人教版A版高中数学必修2课后习题解答
人教高中数学必修二A版《用样本估计总体》统计说课教学课件复习(总体取值规律的估计)

表对数据进行整理和直观描述.在此基础上,通过数据分析,找出数据中蕴含的信
息,就可以用这些信息来解决实际问题了.
必修第二册·人教数学A版
返回导航 上页 下页
知识梳理 (1)绘制步骤:①求 极差 ,即一组数据中的最大值与最小值的差. ②决定 组距 与 组数 .组距与组数的确定没有固定的标准,一般数据的个数越多,
必修第二册·人教数学A版
返回导航 上页 下页
1.为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞
赛
”,
课件
课件
共有
900名学生
参加
了这次竞
赛.
为了
解本次竞
赛成
绩情
况,从中
抽取
了部
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
必修第二册·人教课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/ 课 件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
分组 频数 频率
[50.5,60.5) 4 0.08
[60.5,70.5) 8 0.16
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
分组 [147.5,155.5) [155.5,163.5)
[163.5,171.5)
[171.5,179.5]
频数
6
21
新编【人教A版】高中数学:必修2课本例题习题改编(含答案)

新编人教版精品教学资料2015版人教A 版必修2课本例题习题改编湖北省安陆市第一高级中学 伍海军 ****************1.原题(必修2第15页练习第4题)如图是一个几何体的三视图,想象它的几何结构特征,并说出它的名称.改编 如图是一个几何体的三视图(单位:cm ) (Ⅰ)画出这个几何体的直观图(不要求写画法); (Ⅱ)求这个几何体的表面积及体积;(Ⅲ)设异面直线AA '与BC '所成的角为θ,求cos θ.解:(Ⅰ)这个几何体的直观图如图23-2所示. (Ⅱ)这个几何体是直三棱柱.由于底面ABC ∆的高为1,所以AB ==. 故所求全面积22ABC BB C C ABB A S S S S ''''∆=++1221322382=⨯⨯⨯+⨯+⨯=+2(cm ).这个几何体的体积121332ABC V S BB ∆'=⋅=⨯⨯⨯=3(cm )(Ⅲ)因为//AA BB '',所以AA '与BC '所成的角是B BC ''∠.O OO 'O '22OO在Rt BB C''∆中,BC '==cos BB BC θ'===' 2.原题(必修2第28页例3)如图,已知几何 体的三视图,用斜二测画法画出它的直观图. 改编1 如图,已知几何体的三视图(单位:cm ). (Ⅰ)画出它的直观图(不要求写画法); (Ⅱ)求这个几何体的表面积和体积. 解:(Ⅰ)这个几何体的直观图如图所示. (Ⅱ)这个几何体是一个简单组合体,它的下部是 一个圆柱(底面半径为1cm ,高为2cm ),它的上部 是一个圆锥(底面半径为1cm ,母线长为2cm ,高为).所以所求表面积21212127S ππππ=⨯+⨯⨯+⨯⨯=2(cm ),所求体积22112123V πππ=⨯⨯+⨯⨯=3(cm ).3.原题(必修2第30页习题1.3B 组第三题)分别以一个直角三角形的斜边,两直角边所在直线为轴,其余各边旋转一周形成的曲面围成三个几何体,画出它们的三视图和直观图,并探讨它们体积之间的关系。
2020年人教A版高中数学必修2课后练习(20)(有答案解析)

2020年人教A版必修2课后练习(20)一、解答题(本大题共15小题,共180.0分)1.写出下列圆的标准方程:(1)圆心在C(−3,4),半径长是√5;(2)圆心在C(−8,3),且经过点M(−5,−1).2.已知圆的方程是(x−3)2+(y+2)2=16,利用计算器,判断下列各点在圆上、在圆外、还是在圆内?(1)M1(4.30,−5.72);(2)M2(5.70,1.08);(3)M3(3,−6).3.已知两点P1(4,9),P2(6,3),求以线段P1P2为直径的圆的方程,并判断点M(6,9),N(3,3),Q(5,3)在圆上,在圆内,还是在圆外(可利用计算器)?4.已知三角形AOB的顶点的坐标分别是A(4,0),B(0,3),O(0,0),求三角形AOB外接圆的方程.5.求下列各方程表示的圆的圆心坐标和半径长:(1)x2+y2−6x=0;(2)x2+y2+2by=0;(3)x2+y2−2ax−2√3ay+3a2=0.6.判断下列方程分别表示什么图形:(1)x2+y2=0;(2)x2+y2−2x+4y−6=0;(3)x2+y2+2ax−b2=0.7.如图,四边形ABCD中,AB//CD,AD=BC,且AB=6,CD=4,AB与CD间的距离为3,求四边形ABCD的外接圆的方程,并求这个圆的圆心坐标和半径长.8.求下列各圆的圆心坐标和半径长,并画出它们的图形:(1)x2+y2−2x−5=0;(2)x2+y2+2x−4y−4=0;(3)x2+y2+2ax=0;(4)x2+y2−2by−2b2=0.9.求下列各圆的方程,并画出图形:(1)圆心为点C(8,−3),且过点A(5,1);(2)过A(−1,5),B(5,5),C(6,−2)三点.10.已知圆C的圆心在直线l:x−2y−1=0上,并且经过原点和A(2,1),求圆C的标准方程.11.已知圆C的圆心在x轴上,并且过点A(−1,1)和B(1,3),求圆C的方程.12.已知圆的一条直径的端点分别是A(x1,y1),B(x2,y2).求证此圆的方程是(x−x1)(x−x2)+(y−y1)(y−y2)=0.13.平面直角坐标系中有点A(0,1),B(2,1),C(3,4),D(−1,2),这四点能否在同一个圆上?为什么?14.等腰三角形的顶点A的坐标是(4,2),底边一个端点B的坐标是(3,5),求另一个端点C的轨迹方程.并说明它是什么图形.15.长为2a的线段AB的两个端点A和B分别在x轴和y轴上滑动,求线段AB的中点的轨迹方程.-------- 答案与解析 --------1.答案:解:(1)∵圆心在C(−3,4),半径长是√5,故圆的标准方程为(x+3)2+(y−4)2=5.(2)∵圆心在C(−8,3),且经过点M(−5,−1),故半径为MC=√(−5+8)2+(−1−3)2=5,故圆的标准方程为(x+8)2+(y−3)2=25.解析:(1)根据圆心和半径,直接写出圆的标准方程.(2)先求出圆的半径,可得圆的标准方程.本题主要考查圆的标准方程的求法,关键是求出圆心和半径,属于基础题.2.答案:解:圆的方程是(x−3)2+(y+2)2=16,圆心O(3,−2),半径r=4.(1)|OM1|2=(4.30−3)2+(−5.72+2)2=0.09+13.8384=13.9284<16,∴点M1在圆内.(2)|OM2|2=2.72+3.082=16.7764>16,可得点M2在圆外.(3)|OM3|2=(3−3)2+(−6+2)2=16,可得点M3在圆内.解析:分别利用两点之间的距离公式求出|OM i|2,与r2比较即可得出结论.本题考查了圆的标准方程、两点之间的距离公式,考查了推理能力与计算能力,属于基础题.3.答案:解:两点P1(4,9),P2(6,3),线段P1P2的中点为圆心O(5,6),半径r=√(5−4)2+(6−9)2=√10.∴以线段P1P2为直径的圆的方程为:(x−5)2+(y−6)2=10.∵|OM|2=(6−5)2+(9−6)2=10,∴点M在圆上.∵|ON|2=(3−5)2+(3−6)2=13>10,∴点M在圆外.∵|OQ|2=(5−5)2+(6−3)2=9<10,∴点M在圆内.解析:两点P1(4,9),P2(6,3),线段P1P2的中点为圆心O(5,6),半径r=√(5−4)2+(6−9)2=√10.即可得出以线段P1P2为直径的圆的方程.分别计算|OM|2,|ON|2,|OQ|2,与r2比较即可得出结论.本题考查了圆的标准方程、点与圆的位置关系、两点之间的距离公式,考查了推理能力与计算能力,属于基础题.4.答案:解:设三角形AOB的外接圆的方程为:x2+y2+Dx+Ey+F=0,把A(4,0),B(0,3),O(0,0)三点代入,得:{16+4D+F=0 9+3E+F=0F=0,解得D=−4,E=−3,F=0,∴三角形AOB外接圆的方程为x2+y2−4x−3y=0.解析:设三角形AOB的外接圆的方程为:x2+y2+Dx+Ey+F=0,把A(4,0),B(0,3),O(0,0)三点代入能求出圆的方程.本题考查圆的方程的求法,是基础题,解题时要认真审题,注意待定系数法的合理运用.5.答案:解:(1)方程x2+y2−6x=0可化为(x−3)2+y2=9,圆心为(3,0),半径为3;(2)方程x2+y2+2by=0可化为x2+(y+b)2=b2,圆心为(0,−b),半径为|b|;(3)方程x2+y2−2ax−2√3ay+3a2=0可化为(x−a)2+(y−√3a)2=a2,圆心为(a,√3a),半径为|a|.解析:把圆的方程化为标准方程,再求圆心和半径.本题考查了圆的一般方程的圆心和半径的求法问题,是基础题.6.答案:解:(1)x 2+y 2=0,则x =y =0,表示点(0,0);(2)x 2+y 2−2x +4y −6=0,即(x −1)2+(y +2)2=11,表示以(1,−2)为圆心,√11为半径的圆;(3)x 2+y 2+2ax −b 2=0,即(x +a)2+y 2=a 2+b 2,a =b =0时,表示点(0,0);a 2+b 2≠0时,表示圆.解析:利用所给方程,结合圆的方程,即可得出结论.本题考查圆的方程,考查配方法,正确理解圆的方程是关键.7.答案:解:建立如图所示的坐标系,由题意可得C(2,3)、D(3,0),圆心E 在y 轴上,设E(0,b),3>b >0. 故有CE =BE ,∴22+(b −3)2=32+b 2,求得b =23,∴半径BE =√32+(23)2=√853,圆心为(0,23 ).解析:建立如图所示的坐标系,由题意可得C 、D 的坐标,设圆心E(0,b),3>b >0,再根据CE =BE ,求得b 的值,可得圆心坐标和半径长BE .本题主要考查等腰梯形、圆心和半径的性质,属于基础题.8.答案:解:(1)x 2+y 2−2x −5=0,即(x −1)2+y 2=6,故圆心为(1,0),半径为√6.(2)x 2+y 2+2x −4y −4=0,即即(x +1)2+(y −2)2=9,故圆心为(−1,2),半径为3.(3)x 2+y 2+2ax =0;即(x +a)2+y 2=a 2,故当a ≠0时,圆心为(−a,0),半径为|a|.(4)x 2+y 2−2by −2b 2=0.即(x −b)2+y 2=3b 2,故圆心为(b,0),半径为√3|b|.解析:把圆的一般方程化为标准方程,可得圆心和半径.本题主要考查圆的一般方程和标准方程,属于基础题.9.答案:解:(1)圆心为点C(8,−3),且过点A(5,1),故半径为AC =√(8−5)2+(−3−1)2=5, 故圆的标准方程为(x −8)2+(y +3)2=25.(2)设过A(−1,5),B(5,5),C(6,−2)三点的圆的方程为x 2+y 2+dx +ey +f =0,则由{1+25−d +5e +f =025+25+5d +5e +f =036+4+6d −2e +f =0,求得{d =−4e =−2f =−20,则圆的方程为x 2+y 2−4x −2y −20=0.解析:(1)先求出半径,可得圆的标准方程.(2)用待定系数法求圆的一般方程.本题主要考查求圆的方程的方法,属于中档题.10.答案:解:设圆的标准方程为(x −a)2+(y −b)2=r 2,圆心(a,b),半径r .∵圆C 的圆心在直线l :x −2y −1=0上,并且经过原点和A(2,1),∴{a −2b −1=0a 2+b 2=r 2(2−a)2+(1−b)2=r 2解得{a =65b =110r 2=2920. 故圆C 的标准方程为(x −65)2+(y −110)2=2920.解析:设圆的标准方程为(x −a)2+(y −b)2=r 2,圆心(a,b),半径r.利用圆C 的圆心在直线l :x −2y −1=0上,并且经过原点和A(2,1),可得{a −2b −1=0a 2+b 2=r 2(2−a)2+(1−b)2=r2解得即可. 本题考查了圆的标准方程,属于基础题.11.答案:解:设圆心坐标为C(a,0),∵点A(−1,1)和B(1,3)在圆C 上∴|CA|=|CB|,即√(a +1)2+(0−1)2=√(a −1)2+(0−3)2解之得a =2,可得圆心为C(2,0)半径|CA|=√(2+1)2+(0−1)2=√10∴圆C 的方程为(x −2)2+y 2=10.解析:设圆心坐标为C(a,0),根据A 、B 两点在圆上利用两点的距离公式建立关于a 的方程,解出a 值.从而算出圆C 的圆心和半径,可得圆C 的方程.本题给出圆C 满足的条件,求圆的方程.着重考查了两点间的距离公式和圆的标准方程等知识,属于基础题.12.答案:证明:∵圆的一条直径的端点分别是A(x 1,y 1),B(x 2,y 2),∴圆心为C(x 1+x 22,y 1+y 22),半径为AB 2=12√(x 1−x 2)2+(y 1−y 2)2,∴此圆的方程是(x −x 1+x 22)2+(y −y 1+y 22)2=(x 1−x 2)2+(y 1−y 2)24, 即x 2−(x 1+x 2)x +(x 1+x 2)24+y 2−(y 1+y 2)y +(y 1+y 2)24=(x 1−x 2)2+(y 1−y 2)24, 即x 2−(x 1+x 2)x +x 1⋅x 2+y 2−(y 1+y 2)y +y 1⋅y 2=0,即(x −x 1)(x −x 2)+(y −y 1)(y −y 2)=0.解析:由题意求得圆心和半径,可得圆的标准方程,化简即可.本题主要考查圆的标准方程的特征,属于基础题.13.答案:解:设过的圆的方程为x 2+y 2+Dx +Ey +F =0…(2分)将点A 、B 、D 的坐标分别代入圆的方程,得{1+E +F =04+1+2D +E +F =01+4−D +2E +F =0,解得:D =−2,E =−6,F =5,得圆的方程为x 2+y 2−2x −6y +5=0…(8分)将点C 的坐标代入上述所得圆的方程,方程成立点C 在该圆上,…(10分)四个点在同一个圆上.…(12分)解析:设过的圆的方程为x 2+y 2+Dx +Ey +F =0,将点A 、B 、D 的坐标分别代入圆的方程,得圆的方程为x 2+y 2−2x −4y +3=0,将点C 的坐标代入上述所得圆的方程,方程成立,四个点不在同一个圆上.本题考查圆的方程的求法,解题时要认真审题,注意待定系数法的合理运用.14.答案:解:∵A(4,2),B (3,5)∴|AB|=√10…(2分)∵等腰三角形的顶点是A ,底边一个端点是B 、C∴|CA|=√10,即C 在以A 为圆心,以√10为半径的圆上,…(4分)∴方程为(x −4)2+(y −2)2=10…(6分)又A ,B ,C 不能共线,故轨迹方程为(x −4)2+(y −2)2=10(x ≠3,5),…(8分)轨迹是以A(4,2)为圆心,以√10为半径的圆除去(3,5)和(5,−1)两点.…(10分)解析:求出|AB|,等腰三角形的顶点是A ,底边一个端点是B 、C ,可得|CA|=√10,即C 在以A 为圆心,以√10为半径的圆上,从而可得结论.本题考查轨迹方程,考查学生分析解决问题的能力,应注意A ,B ,C 不能共线.属于中档题. 15.答案:解:设线段AB 的中点P(x,y),若A 、B 不与原点重合时,则△AOB 是直角三角形,且∠O 为直角,则OP =12AB ,而AB =2a ,∴OP =a ,即P 的轨迹是以原点为圆心,以a 为半径的圆,方程为x 2+y 2=a 2(a >0);若A 、B 有一个是原点,同样满足x 2+y 2=a 2(a >0).故线段AB的中点的轨迹方程为:x2+y2=a2(a>0).解析:设AB的中点坐标为(x,y),当A、B均不与原点重合时,由直角三角形虚部的中线等于斜边的一半可得AB中点轨迹,验证A、B有一点与原点重合时成立得答案.本题考查轨迹方程的求法,考查分类讨论的数学思想方法,是基础题.。
新人教版新高考高中数学必修第二册全套导学案课后练习题

平面向量的概念【学习过程】一、问题导学预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?二、合作探究探究点1: 向量的相关概念例1:给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.解析:AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC→|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.答案:②③ 探究点2: 向量的表示例2:在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 解:(1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB→,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.探究点3:共线向量与相等向量例3:如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?解:(1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. 互动探究1.变条件、变问法:本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.变问法:本例条件不变,与AD→共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.三、学习小结1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→. ④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.(2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同. 四、精炼反馈1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C.图中与AE→平行的向量为BE →,FD →,FC →共3个.2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ; ④若a ≠b ,则a 与b 方向相反且|a |≠|b |. A .①③ B .②③ C .③④D .②④解析:选B .两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC→相等的向量;(2)与OB→长度相等的向量;(3)与DA→共线的向量.解:画出图形,如图所示.(1)易知BC ∥AD ,BC =AD ,所以与BC→相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC ,所以与OB→长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →.(3)与DA→共线的向量为AD →,BC →,CB →.平面向量的应用【第一学时】学习重难点学习目标核心素养向量在平面几何中的应用会用向量方法解决平面几何中的平行、垂直、长度、夹角等问题数学建模、逻辑推理向量在物理中的应用会用向量方法解决物理中的速度、力学问题数学建模、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.利用向量可以解决哪些常见的几何问题?2.如何用向量方法解决物理问题? 二、合作探究探究点1:向量在几何中的应用角度一:平面几何中的垂直问题如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明:法一:设AD→=a ,AB →=b ,则|a |=|b |,a·b =0, 又DE→=DA →+AE →=-a +12b ,AF →=AB →+BF →=b +12a , 所以AF →·DE →=⎝ ⎛⎭⎪⎫b +12a ·⎝ ⎛⎭⎪⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0.故AF→⊥DE →,即AF ⊥DE . 法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF →=(2,1),DE →=(1,-2).因为AF→·DE →=(2,1)·(1,-2)=2-2=0, 所以AF→⊥DE →,即AF ⊥DE . 角度二:平面几何中的平行(或共线)问题如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AFFB=12.求证:点E ,O ,F 在同一直线上.证明:设AB→=m ,AD →=n ,由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点, 所以FO →=F A →+AO→=13BA →+12AC → =-13m +12(m +n )=16m +12n , OE→=OC →+CE →=12AC →+13CD → =12(m +n )-13m =16m +12n .所以FO→=OE →. 又O 为FO→和OE →的公共点,故点E ,O ,F 在同一直线上.角度三:平面几何中的长度问题如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC的长.解:设AD→=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD→|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2, 所以5-2a ·b =4,所以a ·b =12,又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,所以|AC →|=6,即AC =6.探究点2:向量在物理中的应用(1)在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25km/h .渡船要垂直地渡过长江,其航向应如何确定?(2)已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),求F 1,F 2分别对质点所做的功.解:(1)如图,设AB →表示水流的速度,AD →表示渡船的速度,AC →表示渡船实际垂直过江的速度.因为AB→+AD →=AC →,所以四边形ABCD 为平行四边形. 在Rt △ACD 中,∠ACD =90°,|DC→|=|AB →|=12.5.|AD→|=25,所以∠CAD =30°,即渡船要垂直地渡过长江,其航向应为北偏西30°. (2)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s .因为AB →=(7,0)-(20,15)=(-13,-15). 所以W 1=F 1·AB→=(3,4)·(-13,-15) =3×(-13)+4×(-15)=-99(焦),W 2=F 2·AB→=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(焦). 三、学习小结1.用向量方法解决平面几何问题的“三个步骤”2.向量在物理学中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的减法和加法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,即为力F 与位移s 的数量积,即W =F·s =|F ||s |cos θ(θ为F 与s 的夹角). 四、精炼反馈1.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( )A .10 m/sB .226 m/sC .4 6 m/sD .12 m/s解析:选B .由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如图. 所以小船在静水中的速度大小 |v |=102+22=226(m/s ).2.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f 4,则f 4=( )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)解析:选D .由物理知识知f 1+f 2+f 3+f 4=0,故f 4=-(f 1+f 2+f 3)=(1,2). 3.设P ,Q 分别是梯形ABCD 的对角线AC 与BD 的中点,AB ∥DC ,试用向量证明:PQ ∥AB .证明:设DC →=λAB →(λ>0且λ≠1),因为PQ →=AQ →-AP →=AB →+BQ →-AP →=AB →+12(BD→-AC →) =AB→+12[(AD →-AB →)-(AD →+DC →)] =AB→+12(CD →-AB →) =12(CD →+AB →)=12(-λ+1)AB→, 所以PQ →∥AB →,又P ,Q ,A ,B 四点不共线,所以PQ ∥AB .【学习过程】一、问题导学预习教材内容,思考以下问题: 1.余弦定理的内容是什么?2.余弦定理有哪些推论?二、合作探究探究点1:已知两边及一角解三角形(1)(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .42 B .30 C .29D .25(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =5,c =2,cos A =23,则b =( )A .2B .3C .2D .3 解析:(1)因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C =25+1-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =42,故选A .(2)由余弦定理得5=22+b 2-2×2b cos A ,因为cos A =23,所以3b 2-8b -3=0,所以b =3⎝ ⎛⎭⎪⎫b =-13舍去.故选D .答案:(1)A (2)D 互动探究:变条件:将本例(2)中的条件“a =5,c =2,cos A =23”改为“a =2,c =23,cos A =32”,求b 为何值?解:由余弦定理得: a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32, 即b 2-6b +8=0,解得b =2或b =4. 探究点2:已知三边(三边关系)解三角形(1)在△ABC 中,已知a =3,b =5,c =19,则最大角与最小角的和为( ) A .90°B .120°C .135°D .150°(2)在△ABC 中,若(a +c )(a -c )=b (b -c ),则A 等于( ) A .90° B .60° C .120°D .150°解析:(1)在△ABC 中,因为a =3,b =5,c =19,所以最大角为B ,最小角为A ,所以cos C =a 2+b 2-c 22ab =9+25-192×3×5=12,所以C =60°,所以A +B =120°,所以△ABC 中的最大角与最小角的和为120°.故选B .(2)因为(a +c )(a -c )=b (b -c ),所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0°,180°),所以A =60°.答案:(1)B (2)B 探究点3: 判断三角形的形状在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状.解:将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得b 2+c 2-b 2⎝⎛⎭⎪⎫a 2+b 2-c 22ab 2-c 2⎝ ⎛⎭⎪⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c22ab ,所以b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a 2=a 2.所以A =90°.所以△ABC 是直角三角形. 三、学习小结2.余弦定理的推论cos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab.3.三角形的元素与解三角形(1)三角形的元素三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.(2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形.四、精炼反馈1.在△ABC中,已知a=5,b=7,c=8,则A+C=()A.90°B.120°C.135°D.150°解析:选B.cos B=a2+c2-b22ac=25+64-492×5×8=12.所以B=60°,所以A+C=120°.2.在△ABC中,已知(a+b+c)(b+c-a)=3bc,则角A等于()A.30°B.60°C.120°D.150°解析:选B.因为(b+c)2-a2=b2+c2+2bc-a2=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=12,所以A=60°.3.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab =________.解析:因为C=60°,所以c2=a2+b2-2ab cos 60°,即c2=a2+b2-ab.①又因为(a +b )2-c 2=4, 所以c 2=a 2+b 2+2ab -4.②由①②知-ab =2ab -4,所以ab =43. 答案:434.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca+c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.所以a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么?2.正弦定理的内容是什么?二、合作探究探究点1:已知两角及一边解三角形在△ABC中,已知c=10,A=45°,C=30°,解这个三角形.解:因为A=45°,C=30°,所以B=180°-(A+C)=105°.由asin A=csin C得a=c sin Asin C=10×sin 45°sin 30°=102.因为sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64,所以b=c sin Bsin C=10×sin(A+C)sin 30°=20×2+64=52+56.探究点2:已知两边及其中一边的对角解三角形已知△ABC中的下列条件,解三角形:(1)a=10,b=20,A=60°;(2)a=2,c=6,C=π3.解:(1)因为bsin B=asin A,所以sin B=b sin Aa=20sin 60°10=3>1,所以三角形无解.(2)因为asin A=csin C,所以sin A=a sin Cc=22.因为c>a,所以C>A.所以A=π4.所以B=5π12,b=c sin Bsin C=6·sin5π12sinπ3=3+1.互动探究:变条件:若本例(2)中C=π3改为A=π4,其他条件不变,求C,B,b.解:因为asin A=csin C,所以sin C=c sin Aa=32.所以C=π3或2π3.当C=π3时,B=5π12,b=a sin Bsin A=3+1.当C=2π3时,B=π12,b=a sin Bsin A=3-1.探究点3:判断三角形的形状已知在△ABC中,角A,B所对的边分别是a和b,若a cos B=b cos A,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形解析:由正弦定理得:a cos B=b cos A⇒sin A cos B=sin B cos A⇒sin(A-B)=0,由于-π<A-B<π,故必有A-B=0,A=B,即△ABC为等腰三角形.答案:A变条件:若把本例条件变为“b sin B=c sin C”,试判断△ABC的形状.解:由b sin B=c sin C可得sin2B=sin2C,因为三角形内角和为180°,所以sin B=sin C.所以B=C.故△ABC为等腰三角形.三、学习小结1.正弦定理2.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)sin A∶sin B∶sin C=a∶b∶c;(4)a+b+csin A+sin B+sin C=2R.四、精炼反馈1.(2019·辽宁沈阳铁路实验中学期中考试)在△ABC中,AB=2,AC=3,B=60°,则cos C=()A.33B.63C.32D.62解析:选B.由正弦定理,得ABsin C=ACsin B,即2sin C=3sin 60°,解得sin C=33.因为AB<AC,所以C<B,所以cos C=1-sin2C=6 3.2.在△ABC中,角A,B,C的对边分别为a,b,c,且A∶B∶C=1∶2∶3,则a∶b∶c =()A.1∶2∶3B.3∶2∶1C.2∶3∶1D.1∶3∶2解析:选D.在△ABC中,因为A∶B∶C=1∶2∶3,所以B=2A,C=3A,又A+B+C =180°,所以A=30°,B=60°,C=90°,所以a∶b∶c=sin A∶sin B∶sin C=sin 30°∶sin 60°∶sin 90°=1∶3∶2.3.在△ABC中,角A,B,C的对边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:选D.已知c-a cos B=(2a-b)cos A,由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin(A+B)-sin A cos B=2sin A cos A-sin B cos A,化简得cos A(sin B-sin A)=0,所以cos A=0或sin B-sin A=0,则A=90°或A=B,故△ABC为等腰三角形或直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.什么是基线?2.基线的长度与测量的精确度有什么关系?3.利用正、余弦定理可解决哪些实际问题?二、合作探究探究点1:测量距离问题海上A,B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B岛与C岛间的距离是________.解析:如图,在△ABC中,∠C=180°-(∠B+∠A)=45°,由正弦定理,可得BCsin 60°=ABsin 45°,所以BC=32×10=56(海里).答案:56海里互动探究:变条件:在本例中,若“从B岛望C岛和A岛成75°的视角”改为“A,C两岛相距20海里”,其他条件不变,又如何求B岛与C岛间的距离呢?解:由已知在△ABC中,AB=10,AC=20,∠BAC=60°,即已知两边和两边的夹角,利用余弦定理求解即可.BC2=AB2+AC2-2AB·AC·cos 60°=102+202-2×10×20×12=300.故BC=103.即B,C间的距离为103海里.探究点2测量高度问题如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.解析:由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.又AB=600 m,故由正弦定理得600sin 45°=BCsin 30°,解得BC=300 2 m.在Rt△BCD中,CD=BC·tan 30°=3002×33=1006(m).答案:1006互动探究:变问法:在本例条件下,汽车在沿直线AB方向行驶的过程中,若测得观察山顶D点的最大仰角为α,求tan α的值.解:如图,过点C,作CE⊥AB,垂足为E,则∠DEC=α,由例题可知,∠CBE=75°,BC=3002,所以CE=BC·sin∠CBE=3002sin 75°=3002×2+6 4=150+1503.所以tan α=DCCE=1006150+1503=32-63.探究点3:测量角度问题岛A观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行(如图所示),观察站即刻通知在岛A正南方向B处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C处,随即以每小时103海里的速度前往拦截.(1)问:海监船接到通知时,在距离岛A多少海里处?(2)假设海监船在D处恰好追上可疑船只,求它的航行方向及其航行的时间.解:(1)根据题意得∠BAC=45°,∠ABC=75°,BC=10,所以∠ACB=180°-75°-45°=60°,在△ABC中,由ABsin∠ACB=BCsin∠BAC,得AB=BC sin∠ACBsin∠BAC=10sin 60°sin 45°=10×3222=56.所以海监船接到通知时,在距离岛A 5 6 海里处.(2)设海监船航行时间为t小时,则BD=103t,CD=10t,又因为∠BCD=180°-∠ACB=180°-60°=120°,所以BD2=BC2+CD2-2BC·CD cos 120°,所以300t 2=100+100t 2-2×10×10t ·⎝ ⎛⎭⎪⎫-12,所以2t 2-t -1=0,解得t =1或t =-12(舍去). 所以CD =10,所以BC =CD ,所以∠CBD =12(180°-120°)=30°, 所以∠ABD =75°+30°=105°.所以海监船沿方位角105°航行,航行时间为1个小时. (或海监船沿南偏东75°方向航行,航行时间为1个小时) 三、学习小结1.基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线. 2.基线与测量精确度的关系一般来说,基线越长,测量的精确度越高. 图示南偏西60°(指以正南方向为始边,转向目标方向线形成的角)四、精炼反馈1.若P 在Q 的北偏东44°50′方向上,则Q 在P 的( ) A .东偏北45°10′方向上 B .东偏北45°50′方向上 C .南偏西44°50′方向上D .西偏南45°50′方向上解析:选C.如图所示.2.如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于()A.1002米B.50(3+1)米C.100(3+1)米D.200米解析:选C.设AB=x米,在Rt△ACB中,∠ACB=45°,所以BC=AB=x.在Rt△ABD中,∠D=30°,则BD=3AB=3x.因为BD-BC=CD,所以3x-x=200,解得x=100(3+1).故选C.3.已知台风中心位于城市A东偏北α(α为锐角)度的150公里处,以v公里/小时沿正西方向快速移动,2.5小时后到达距城市A西偏北β(β为锐角)度的200公里处,若cos α=34cos β,则v=()A.60B.80C.100D.125解析:选C.画出图象如图所示,由余弦定理得(2.5v)2=2002+1502+2×200×150cos(α+β)①,由正弦定理得150sin β=200sin α,所以sin α=43sin β.又cos α=34cos β,sin2α+cos2α=1,解得sin β=35,故cos β=45,sin α=45,cos α=35,故cos(α+β)=1225-1225=0,代入①解得v=100.4.某巡逻艇在A处发现在北偏东45°距A处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇的航行方向.解:设经过t 小时在点C 处刚好追上走私船,依题意:AC =123t ,BC =12t ,∠ABC =120°,在△ABC 中,由正弦定理得123tsin 120°=12tsin ∠BAC,所以sin ∠BAC =12,所以∠BAC =30°,所以AB =BC =8=12t ,解得t =23,航行的方向为北偏东75°.即巡逻艇最少经过23小时可追到走私船,沿北偏东75°的方向航行.平面向量的运算【第一课时】向量的加法运算【学习重难点】【学习目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则 和三角形法则掌握向量加法的平行四边形法则和三角形法则, 会用它们解决实际问题 数学抽象、直观想象平面向量加法的运算律 掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a ,b ,c ,求作和向量a +b +c .解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA →=a ,OB →=b ;(2)作平行四边形AOBC ,则OC→=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE , 则OE→=OC →+c =a +b +c .OE →即为所求.探究点2:平面向量的加法运算 例2:化简:(1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.解:(1)BC→+AB →=AB →+BC →=AC →.(2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0. 探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA→+OB →=OC →.由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时. 三、学习小结即a +b =AB+BC =AC对角线OC就是a 与b 的和2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 四、精炼反馈1.化简OP→+PQ →+PS →+SP →的结果等于( )A .QP →B .OQ →C .SP →D .SQ→ 解析:选B .OP→+PQ →+PS →+SP →=OQ →+0=OQ →.2.在四边形ABCD 中,AC →=AB →+AD →,则一定有( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC→=AB →+AD →得AD →=BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______. 解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13. 答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO→+AC →; (2)DE→+BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF→为所求.(2)在AB 上取点G ,使AG =13AB , 则向量BG→为所求.【第二课时】【学习过程】一、问题导入预习教材内容,思考以下问题: 1.a 的相反向量是什么?2.向量减法的几何意义是什么? 二、新知探究探究点1: 向量的减法运算例1:化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.解:(1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB→. 法二:原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,连接BC ,则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA→=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB →=a +b -c .法三:如图③,在平面内任取一点O , 作OA→=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB →=a ,AC→=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.解:因为四边形ACDE 是平行四边形,所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD →=BC →+CD →=b -a +c . 三、学习小结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. 2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA→=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. 四、精炼反馈1.在△ABC 中,D 是BC 边上的一点,则AD→-AC →等于( )A .CB → B .BC → C .CD→ D .DC→ 解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC→=CD →. 2.化简:AB→-AC →+BD →-CD →+AD →=________.解析:原式=CB →+BD →+DC →+AD →=CD →+DC →+AD →=0+AD →=AD →.答案:AD→3.已知错误!=10,|错误!|=7,则|错误!|的取值范围为______.解析:因为CB →=AB →-AC →,所以|CB→|=|AB →-AC →|. 又错误!≤|错误!-错误!|≤|错误!|+|错误!|, 3≤|AB→-AC →|≤17, 所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB→-OC →|=|OB →-OA →+OC →-OA →|,试判断△ABC 的形状.解:因为OB→-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →.又|OB→-OC →|=|OB →-OA →+OC →-OA →|, 所以|AB→+AC →|=|AB →-AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】【学习过程】一、问题导学预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算? 二、新知探究探究1: 向量的线性运算 例1:(1)计算:①4(a +b )-3(a -b )-8a ;②(5a -4b +c )-2(3a -2b +c );③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ). (2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ).解:(1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j )=⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j . 探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线; (2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线. (2)因为k e 1+e 2与e 1+k e 2共线, 所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1. 探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB →∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB→=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________; (2)MN→=________.解析:因为AB→∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB →=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2 互动探究变条件:在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →,MN→=MC →+CB →+BN →, 所以2MN →=(MD →+MC →)+DA →+CB →+(AN →+BN →). 又因为M ,N 分别是DC ,AB 的中点,所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →, 所以MN →=12(-AD →-BC →)=-12e 2-12e 1. 三、学习小结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb . 3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . 四、精炼反馈 1.13⎣⎢⎡⎦⎥⎤12(2a +8b )-(4a -2b )等于( )A .2a -bB .2b -aC .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b . 2.若点O 为平行四边形ABCD 的中心,AB →=2e 1,BC →=3e 2,则32e 2-e 1=( ) A .BO→ B .AO→ C .CO→ D .DO→ 解析:选A .BD →=AD →-AB →=BC →-AB →=3e 2-2e 1,BO →=12BD →=32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB →=e 1+3e 2,CD →=2e 1-e 2,所以BD→=CD →-CB →=e 1-4e 2. 又AB →=2e 1-8e 2=2(e 1-4e 2),所以AB →=2BD →,所以AB →与BD →共线. 因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】【学习过程】一、问题导学预习教材内容,思考以下问题: 1.什么是向量的夹角? 2.数量积的定义是什么? 3.投影向量的定义是什么? 4.向量数量积有哪些性质? 5.向量数量积的运算有哪些运算律? 二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD →·BC →;②AB →·DA →.解:(1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2 =|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192.(2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120°=4×3×⎝ ⎛⎭⎪⎫-12=-6.互动探究:变问法:若本例(2)的条件不变,求AC→·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC →·BD →=(AB →+AD →)·(AD →-AB →) =AD →2-AB →2=9-16=-7. 探究点2: 向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( ) A .3 B .23C .4D .12(2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A .13B .12C .15D .14 解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2 =|a |2+4|a ||b |cos 60°+4|b |2= 4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos 60°=34,即1+|b |2-|b |=34,解得|b |=12. 答案:(1)B (2)B 探究点3: 向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.解析:(1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2=|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12,所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3.答案:(1)π3(2)π3命题角度二:证明两向量垂直例4:已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a +t b ).证明:因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值.此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b -a·b =0.所以b ⊥(a +t b ). 命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为( )A .-32 B .32 C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直, 所以(3a +2b )·(k a -b )=0, 所以3k a 2+(2k -3)a·b -2b 2=0. 因为a ⊥b ,所以a ·b =0, 又|a |=2,|b |=3, 所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ), 即49c 2=9a 2+λ2b 2+6λa ·b , 而a ,b ,c 为单位向量, 则a 2=b 2=c 2=1, 则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5. 答案:(1)B (2)-8或5 三、学习小结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. 2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为。
2018-2019学年人教A版高中数学必修二:空间几何体的表面积和体积(知识讲解+例题演练)

空间几何体的表面积和体积【学习目标】1.通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法;2.能运用公式求解柱体、锥体和台体的体积,并且熟悉台体与柱体和锥体之间的转换关系;3.了解球的表面积和体积公式推导的基本思想,掌握球的表面积和体积的计算公式,并会求球的表面积和体积;4.会用柱、锥、台体和球的表面积和体积公式求简单几何体的表面积和体积. 【要点梳理】要点一、棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台是多面体,它们的各个面均是平面多边形,它们的表面积就是各个面的面积之和.计算时要分清面的形状,准确算出每个面的面积再求和.棱柱、棱锥、棱台底面与侧面的形状如下表:求多面体的表面积时,只需将它们沿着若干条棱剪开后展开成平面图形,利用平面图形求多面体的表面积.要点二、圆柱、圆锥、圆台的表面积圆柱、圆锥、圆台是旋转体,它们的底面是圆面,易求面积,而它们的侧面是曲面,应把它们的侧面展开为平面图形,再去求其面积.1.圆柱的表面积(1)圆柱的侧面积:圆柱的侧面展开图是一个矩形,如下图,圆柱的底面半径为r ,母线长l ,那么这个矩形的长等于圆柱底面周长C=2πr ,宽等于圆柱侧面的母线长l (也是高),由此可得S 圆柱侧=C l =2πr l .(2)圆柱的表面积:2222()S r rl r r l πππ=+=+圆柱表.2.圆锥的表面积(1)圆锥的侧面积:如下图(1)所示,圆锥的侧面展开图是一个扇形,如果圆锥的底面半径为r ,母线长为l ,那么这个扇形的弧长等于圆锥底面周长C=πr ,半径等于圆锥侧面的母线长为l ,由此可得它的侧面积是12S Cl rl π==圆锥侧. (2)圆锥的表面积:S 圆锥表=πr 2+πr l .3.圆台的表面积(1)圆台的侧面积:如上图(2)所示,圆台的侧面展开图是一个扇环.如果圆台的上、下底面半径分别为r '、r ,母线长为l ,那么这个扇形的面积为π(r '+r)l ,即圆台的侧面积为S 圆台侧=π(r '+r)l .(2)圆台的表面积:22('')S r r r l rl π=+++圆台表.要点诠释:求旋转体的表面积时,可从旋转体的生成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长之间的关系.4.圆柱、圆锥、圆台的侧面积公式之间的关系如下图所示.要点三、柱体、锥体、台体的体积 1.柱体的体积公式棱柱的体积:棱柱的体积等于它的底面积S 和高h 的乘积,即V 棱柱=Sh . 圆柱的体积:底面半径是r ,高是h 的圆柱的体积是V 圆柱=Sh=πr 2h . 综上,柱体的体积公式为V=Sh . 2.锥体的体积公式棱锥的体积:如果任意棱锥的底面积是S ,高是h ,那么它的体积13V Sh =棱锥. 圆锥的体积:如果圆锥的底面积是S ,高是h ,那么它的体积13V Sh =圆锥;如果底面积半径是r ,用πr 2表示S ,则213V r h π=圆锥. 综上,锥体的体积公式为13V Sh =. 3.台体的体积公式棱台的体积:如果棱台的上、下底面的面积分别为S '、S ,高是h ,那么它的体积是1(')3V h S S =棱台.圆台的体积:如果圆台的上、下底面半径分别是r '、r ,高是h ,那么它的体积是2211(')('')33V h S S h r rr r π=+=++圆台.综上,台体的体积公式为1(')3V h S S =. 4.柱体、锥体、台体的体积公式之间的关系如下图所示.要点四、球的表面积和体积 1.球的表面积(1)球面不能展开成平面,要用其他方法求它的面积. (2)球的表面积设球的半径为R ,则球的表面积公式 S 球=4πR 2. 即球面面积等于它的大圆面积的四倍. 2.球的体积设球的半径为R ,它的体积只与半径R 有关,是以R 为自变量的函数. 球的体积公式为343V R π=球. 要点五、侧面积与体积的计算 1.多面体的侧面积与体积的计算在掌握直棱柱、正棱锥、正棱台侧面积公式及其推导过程的基础上,对于一些较简单的几何组合体的表面积与体积,能够将其分解成柱、锥、台、球,再进一步分解为平面图形(正多边形、三角形、梯形等),以求得其表面积与体积.要注意对各几何体相重叠部分的面积的处理,并要注意一些性质的灵活运用.(1)棱锥平行于底的截面的性质:在棱锥与平行于底的截面所构成的小棱锥中,有如下比例关系:S S S S S S ===小锥底小锥全小锥侧大锥底大锥全大锥侧对应线段(如高、斜高、底面边长等)的平方之比.要点诠释:这个比例关系很重要,在求锥体的侧面积、底面积比时,会大大简化计算过程.在求台体的侧面积、底面积比时,将台体补成锥体,也可应用这个关系式.(2)有关棱柱直截面的补充知识.在棱柱中,与各侧棱均垂直的截面叫做棱柱的直截面,正棱柱的直截面是其上下底面及与底面平行的截面.棱柱的侧面积与直截面周长有如下关系式:S 棱柱侧=C 直截l (其中C 直截、l 分别为棱柱的直截面周长与侧棱长), V 棱柱=S 直截l (其中S 直截、l 分别为棱柱的直截面面积与侧棱长). 2.旋转体的侧面积和体积的计算(1)圆柱、圆锥、圆台的侧面积分别是它们侧面展开图的面积,因此弄清侧面展开图的形式及侧面展开图中各线段与原旋转体的关系,是掌握它们的侧面积公式及解决有关问题的关键.(2)计算柱体、锥体和台体的体积,关键是根据条件找出相应的底面面积和高,要充分运用多面体的有关问题的关键.【典型例题】类型一、简单几何体的表面积例1.如右图,有两个相同的直三棱柱,高为2a,底面三角形的三边长分别为345(0)a a a a >、、.用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则a 的取值范围是 .【答案】03a <<. 【解析】底面积为26a ,侧面面积分别为6、8、10,拼成四棱柱时,有三种情况:221(86)2462428s a a =+⨯+⨯=+222242(108)2436,s a a =++=+ 223242(106)2432,s a a =++=+拼成三棱柱时也有三种情况:表面积为22262(1086)1248a a ⨯+++=+,24a 2+36, 24a 2+32由题意得2224281248a a +<+,解得03a <<. 【总结升华】(1)直棱柱的侧面积等于它的底面周长和高的乘积;表面积等于它的侧面积与上、下两个底面的面积之和.(2)求斜棱柱的侧面积一般有两种方法:一是定义法;二是公式法.所谓定义法就是利用侧面积为各侧面面积之和来求,公式法即直接用公式求解.举一反三:【变式1】一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( )A .4S πB .2S πC .S πD S 【答案】A【解析】由圆柱的底面面积是S ,求出圆柱的半径为r =4S π.例2.在底面半径为R ,高为h 的圆锥内有一内接圆柱,求内接圆柱的侧面积最大时圆柱的高,并求此时侧面积的最大值.【思路点拨】一般要画出其轴截面来分析,利用相似三角形求解。
人教版高中数学(必修2)全套训练习题含答案

高中数学必修二训练集锦目录:数学2(必修)数学2(必修)第一章:空间几何体[ 基础训练A组] 数学2(必修)第一章:空间几何体[ 综合训练B 组] 数学2(必修)第一章:空间几何体[ 提高训练C 组] 数学2(必修)第二章:点直线平面[ 基础训练A组] 数学2(必修)第二章:点直线平面[ 综合训练B 组] 数学2(必修)第二章:点直线平面[ 提高训练C 组] 数学2(必修)第三章:直线和方程[ 基础训练A组] 数学2(必修)第三章:直线和方程[ 综合训练B 组] 数学2(必修)第三章:直线和方程[ 提高训练C 组] 数学2(必修)第四章:圆和方程[ 基础训练A组] 数学2(必修)第四章:圆和方程[ 综合训练 B 组] 数学 2(必修)第四章:圆和方程 [ 提高训练 C 组]33 3 ( 数 学 2 必 修 ) 第 一 章 空 间 几 何 体[ 基础训练 A 组] 一、选择题1 . 有 一 个 几 何 体 的 三 视 图 如 下 图 所 示 , 这 个 几 何 体 应 是 一 个 ()A . 棱 台B . 棱 锥C . 棱 柱 D. 都 不 对主 视 图左 视 图俯 视 图2 . 棱 长 都 是 1 的 三 棱 锥 的 表 面 积 为 ()A .B .2 C .3 D.43 . 长 方 体 的 一 个 顶 点 上 三 条 棱 长 分 别 是 3,4 ,5 , 且 它 的 8 个 顶 点 都 在同 一 球 面 上 , 则 这 个 球 的 表 面 积 是 ( )A . 2 5B . 5 0C . 1 2 5D . 都 不 对4 . 正 方 体 的 内 切 球 和 外 接 球 的 半 径 之 比 为 ()A .: 1 B . : 2C . 2 :D . 35 . 在 △ A B C 中 , AB 2 , B C 1 . 5 , AB C1 2 0 ,若 使 绕 直 线 B C 旋 转 一 周 ,则 所 形 成 的 几 何 体 的 体 积 是 ( )9 7 5 3 A .B .C .D.22226 . 底 面 是 菱 形 的 棱 柱 其 侧 棱 垂 直 于 底 面 , 且 侧 棱 长 为 5 , 它 的 对 角 线 的 长分 别 是 9 和 1 5 , 则 这 个 棱 柱 的 侧 面 积 是 ( ) A . 1 3 0B . 1 4 0C . 1 5 0D . 1 6 0二、填空题1 . 一 个 棱 柱 至 少 有 _____ 个 面 , 面 数 最 少 的 一 个 棱 锥 有 ________个 顶 点 ,顶 点 最 少 的 一 个 棱 台 有________条 侧 棱 。
新编【人教A版】高中数学:必修2课本例题习题改编(含答案)

新编人教版精品教学资料2015版人教A 版必修2课本例题习题改编湖北省安陆市第一高级中学 伍海军 ****************1.原题(必修2第15页练习第4题)如图是一个几何体的三视图,想象它的几何结构特征,并说出它的名称.改编 如图是一个几何体的三视图(单位:cm ) (Ⅰ)画出这个几何体的直观图(不要求写画法); (Ⅱ)求这个几何体的表面积及体积;(Ⅲ)设异面直线AA '与BC '所成的角为θ,求cos θ.解:(Ⅰ)这个几何体的直观图如图23-2所示. (Ⅱ)这个几何体是直三棱柱.由于底面ABC ∆的高为1,所以AB ==. 故所求全面积22ABC BB C C ABB A S S S S ''''∆=++1221322382=⨯⨯⨯+⨯+⨯=+2(cm ).这个几何体的体积121332ABC V S BB ∆'=⋅=⨯⨯⨯=3(cm )(Ⅲ)因为//AA BB '',所以AA '与BC '所成的角是B BC ''∠.O OO 'O '22OO在Rt BB C''∆中,BC '==cos BB BC θ'===' 2.原题(必修2第28页例3)如图,已知几何 体的三视图,用斜二测画法画出它的直观图. 改编1 如图,已知几何体的三视图(单位:cm ). (Ⅰ)画出它的直观图(不要求写画法); (Ⅱ)求这个几何体的表面积和体积. 解:(Ⅰ)这个几何体的直观图如图所示. (Ⅱ)这个几何体是一个简单组合体,它的下部是 一个圆柱(底面半径为1cm ,高为2cm ),它的上部 是一个圆锥(底面半径为1cm ,母线长为2cm ,高为).所以所求表面积21212127S ππππ=⨯+⨯⨯+⨯⨯=2(cm ),所求体积22112123V πππ=⨯⨯+⨯⨯=3(cm ).3.原题(必修2第30页习题1.3B 组第三题)分别以一个直角三角形的斜边,两直角边所在直线为轴,其余各边旋转一周形成的曲面围成三个几何体,画出它们的三视图和直观图,并探讨它们体积之间的关系。
新教材 人教A版高中数学必修第二册 第八章立体几何初步 课时练习题及章末测验 精选配套习题含解析

第八章立体几何初步1、棱柱、棱锥、棱台的结构特征................................................................................ - 1 -2、圆柱、圆锥、圆台、球与简单组合体的结构特征................................................ - 7 -3、立体图形的直观图.................................................................................................. - 12 -4、棱柱、棱锥、棱台的表面积和体积...................................................................... - 18 -5、圆柱、圆锥、圆台的表面积和体积...................................................................... - 23 -6、球的表面积和体积.................................................................................................. - 29 -7、平面 ......................................................................................................................... - 35 -8、空间点、直线、平面之间的位置关系.................................................................. - 40 -9、直线与直线平行直线与平面平行...................................................................... - 44 -10、平面与平面平行.................................................................................................... - 49 -11、直线与直线垂直.................................................................................................... - 56 -12、直线与平面垂直.................................................................................................... - 63 -13、平面与平面垂直.................................................................................................... - 70 -章末综合测验................................................................................................................ - 76 -1、棱柱、棱锥、棱台的结构特征一、选择题1.(多选题)观察如下所示的四个几何体,其中判断正确的是()A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台ACD[结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥.]2.(多选题)下列说法错误的是()A.有2个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形ABC[选项A错误,反例如图①;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B错误;选项C错误,反例如图②,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.①②]3.在下列四个平面图形中,每个小四边形皆为正方形,其中可以沿相邻正方形的公共边折叠围成一个正方体的图形是()C[动手将四个选项中的平面图形折叠,看哪一个可以折叠围成正方体即可.]4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定A[如图.因为有水的部分始终有两个平面平行,而其余各面都易证是平行四边形,因此是棱柱.]5.用一个平面去截一个三棱锥,截面形状是()A.四边形B.三角形C.三角形或四边形D.不可能为四边形C[按如图①所示用一个平面去截三棱锥,截面是三角形;按如图②所示用一个平面去截三棱锥,截面是四边形.①②]二、填空题6.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.12[该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,所以每条侧棱长为12 cm.]7.如图所示,在所有棱长均为1的三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路程为________.10[将三棱柱沿AA1展开如图所示,则线段AD1即为最短路线,即AD1=AD2+DD21=10.]8.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成________个三棱锥.3[如图,三棱台可分成三棱锥C1-ABC,三棱锥C1-ABB1,三棱锥A-A1B1C1,共3个.]三、解答题9.如图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?[解]这个几何体是由两个同底面的四棱锥组合而成的八面体,有8个面,都是全等的正三角形;有6个顶点;有12条棱.10.试从正方体ABCD-A1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.[解](1)如图①所示,三棱锥A1-AB1D1(答案不唯一).(2)如图②所示,三棱锥B1-ACD1(答案不唯一).(3)如图③所示,三棱柱A1B1D1-ABD(答案不唯一).①②③11.由五个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是() A.三棱柱B.三棱台C.三棱锥D.四棱锥B[该多面体有三个面是梯形,而棱锥最多有一个面是梯形(底面),棱柱最多有两个面是梯形(底面),所以该多面体不是棱柱、棱锥,而是棱台.三个梯形是棱台的侧面,另两个三角形是底面,所以这个棱台是三棱台.]12.如图所示都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是()①②③④A.①②B.②③C.③④D.①④B[在图②③中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图②③完全一样,而图①④则不同.]13.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线共有________条.10[在上底面选一个顶点,同时在下底面选一个顶点,且这两个顶点不在同一侧面上,这样上底面每个顶点对应两条对角线,所以共有10条.]14.如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A、B、C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?[解](1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=12a2,S△DPF=S△DPE=12×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-12a2-a2-a2=32a2.15.如图,在长方体ABCD-A1B1C1D1中,AB=3,BC=4,A1A=5,现有一只甲壳虫从点A出发沿长方体表面爬行到点C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.[解]把长方体的部分面展开,如图,有三种情况.对甲、乙、丙三种展开图利用勾股定理可得AC1的长分别为90,74,80,由此可见乙是最短线路,所以甲壳虫可以先在长方形ABB1A1内由A到E,再在长方形BCC1B1内由E到C1,也可以先在长方形AA1D1D内由A到F,再在长方形DCC1D1内由F到C1,其最短路程为74.2、圆柱、圆锥、圆台、球与简单组合体的结构特征一、选择题1.下列几何体中是旋转体的是 ( )①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A .①和⑤B .①和②C .③和④D .①和④D [根据旋转体的概念可知,①和④是旋转体.]2.图①②中的图形折叠后的图形分别是( )① ②A .圆锥、棱柱B .圆锥、棱锥C .球、棱锥D .圆锥、圆柱B [根据图①的底面为圆,侧面为扇形,得图①折叠后的图形是圆锥;根据图②的底面为三角形,侧面均为三角形,得图②折叠后的图形是棱锥.]3.圆锥的侧面展开图是直径为a 的半圆面,那么此圆锥的轴截面是( )A .等边三角形B .等腰直角三角形C .顶角为30°等腰三角形D .其他等腰三角形A [设圆锥底面圆的半径为r ,依题意可知2πr =π·a 2,则r =a 4,故轴截面是边长为a 2的等边三角形.]4.如图,在日常生活中,常用到的螺母可以看成一个组合体,其结构特征是( )A .一个棱柱中挖去一个棱柱B .一个棱柱中挖去一个圆柱C .一个圆柱中挖去一个棱锥D .一个棱台中挖去一个圆柱B [一个六棱柱挖去一个等高的圆柱,选B .]5.用长为8,宽为4的矩形做侧面围成一个圆柱,则圆柱的轴截面的面积为( )A .32B .32πC .16πD .8πB [若8为底面周长,则圆柱的高为4,此时圆柱的底面直径为8π,其轴截面的面积为32π;若4为底面周长,则圆柱的高为8,此时圆柱的底面直径为4π,其轴截面的面积为32π.]二、填空题6.如图是一个几何体的表面展开图形,则这个几何体是________.圆柱 [一个长方形和两个圆折叠后,能围成的几何体是圆柱.]7.下列命题中错误的是________.①过球心的截面所截得的圆面的半径等于球的半径;②母线长相等的不同圆锥的轴截面的面积相等;③圆台所有平行于底面的截面都是圆面;④圆锥所有的轴截面都是全等的等腰三角形.② [因为圆锥的母线长一定,根据三角形面积公式,当两条母线的夹角为90°时,圆锥的轴截面面积最大.]8.一个半径为5 cm 的球,被一平面所截,球心到截面圆心的距离为4 cm ,则截面圆面积为________ cm 2.9π [设截面圆半径为r cm ,则r 2+42=52,所以r =3.所以截面圆面积为9π cm 2.]三、解答题9.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.[解]如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.10.一个圆台的母线长为12 cm,两底面面积分别为4π cm2和25π cm2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.[解](1)圆台的轴截面是等腰梯形ABCD(如图所示).由已知可得上底面半径O1A=2(cm),下底面半径OB=5(cm),又因为腰长为12 cm,所以高AM=122-(5-2)2=315(cm).(2)如图所示,延长BA,OO1,CD交于点S,设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO可得l-12l=25,解得l=20 (cm),即截得此圆台的圆锥的母线长为20 cm.11. (多选题)对如图中的组合体的结构特征有以下几种说法,其中说法正确的是()A.由一个长方体割去一个四棱柱所构成的B.由一个长方体与两个四棱柱组合而成的C.由一个长方体挖去一个四棱台所构成的D.由一个长方体与两个四棱台组合而成的AB[如图,该组合体可由一个长方体割去一个四棱柱所构成,也可以由一个长方体与两个四棱柱组合而成.故选项AB正确.]12.在正方体ABCD-A′B′C′D′中,P为棱AA′上一动点,Q为底面ABCD上一动点,M是PQ的中点,若点P,Q都运动时,点M构成的点集是一个空间几何体,则这个几何体是()A.棱柱B.棱台C.棱锥D.球的一部分A[由题意知,当P在A′处,Q在AB上运动时,M的轨迹为过AA′的中点,在平面AA′B′B内平行于AB的线段(靠近AA′),当P在A′处,Q在AD上运动时,M的轨迹为过AA′的中点,在平面AA′D′D内平行于AD的线段(靠近AA′), 当Q在B处,P在AA′上运动时,M的轨迹为过AB的中点,在平面AA′B′B内平行于AA′的线段(靠近AB), 当Q在D处,P在AA′上运动时,M的轨迹为过AD的中点,在平面AA′D′D内平行于AA′的线段(靠近AB), 当P在A处,Q在BC上运动时,M 的轨迹为过AB的中点,在平面ABCD内平行于AD的线段(靠近AB), 当P在A处,Q在CD上运动时,M的轨迹为过AD的中点,在平面ABCD内平行于AB的线段(靠近AD), 同理得到:P在A′处,Q在BC上运动;P在A′处,Q在CD上运动;Q在C处,P在AA′上运动;P,Q都在AB,AD,AA′上运动的轨迹.进一步分析其他情形即可得到M的轨迹为棱柱体.故选A.]13.如图所示,已知圆锥SO中,底面半径r=1,母线长l=4,M为母线SA 上的一个点,且SM=x,从点M拉一根绳子,围绕圆锥侧面转到点A.则绳子的最短长度的平方f(x)=________.x2+16(0≤x≤4)[将圆锥的侧面沿SA展开在平面上,如图所示,则该图为扇形,且弧AA′的长度L就是圆O的周长,所以L=2πr=2π,所以∠ASM=Ll=π2.由题意知绳子长度的最小值为展开图中的AM,其值为AM=x2+16 (0≤x≤4).所以f(x)=AM2=x2+16(0≤x≤4).]14.球的两个平行截面的面积分别是5π,8π,两截面间的距离为1,求球的半径.[解]设两个平行截面圆的半径分别为r1,r2,球半径为R.由πr21=5π,得r1= 5.由πr22=8π,得r2=2 2.(1)如图,当两个截面位于球心O的同侧时,有R2-r21-R2-r22=1,即R2-5=1+R2-8,解得R=3.(2)当两个截面位于球心O的异侧时,有R2-5+R2-8=1.此方程无解.由(1)(2)知球的半径为3.15.圆台上底面面积为π,下底面面积为16π,用一个平行于底面的平面去截圆台,该平面自上而下分圆台的高的比为2∶1,求这个截面的面积.[解]圆台的轴截面如图,O1,O2,O3分别为上底面、下底面、截面圆心.过点D作DF⊥AB于点F,交GH于点E.由题意知DO1=1,AO2=4,∴AF=3.∵DE=2EF,∴DF=3EF,∴GEAF=DEDF=23,∴GE=2.∴⊙O3的半径为3.∴这个截面面积为9π.3、立体图形的直观图一、选择题1.(多选题)如图,已知等腰三角形ABC,则如下所示的四个图中,可能是△ABC 的直观图的是()A B C DCD[原等腰三角形画成直观图后,原来的腰长不相等,CD两图分别为在∠x′O′y′成135°和45°的坐标系中的直观图.]2.(多选题)对于用斜二测画法画水平放置的图形的直观图来说,下列描述正确的是()A.三角形的直观图仍然是一个三角形B.90°的角的直观图会变为45°的角C.与y轴平行的线段长度变为原来的一半D.由于选轴的不同,所得的直观图可能不同ACD [对于A ,根据斜二测画法特点知,相交直线的直观图仍是相交直线,因此三角形的直观图仍是一个三角形,故A 正确;对于B,90°的角的直观图会变为45°或135°的角,故B 错误;C ,D 显然正确.]3.把△ABC 按斜二测画法得到△A ′B ′C ′(如图所示),其中B ′O ′=C ′O ′=1,A ′O ′=32,那么△ABC 是一个( )A .等边三角形B .直角三角形C .等腰三角形D .三边互不相等的三角形A [根据斜二测画法还原三角形在直角坐标系中的图形,如图所示:由图易得AB =BC =AC =2,故△ABC 为等边三角形,故选A .]4.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20 m 、5 m 、10 m ,四棱锥的高为8 m ,若按1∶500的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为( )A .4 cm,1 cm,2 cm,1.6 cmB .4 cm,0.5 cm,2 cm,0.8 cmC .4 cm,0.5 cm,2 cm,1.6 cmD .2 cm,0.5 cm,1 cm,0.8 cmC [由比例尺可知长方体的长、宽、高和四棱锥的高分别为4 cm,1 cm,2 cm 和1.6 cm ,再结合斜二测画法,可知直观图的相应尺寸应分别为4 cm,0.5 cm ,2 cm ,1.6 cm.]5.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+ 2B .1+22C .2+22D .1+2A[画出其相应平面图易求,故选A.]二、填空题6.斜二测画法中,位于平面直角坐标系中的点M(4,4)在直观图中的对应点是M′,则点M′的坐标为________.(4,2)[在x′轴的正方向上取点M1,使O′M1=4,在y′轴上取点M2,使O′M2=2,过M1和M2分别作平行于y′轴和x′轴的直线,则交点就是M′.] 7.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.2.5[由直观图知,由原平面图形为直角三角形,且AC=A′C′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.]8.水平放置的△ABC在直角坐标系中的直观图如图所示,其中D′是A′C′的中点,且∠ACB≠30°,则原图形中与线段BD的长相等的线段有________条.2[△ABC为直角三角形,因为D为AC中点,所以BD=AD=CD.所以与BD的长相等的线段有2条.]三、解答题9.画出水平放置的四边形OBCD(如图所示)的直观图.[解](1)过点C作CE⊥x轴,垂足为点E,如图①所示,画出对应的x′轴、y′轴,使∠x′O′y′=45°,如图②所示.①②③(2)如图②所示,在x′轴上取点B′,E′,使得O′B′=OB,O′E′=OE;在y′轴上取一点D′,使得O′D′=12OD;过点E′作E′C′∥y′轴,使E′C′=12EC.(3)连接B′C′,C′D′,并擦去x′轴与y′轴及其他一些辅助线,如图③所示,四边形O′B′C′D′就是所求的直观图.10.如图,△A′B′C′是水平放置的平面图形的直观图,试画出原平面图形△ABC.[解](1)画法:过C′,B′分别作y′轴的平行线交x′轴于D′,E′.(2)在直角坐标系xOy中.在x轴上取两点E,D使OE=O′E′,OD=O′D′,再分别过E,D作y轴平行线,取EB=2E′B′,DC=2D′C′.连接OB,OC,BC即求出原△ABC.11.如图所示,△A′O′B′表示水平放置的△AOB的直观图,B′在x′轴上,A′O′和x′轴垂直,且A′O′=2,则△AOB的边OB上的高为()A .2B .4C .2 2D .42D [设△AOB 的边OB 上的高为h ,由题意,得S 原图形=22S 直观图,所以12OB ·h =22×12×2×O ′B ′.因为OB =O ′B ′,所以h =4 2.故选D .]12.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm ,另一个圆锥顶点到底面的距离为 3 cm ,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cmD [由题意可知其直观图如图,由图可知两个顶点之间的距离为5 cm.故选D .]13.已知用斜二测画法,画得的正方形的直观图面积为182,则原正方形的面积为________.72 [如图所示,作出正方形OABC 的直观图O ′A ′B ′C ′,作C ′D ′⊥x ′轴于点D ′.S 直观图=O ′A ′×C ′D ′.又S 正方形=OC ×OA . 所以S 正方形S 直观图=OC ×OAO ′A ′×C ′D ′, 又在Rt △O ′D ′C ′中,O ′C ′=2C ′D ′,即C ′D ′=22O ′C ′,结合平面图与直观图的关系可知OA =O ′A ′,OC =2O ′C ′, 所以S 正方形S 直观图=OC ×OA OA ×22O ′C ′=2O ′C ′22O ′C ′=2 2. 又S 直观图=182,所以S 正方形=22×182=72.]14.如图是一个边长为1的正方形A ′B ′C ′D ′,已知该正方形是某个水平放置的四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.[解]四边形ABCD的真实图形如图所示,因为A′C′在水平位置,A′B′C′D′为正方形,所以∠D′A′C′=∠A′C′B′=45°,所以在原四边形ABCD中,AD⊥AC,AC⊥BC,因为AD=2D′A′=2,AC=A′C′=2,=AC·AD=2 2.所以S四边形ABCD15.画出底面是正方形,侧棱均相等的四棱锥的直观图.[解](1)画轴.画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°,如图①.(2)画底面.以O为中心在xOy平面内画出正方形水平放置的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是原四棱锥的高.(4)成图.连接P A、PB、PC、PD,并擦去辅助线,得四棱锥的直观图如图②.①②4、棱柱、棱锥、棱台的表面积和体积一、选择题1.如图,ABC-A′B′C′是体积为1的棱柱,则四棱锥C-AA′B′B的体积是()A .13 B .12 C .23D .34C [∵V C -A ′B ′C ′=13V ABC -A ′B ′C ′=13,∴V C -AA ′B ′B=1-13=23.] 2.正方体的表面积为96,则正方体的体积为( ) A .48 6 B .64 C .16 D .96[答案] B3.棱锥的一个平行于底面的截面把棱锥的高分成1∶2(从顶点到截面与从截面到底面)两部分,那么这个截面把棱锥的侧面分成两部分的面积之比等于( )A .1∶9B .1∶8C .1∶4D .1∶3 B [两个锥体的侧面积之比为1∶9,小锥体与台体的侧面积之比为1∶8,故选B .]4.若正方体八个顶点中有四个恰好是正四面体的顶点,则正方体的表面积与正四面体的表面积之比是( )A . 3B . 2C .23D .32 A [如图所示,正方体的A ′、C ′、D 、B 的四个顶点可构成一个正四面体,设正方体边长为a ,则正四面体边长为2a . ∴正方体表面积S 1=6a 2, 正四面体表面积为S 2=4×34×(2a )2=23a 2,∴S 1S 2=6a 223a 2= 3.] 5.四棱台的两底面分别是边长为x 和y 的正方形,各侧棱长都相等,高为z ,且侧面积等于两底面积之和,则下列关系式中正确的是( )A .1x =1y +1zB .1y =1x +1zC .1z =1x +1yD .1z =1x +yC [由条件知,各侧面是全等的等腰梯形,设其高为h ′,则根据条件得, ⎩⎪⎨⎪⎧4·x +y 2·h ′=x 2+y 2,z 2+⎝ ⎛⎭⎪⎫y -x 22=h ′2,消去h ′得,4z 2(x +y )2+(y -x )2(y +x )2=(x 2+y 2)2. ∴4z 2(x +y )2=4x 2y 2, ∴z (x +y )=xy , ∴1z =1x +1y .] 二、填空题6.已知一个长方体的三个面的面积分别是2,3,6,则这个长方体的体积为________.6[设长方体从一点出发的三条棱长分别为a ,b ,c ,则⎩⎪⎨⎪⎧ab =2,ac =3,bc =6,三式相乘得(abc )2=6,故长方体的体积V =abc = 6.]7.(一题两空)已知棱长为1,各面均为等边三角形的四面体,则它的表面积是________,体积是________.3 212 [S 表=4×34×12=3, V 体=13×34×12×12-⎝ ⎛⎭⎪⎫33 2=212.]8.如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,则点A 到平面A 1BD 的距离d =________.33a [在三棱锥A 1-ABD 中,AA 1是三棱锥A 1-ABD 的高,AB =AD =AA 1=a ,A 1B =BD =A 1D =2a ,∵V 三棱锥A 1-ABD =V 三棱锥A -A 1BD , ∴13×12a 2×a =13×12×2a ×32×2a ×d , ∴d =33a .∴点A 到平面A 1BD 的距离为33a .] 三、解答题9.已知四面体ABCD 中,AB =CD =13,BC =AD =25,BD =AC =5,求四面体ABCD 的体积.[解] 以四面体的各棱为对角线还原为长方体,如图. 设长方体的长、宽、高分别为x ,y ,z ,则⎩⎨⎧x 2+y 2=13,y 2+z 2=20,x 2+z 2=25,∴⎩⎨⎧x =3,y =2,z =4.∵V D -ABE =13DE ·S △ABE =16V 长方体, 同理,V C -ABF =V D -ACG =V D -BCH =16V 长方体, ∴V 四面体ABCD =V 长方体-4×16V 长方体=13V 长方体. 而V 长方体=2×3×4=24,∴V 四面体ABCD =8.10.如图,已知正三棱锥S -ABC 的侧面积是底面积的2倍,正三棱锥的高SO =3,求此正三棱锥的表面积.[解] 如图,设正三棱锥的底面边长为a ,斜高为h ′,过点O 作OE ⊥AB ,与AB 交于点E ,连接SE ,则SE ⊥AB ,SE =h ′.∵S 侧=2S 底, ∴12·3a ·h ′=34a 2×2. ∴a =3h ′.∵SO ⊥OE ,∴SO 2+OE 2=SE 2. ∴32+⎝ ⎛⎭⎪⎫36×3h ′2=h ′2.∴h ′=23,∴a =3h ′=6.∴S 底=34a 2=34×62=93,S 侧=2S 底=18 3. ∴S 表=S 侧+S 底=183+93=27 3.11.正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为( ) A .3π B .43 C .32πD .1B [如图所示,由图可知,该几何体由两个四棱锥构成,并且这两个四棱锥体积相等.四棱锥的底面为正方形,且边长为2,故底面积为(2)2=2;四棱锥的高为1,故四棱锥的体积为13×2×1=23.则几何体的体积为2×23=43.]12.正三棱锥的底面周长为6,侧面都是直角三角形,则此棱锥的体积为( ) A .423 B . 2 C .223 D .23D [由题意,正三棱锥的底面周长为6,所以正三棱锥的底面边长为2,侧面均为直角三角形,可知侧棱长均为2,三条侧棱两两垂直,所以此三棱锥的体积为13×12×2×2×2=23.]13.(一题两空)已知某几何体是由两个全等的长方体和一个三棱柱组合而成,如图所示,其中长方体的长、宽、高分别为4,3,3,三棱柱底面是直角边分别为4,3的直角三角形,侧棱长为3,则此几何体的体积是________,表面积是________.90 138 [该几何体的体积V =4×6×3+12×4×3×3=90,表面积S =2(4×6+4×3+6×3)-3×3+12×4×3×2+32+42×3+3×4=138.]14.如图,在多面体ABCDEF 中,已知平面ABCD 是边长为4的正方形,EF ∥AB ,EF =2,EF 上任意一点到平面ABCD 的距离均为3,求该多面体的体积.[解] 如图,连接EB ,EC .四棱锥E -ABCD 的体积 V 四棱锥E -ABCD =13×42×3=16. ∵AB =2EF ,EF ∥AB , ∴S △EAB =2S △BEF .∴V 三棱锥F -EBC =V 三棱锥C -EFB =12V 三棱锥C -ABE =12V 三棱锥E -ABC =12×12V 四棱锥E -ABCD =4. ∴多面体的体积V =V 四棱锥E -ABCD +V 三棱锥F -EBC =16+4=20.15.一个正三棱锥P -ABC 的底面边长为a ,高为h .一个正三棱柱A 1B 1C 1-A 0B 0C 0的顶点A 1,B 1,C 1分别在三条棱上,A 0,B 0,C 0分别在底面△ABC 上,何时此三棱柱的侧面积取到最大值?[解] 设三棱锥的底面中心为O ,连接PO (图略),则PO 为三棱锥的高,设A 1,B 1,C 1所在的底面与PO 交于O 1点,则A 1B 1AB =PO 1PO ,令A 1B 1=x ,而PO =h ,则PO 1=ha x ,于是OO 1=h -PO 1=h -h a x =h ⎝ ⎛⎭⎪⎫1-x a .所以所求三棱柱的侧面积为S =3x ·h ⎝ ⎛⎭⎪⎫1-x a =3h a (a -x )x =3h a ⎣⎢⎡⎦⎥⎤a 24-⎝ ⎛⎭⎪⎫x -a 22.当x =a 2时,S 有最大值为34ah ,此时O 1为PO 的中点.5、圆柱、圆锥、圆台的表面积和体积一、选择题1.面积为Q 的正方形,绕其一边旋转一周,则所得几何体的侧面积为( ) A .πQ B .2πQ C .3πQD .4πQB [正方形绕其一边旋转一周,得到的是圆柱,其侧面积为S =2πrl =2π·Q ·Q =2πQ .故选B .]2.一个圆台的母线长等于上、下底面半径和的一半,且侧面积是32π,则母线长为( )A .2B .2 2C .4D .8C[圆台的轴截面如图,由题意知,l=12(r+R),S圆台侧=π(r+R)·l=π·2l·l=32π,∴l=4.]3.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7B.6C.5D.3A[设圆台较小底面半径为r,则另一底面半径为3r.由S=π(r+3r)·3=84π,解得r=7.]4.已知某圆柱的底面周长为12,高为2,矩形ABCD是该圆柱的轴截面,则在此圆柱侧面上,从A到C的路径中,最短路径的长度为()A.210 B.2 5C.3 D.2A[圆柱的侧面展开图如图,圆柱的侧面展开图是矩形,且矩形的长为12,宽为2,则在此圆柱侧面上从A到C的最短路径为线段AC,AC=22+62=210.故选A.]5.用平行于圆锥底面的平面截圆锥,所得截面面积与底面面积的比是1∶3,这截面把圆锥母线分为两段的比是()A.1∶3 B.1∶ (3-1)C.1∶9 D.3∶2B[由面积比为1∶3,知小圆锥母线与原圆锥母线长之比为1∶3,故截面把圆锥母线分为1∶(3-1)两部分,故选B.]二、填空题6.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.2 [设圆锥的母线为l ,圆锥底面半径为r ,由题意可知,πrl +πr 2=3π,且πl =2πr .解得r =1,即直径为2.]7.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 3 [圆台的轴截面是下底长为12寸,上底长为28寸,高为18寸的等腰梯形,雨水线恰为中位线,故雨水线直径是20寸,所以降水量为π3(102+10×6+62)×9π×142=3(寸).]8.圆台的上、下底面半径分别是10 cm 和20 cm ,它的侧面展开图扇环的圆心角是180°(如图),那么圆台的体积是________.7 000π3 3 cm 3[180°=20-10l ×360°,∴l =20, h =103,V =13π(r 21+r 22+r 1r 2)·h =7 0003π3 (cm 3).] 三、解答题9.若圆锥的表面积是15π,侧面展开图的圆心角是60°,求圆锥的体积. [解] 设圆锥的底面半径为r ,母线为l , 则2πr =13πl ,得l =6r .又S 圆锥=πr 2+πr ·6r =7πr 2=15π,得r =157,圆锥的高h =⎝⎛⎭⎪⎫61572-⎝⎛⎭⎪⎫1572=53,V =13πr 2h =13π×157×53=2537π.10.如图是一个底面直径为20 cm 的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm ,高为20 cm 的圆锥形铅锤,且水面高于圆锥顶部,当铅锤从水中取出后,杯里的水将下降多少?[解] 因为圆锥形铅锤的体积为13×π×⎝ ⎛⎭⎪⎫622×20=60π(cm 3),设水面下降的高度为x cm ,则小圆柱的体积为π⎝ ⎛⎭⎪⎫2022x =100πx .所以有60π=100πx ,解此方程得x =0.6. 故杯里的水将下降0.6 cm.11.已知圆柱的侧面展开图矩形面积为S ,底面周长为C ,它的体积是( ) A .C 34πS B .4πS C 3 C .CS 2πD .SC 4πD [设圆柱底面半径为r ,高为h ,则⎩⎨⎧Ch =S ,C =2πr ,∴r =C 2π,h =S C .∴V =πr 2·h =π⎝ ⎛⎭⎪⎫C 2π2·S C =SC4π.]12.如图,已知底面半径为r 的圆柱被一个平面所截,剩下部分母线长的最大值为a ,最小值为b .那么圆柱被截后剩下部分的体积是________.πr 2(a +b )2 [采取补体方法,相当于一个母线长为a +b 的圆柱截成了两个体积相等的部分,所以剩下部分的体积V =πr 2(a +b )2.]13.(一题两空)圆柱内有一个内接长方体ABCD -A 1B 1C 1D 1,长方体的体对角线长是10 2 cm ,圆柱的侧面展开图为矩形,此矩形的面积是100π cm 2,则圆柱的底面半径为________cm ,高为________cm.5 10 [设圆柱底面半径为r cm ,高为h cm ,如图所示,则圆柱轴截面长方形的对角线长等于它的内接长方体的体对角线长,则:⎩⎨⎧(2r )2+h 2=(102)2,2πrh =100π, 所以⎩⎨⎧r =5,h =10.即圆柱的底面半径为5 cm ,高为10 cm.]14.如图在底面半径为2,母线长为4的圆锥中内接一个高为3的圆柱,求圆柱的表面积.[解] 设圆锥的底面半径为R ,圆柱的底面半径为r ,表面积为S .则R =OC =2,AC =4, AO =42-22=2 3.如图所示,易知△AEB ∽△AOC ,所以AE AO =EB OC ,即323=r 2,所以r =1,S 底=2πr 2=2π,S 侧=2πr ·h =23π. 所以S =S 底+S 侧=2π+23π=(2+23)π.15.某养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪用).已建的仓库的底面直径为12 m ,高为4 m .养路处拟建一个更大的圆锥形仓库,以存放更多食盐.现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪种方案更经济些?[解] (1)设两种方案所建的仓库的体积分别为V 1,V 2.方案一:仓库的底面直径变成16 m ,则其体积V 1=13×π×⎝ ⎛⎭⎪⎫1622×4=2563π(m 3); 方案二:仓库的高变成8 m ,则其体积V 2=13×π×⎝ ⎛⎭⎪⎫1222×8=96π(m 3).(2)设两种方案所建的仓库的表面积分别为S 1,S 2. 方案一:仓库的底面直径变成16 m ,半径为8 m , 此时圆锥的母线长为l 1=82+42=45(m),则仓库的表面积S 1=π×8×(8+45)=(64+325)π(m 2);方案二:仓库的高变成8 m ,此时圆锥的母线长为l 2=82+62=10(m), 则仓库的表面积S 2=π×6×(6+10)=96π(m 2). (3)因为V 2>V 1,S 2<S 1, 所以方案二比方案一更加经济.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章空间几何体
1.1 空间几何体的结构
练习(第7 页)
1.(1)圆锥;(2)长方体;(3)圆柱与圆锥组合而成的组合体;
(4)由一个六棱柱挖去一个圆柱体而得到的组合体。
2.(1)五棱柱;(2)圆锥
3.略
习题1.1
A组
1.(1) C;(2)C;(3)D;(4) C
2.(1)不是台体,因为几何体的“侧棱”不相交于一点,不是由平等于“底面”的平面截棱锥得到的。
(2)、(3)也不是台体,因为不是由平行与棱锥和圆锥底面平面截得的几何体。
3.(1)由圆锥和圆台组合而成的简单组合体;
(2)由四棱柱和四棱锥组合而成简单组合体。
4.两个同心的球面围成的几何体(或在一个球体内部挖去一个同心球得到的简单组合体)。
5.制作过程略。
制作过程说明平面图形可以折叠成立体图形,立体图形可以展开为平面图形。
B组
1.剩下的几何体是棱柱,截去的几何体也是棱柱;它们分别是五棱柱和三棱柱。
2.左侧几何体的主要结构特征:圆柱和棱柱组成的简单组何体;中间几何体的主要结构特征:下部和上部都是一个圆柱截去一个圆柱组成的简单组何体;右侧几何体的主要结构特征:下部是一个圆柱体,上部是一个圆柱截去一个圆柱组成的简单组何体。
1.2 空间几何体的三视图和直观图
练习(第15 页)
1.略
2.(1)四棱柱(图略);
(2)圆锥与半球组成的简单组合体(图略);
(3)四棱柱与球组成的简单组合体(图略);
(4)两台圆台组合而成的简单组合体(图略)。
3.(1)五棱柱(三视图略);
(2)四个圆柱组成的简单组合体(三视图略);
4.三棱柱
练习(第19 页)
1.略。
2.(1)√(2)×(3)×(4)√
3.A
4.略
5.略
习题1.2
A组
1.略
2.(1)三棱柱(2)圆台(3)四棱柱(4)四棱柱与圆柱组合而成的简单组合体
3~5.略
B组
1~2.略
3.此题答案不唯一,一种答案是由15个小正方体组合而成的简单组合体,如图。
1.3 空间几何体的表面积与体积。