现了基本的指令功能。

通过这个实验,我深入了解了计算机指令系统的工作原理,并且掌握了指令系统设计的基本技巧。

实验六:计算机硬件系统设计计算机硬件系统是由多个模块组成的,包括中央处理器、存储器、输入输出设备等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机组成原理实验1
运算器(脱机)实验
通过开关、按键控制教学机的运算器执行指定的运算功能,并通过指示灯观察运算结果。

实验原理:
为了控制Am2901运算器能够按照我们的意图完成预期的操作功能,就必须向其提供相应的控制信号和数据。

控制信号包括
1、选择送入ALU的两路操作数据R和S的组合关系(实际来源)。

2、选择ALU的八种运算功能中我们所要求的一种。

这可通过提供三位功能选择码I5、
I4、I3实现。

3、选择运算结果或有关数据以什么方式送往何处的处理方案,这主要通过通用寄存器
组合和Q寄存器执不执行接收操作或位移操作,以及向芯片输出信息Y提供的是
什么内容。

这是通过I8、I7、I6三位结果选择码来控制三组选择门电路实现的。

外部数据包括
1、通过D接收外部送来的数据
2、应正确给出芯片的最低位进位输入信号C n
3、关于左右移位操作过程中的RAM3、RAM0、Q3和Q0的处理。

4、当执行通用寄存器组的读操作时,由外部送入的A地址选中的通用寄存器的内容送
往A端口,由B地址选中的通用寄存器的内容送往B端口,B地址还用作通用寄
存器的写汝控制。

对于芯片的具体线路,需说明如下几点:
1、芯片结果输出信号的有无还受一个/OE(片选)信号的控制。

2、标志位F=0000为集电极开路输出,容易实现“线与”逻辑,此管脚需经过一个电阻
接到+5V。

3、RAM3、RAM0、Q3和Q0均为双向三态逻辑,一定要与外部电路正确连接。

4、通用寄存器组通过A端口、B端口读出内容的输出处均有锁存器线路支持。

5、该芯片还有两个用于芯片间完成高速进位的输出信号/G和/P。

6、Am2901芯片要用一个CLK(CP)时钟信号作为芯片内通用寄存器、锁存器和Q寄
存器的打入信号。

实验步骤如下:
(1)选择运算器要完成的一项运算功能,包括数据来源,运算功能,结果保存等;(2)需要时,通过数据开关向运算器提供原始数据;
(3)通过24位的微型开关向运算器提供为完成指定运算功能所需要的控制信号;
(4)通过查看指示灯或用电表量测,观察运算器的运行结果(包括计算结果和特征标志)。

实验准备
12为微型开关的具体控制功能分配如下:
A口和B口地址:送给Am2901器件用于选择源与目的操作数的寄存器编号;
I8~I0:选择操作数来源、运算操作功能、选择操作数处理结果和运算器输出内容的3组3位控制码;
Sci,SSH和SST:用于确定运算器最低位的进位输入、移位信号的入/出和怎样处理Am2901产生的状态标志位的结果。

运算器的控制信号
最低位进位信号C m
状态寄存器的接收与保持
最高、最低位的移位输入信号的形成逻辑
注:表中的X表示不必处理、不必过问该位的取值;
当通用寄存器本身移位时,Q寄存器不受影响;
乘除运算要求实现通用寄存器与Q寄存器联合移位;没有Q寄存器单独移位功能。

实验过程的数据记录。

相关文档
最新文档