高考数学模拟复习试卷试题模拟卷2334 3
2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。
A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。
所以A∩B={x|x=6k,k∈Z},故选B。
2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。
根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。
故选A。
3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。
又因为S6-S3=24,得到a4+a5+a6=24。
由等差数列的性质,a3+a6=a4+a5。
将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。
解方程组a1+a3=12和a4+a5=16,得到a4=8。
故选B。
二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。
再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。
5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。
【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。
三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。
高三数学模拟试题含答案

高三数学模拟试题含答案第一题:计算题已知 a = 3,b = 5,c = 7,d = 9,请计算以下表达式的值,并给出计算过程。
1) x = a + b × c - d2) y = (a + b) × c - d3) z = a + (b × c - d)解答:1) x = 3 + 5 × 7 - 9 = 3 + 35 - 9 = 292) y = (3 + 5) × 7 - 9 = 8 × 7 - 9 = 56 - 9 = 473) z = 3 + (5 × 7 - 9) = 3 + (35 - 9) = 3 + 26 = 29第二题:选择题在下面的选项中,选择一个正确答案。
1) 二次函数 y = ax^2 + bx + c 的图像开口方向与参数 a 的关系是:A. a > 0,开口向上B. a > 0,开口向下C. a < 0,开口向上D. a < 0,开口向下解答:B. a > 0,开口向下第三题:解方程请求解以下方程,并给出解的步骤。
1) 2x - 5 = 3x + 12) x^2 - 4x + 3 = 0解答:1) 2x - 5 = 3x + 1移项得:2x - 3x = 1 + 5化简得:-x = 6解得:x = -62) x^2 - 4x + 3 = 0因为该方程无法直接分解成两个一次因式相乘的形式,因此使用求根公式:x = (-b ± √(b^2 - 4ac)) / 2a代入 a = 1,b = -4,c = 3,得:x = (-(-4) ± √((-4)^2 - 4 × 1 × 3)) / 2 × 1化简得:x = (4 ± √(16 - 12)) / 2计算得:x = (4 ± √4) / 2化简得:x = (4 ± 2) / 2分解得:x1 = (4 + 2) / 2 = 3x2 = (4 - 2) / 2 = 1因此方程的解为 x1 = 3,x2 = 1第四题:证明请证明勾股定理,即直角三角形中,直角边平方和等于斜边平方。
2023-2024学年上海市高考数学模拟试题(三模)含解析

2023-2024学年上海市高考数学模拟试题(三模)一、填空题1.已知集合{}{}1,1,1,3,5A xx B =≤=-∣,则A B = __________.【正确答案】{}1,1-【分析】化简A ,根据交集运算得解.【详解】因为{}{}1[1,1],1,1,3,5A xx B =≤=-=-∣,所以{}1,1A B ⋂=-,故答案为.{}1,1-2.复数12i 3iz -=+的模为__________.【正确答案】2【分析】由复数的四则运算以及模长公式计算即可.【详解】()()()()12i 3i 12i 17i ,3i 3i 3i 102z z ----===∴=++-.故23.不等式301x x +≥-的解集为__________.【正确答案】(](),31,∞∞--⋃+【分析】将分式不等式等价转化为二次不等式组,求解即得.【详解】原不等式等价于()()31010x x x ⎧+-≥⎨-≠⎩,解得3x ≤-或1x >,故答案为.(](),31,∞∞--⋃+4.已知幂函数()y f x =的图象过点1,82⎛⎫ ⎪⎝⎭,则()2f -=________【正确答案】18-【分析】设幂函数()f x x α=,将1,82⎛⎫ ⎪⎝⎭代入,求得3α=-,进而可得结果.【详解】设幂函数()f x x α=,因为幂函数()y f x =的图象过点1,82⎛⎫ ⎪⎝⎭,所以311822α-⎛⎫⎛⎫== ⎪ ⎝⎭⎝⎭,解得3α=-,所以()()()331,22,8f x x f --=-=-=-故答案为18-.本题主要考查幂函数的解析式,属于基础题.5.已知函数()2sin2f x x x =+,则函数()f x 的最小正周期是__________.【正确答案】π【分析】根据三角恒等变换化简函数解析式,进而可得函数的最小正周期.【详解】()2sin2sin22sin 23f x x x x x x π⎛⎫=+==+ ⎪⎝⎭,故22T ππ==,故π.6.方程42log 17x x +=的解为_________.【正确答案】4x =【分析】设函数()42log x f x x =+,()0,x ∈+∞,由函数的单调性,结合特殊值,即可求得方程42log 17x x +=的解.【详解】设函数()42log x f x x =+,()0,x ∈+∞,由于函数42,log x y y x ==在()0,x ∈+∞上均为增函数,又()4442log 416117f =+=+=,故方程42log 17x x +=的解为4x =.故答案为.4x =7.81(x的展开式中含x 项的系数为______.【正确答案】28【分析】化简二项式定理展开式通项()()38218C 1k k k T x -+=⋅-⋅,求出k 值,代入即可.【详解】设展开式中第1k +项含x 项,则(()()83821881C C 1k k k k k k k T x x --+⎛⎫=⋅⋅=⋅-⋅ ⎪⎝⎭,令3812k -=,解得6k =,代入得,()6678C 128T x x=⋅-⋅=故28.8.某单位为了解该单位党员开展学习党史知识活动情况,随机抽取了部分党员,对他们一周的党史学习时间进行了统计,统计数据如下表所示:党史学习时间(小时)7891011党员人数610987则该单位党员一周学习党史时间的第40百分位数是___.【正确答案】8.5/172【分析】根据百分位数的定义即可求出结果.【详解】党员人数一共有61098740++++=,4040%16⨯=,那么第40百分位数是第16和17个数的平均数,第16和17个数分别为8,9,所以第40百分位数是898.52+=,故8.59.若存在实数a,使得1x =是方程2()3x a x b +=+的解,但不是方程x a +则实数b 的取值范围是__________.【正确答案】()3,-+∞【分析】根据1x =是2()3x a x b +=+的解,不是x a +.【详解】由题意知,2(1)3a b +=+,且1a +≠()1a =-+,显然30b +≥,即3b ≥-,若3b =-,此时显然不满足题意,故()3,b ∞∈-+.故()3,-+∞10.随机变量()2N 105,19X,()2N 100,9Y ,若()()P X A P Y A ≤=≤,那么实数A 的值为__________.【正确答案】95.5【分析】由正态分布性质可得()105N 0,119X -,()100N 0,19Y -,由此可利用对称性构造方程求得结果.【详解】()2N 105,19X ,()2N 100,9Y ,()105N 0,119X -∴,()100N 0,19Y -,()()P X A P Y A ≤=≤ ,105100199A A --∴=,解得.95.5A =故答案为.95.511.已知曲线1C :2y x =+与曲线2C :22()4x a y -+=恰有两个公共点,则实数a 的取值范围为__________.【正确答案】(){}4,02-⋃【分析】根据2y x =+与22()4x a y -+=的位置关系分析可得.【详解】如图:2y x =+与x 轴焦点为()2,0A -,当点A 在圆2C 外,则2y x =+表示的两条射线与圆相切与2C 相切时恰有两个公共点,联立22()4x a y -+=得()222420x a x a +-+=,由()2242420a a ∆=--⨯⨯=,得2a =-±因2y x =+,所以2x ≥-,故2a =-+当点A 在圆2C 上,如图,此时2y x =+与22()4x a y -+=有3个或1个交点不符合题意,当点A 在圆2C 内,如图,此时2y x =+与22()4x a y -+=有2个交点符合题意,此时,22(2)04a --+<,得40a -<<综上a 的取值范围为.(){}4,0222-⋃-故答案为.(){}4,0222-⋃12.函数()y f x =是最小正周期为4的偶函数,且在[]2,0x ∈-时,()21f x x =+,若存在12,,,n x x x ⋯满足120n x x x ≤<<< ,且()()()()()()122312023n n f x f x f x f x f x f x --+-++-=,则n n x +最小值为__________.【正确答案】1518.5【分析】根据题意,先求出函数一个周期的值域,要使n n x +取得最小值,尽可能多让()1,2,3,,i x i m = 取得最高点,且()()01,23f f ==-,再利用函数的周期性求解.【详解】解: 函数()y f x =是最小正周期为4的偶函数,且在[]2,0x ∈-时,()21,f x x =+∴函数的值域为[]3,1-,对任意(),,1,2,3,,i j x x i j m = ,都有()()min ()()4i j max f x f x f x f x -≤-=,要使n n x +取得最小值,尽可能多让()1,2,3,,i x i m = 取得最高点,且()()01,23f f ==-,()()()()()()12122310,2023n nn x x x f x f x f x f x f x f x -≤<<<-+-++-= ,n ∴的最小值估计值为20231506.754+=,故n 的最小值取507,相应的n x 最小值为1011.5,则n n x +的最小值为1518.5.故1518.5二、单选题13.设R λ∈,则“1λ=”是“直线()311x y λ+-=与直线()12x y λλ+-=平行”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】A【分析】根据直线一般式中平行满足的关系即可求解.【详解】若直线()311x y λ+-=与直线()12x y λλ+-=平行,则()()3110λλλ---=,解得1λ=或3λ=-,经检验1λ=或3λ=-时两直线平行.故“1λ=”能得到“直线()311x y λ+-=与直线()12x y λλ+-=平行”,但是“直线()311x y λ+-=与直线()12x y λλ+-=平行”不能得到“1λ=”故选:A14.函数y ()y ()f x f x ==,的导函数的图象如图所示,则函数y ()f x =的图象可能是A .B .C .D .【正确答案】D【详解】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与x 轴的交点为0x ,且图象在0x 两侧附近连续分布于x 轴上下方,则0x 为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数'()f x 的正负,得出原函数()f x 的单调区间.15.已知函数()21f x ax x a =+++为偶函数,则不等式()0f x >的解集为()A .∅B .()()1,00,1-UC .()1,1-D .()(),11,-∞-⋃+∞【正确答案】B 【分析】先求得参数a 的值,再去求不等式()0f x >的解集【详解】因为()f x 为偶函数,所以()()11f f -=,即2a a a a++=+解之得1a =-,经检验符合题意.则()2f x x x=-+由20x x -+>,可得()()1,00,1x ∈-U 故()20f x x x =-+>的解集为()()1,00,1-U ,故选:B.16.已知*n ∈N ,集合πsin N,0k A k k n n ⎧⎫⎛⎫=∈≤≤⎨⎬ ⎪⎝⎭⎩⎭∣,若集合A 恰有8个子集,则n 的可能值有几个()A .1B .2C .3D .4【正确答案】B【分析】根据子集个数可得集合元素个数,再由正弦函数性质即可确定n 的取值.【详解】由题意易知,π2ππsin0,sin ,sin ,,sin n n n n ,均是集合A 中的元素,又集合A 恰有8个子集,故集合A 只有三个元素,有πsin0sin sin πn n==,则结合诱导公式易知,n 可取的值是4或5.故选:B三、解答题17.已知{}n a 为等差数列,{}n b 为等比数列,111a b ==,5435()a a a =-,5434()b b b =-.(1)求{}n a 和{}n b 的通项公式;(2)记{}n a 的前n 项和为n S ,求证:22*1()n n n S S S n N ++∈<;【正确答案】(1)n a n =,12n n b -=;(2)证明见解析【分析】(1)由题意分别求得数列的公差、公比,然后利用等差、等比数列的通项公式得到结果;(2)利用(1)的结论首先求得数列{}n a 的前n 项和,然后利用作差法证明即可.【详解】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,11a =,5435()a a a =-得,145=+a d d ,故1d =,于是1(1)n a n n =+-=;由11b =,5434()b b b =-得,4324()q q q =-,又等比数列公比0q ≠,得到2244(2)0q q q -+=-=,故2q =,于是12n n b -=.(2)由(1)得,(1)2n n n S +=,故2(1)(2)(3)4n n n n n n S S ++++=,2221(1)(2)4n n n S +++=,作差可得[]221(1)(2)(1)(2)(3)(1)(2)042n n n n n n n n n n n S S S ++++++=+-++--=<,即221n n n S S S ++<得证.18.如图,PD ⊥平面ABCD ,四边形ABCD 为直角梯形,,90,222AB CD ADC PD CD AD AB ∠===== ∥.(1)求异面直线AB 与PC 所成角的大小;(2)求二面角B PC D --的余弦值.【正确答案】(1)π433【分析】(1)根据AB DC 可得异面直线所成的角,利用直角三角形求解即可;(2)以点D 为坐标原点,建立坐标系,再由向量法得出二面角B PC D --的余弦值.【详解】(1)由AB CD ,则异面直线AB 与PC 所成角即为PCD ∠,由题意知,PD ⊥平面ABCD ,又CD ⊂平面ABCD ,故PD CD ⊥,所以tan 1PD PCD CD ∠==,即π4PCD ∠=,即异面直线AB 与PC 所成角为4π.(2)因为PD ⊥平面ABCD ,AD ⊂平面ABCD ,所以PD AD ⊥,又PD DC ⊥,AD DC ⊥,所以以D 为原点,,,DA DC DP 分别为,,x y z 轴建立空间直角坐标系:则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2D A B C P ,则()()()()0,2,2,1,1,0,0,0,2,1,0,2PC BC DP PA =-=-==- ,设平面PBC 的法向量为(),,n x y z =r ,则2200n PC y z n BC x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,取1x =,得1,1y z ==,得()1,1,1n = ,取平面PDC 的法向量为()1,0,0DA = ,设二面角B PC D --的大小为θ,由图形知,θ为锐角,所以cos n DA n DAθ⋅== ,所以二面角B PC D --19.流行性感冒简称流感,是流感病毒引起的急性呼吸道感染,也是一种传染性强、传播速度快的疾病.了解引起流感的某些细菌、病毒的生存条件、繁殖习性等对于预防流感的传播有极其重要的意义,某科研团队在培养基中放入一定是某种细菌进行研究.经过2分钟菌落的覆盖面积为248mm ,经过3分钟覆盖面积为264mm ,后期其蔓延速度越来越快;菌落的覆盖面积y (单位:2mm )与经过时间x (单位:min )的关系现有三个函数模型:①x y ka =0k >1a >,②log b y x =(1b >),③y q =(0p >)可供选择.(参考数据:lg20.301≈,lg30.477≈)(1)选出你认为符合实际的函数模型,说明理由,并求出该模型的解析式;(2)在理想状态下,至少经过多少分钟培养基中菌落的覆盖面积能超过2300mm ?(结果保留到整数)【正确答案】(1)答案见解析;(2)至少经过9min 培养基中菌落的覆盖面积能超过2300mm .【分析】(1)根据题意,分析三个函数模型的增长速度快慢,选择x y ka =,并求出解析式;(2)根据题意,4273003x⎛⎫⨯> ⎪⎝⎭,求出x 的取值范围,进而得出结果.【详解】(1)因为x y ka =0k >1a >的增长速度越来越快,log b y x =(1b >)和y q =(0p >)的增长速度越来越慢,所以应选函数模型x y ka =0k >1a >.由题意得234864ka ka ⎧=⎨=⎩,解得4327a k ⎧=⎪⎨⎪=⎩,所以该函数模型为4273xy ⎛⎫=⨯ ⎪⎝⎭(0x ≥);(2)由题意得4273003x ⎛⎫⨯> ⎪⎝⎭,即410039x ⎛⎫> ⎪⎝⎭,所以43100log 9x >,又341001g100221g3220.4779log 8.3684921g2lg320.3010.4771g 3--⨯==≈≈-⨯-.所以至少经过9min 培养基中菌落的覆盖面积能超过2300mm .20.在平面直角坐标系xOy 中,若椭圆22:143x y E +=的左、右焦点分别为1F ,2F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥,直线1AF 与椭圆E 相交于另一点B.(1)求12AF F ∆的周长;(2)在x 轴上任取一点P ,直线AP 与直线4x =相交于点Q ,求OP QP ⋅ 的最小值;(3)设点M 在椭圆E 上,记OAB 与MAB △的面积分别是1S ,2S ,若213S S =,求点M 的坐标.【正确答案】(1)6;(2)4-;(3)()2,0或212,77⎛⎫-- ⎪⎝⎭.【分析】(1)由椭圆方程的性质可求12AF F ∆的周长;(2)设(),0P t ,求出直线AP 方程,解出Q 点坐标,计算OP QP ⋅ ,利用二次函数求出最下值;(3)由题意可知:M 到直线AB 距离2d 是O 到直线AB 距离1d 的3倍,求出2d 的值,则点M 的坐标为与直线AB 平行的直线和椭圆的交点,求出直线方程与椭圆联立可解出点M .【详解】解:(1)由椭圆方程可知.2,1a c ==所以12AF F △的周长为1212226AF AF F F a c =++=+;(2)由椭圆方程得31,2A ⎛⎫ ⎪⎝⎭,设(),0P t ,则直线AP 方程为()321y x t t=--,又4x =,所以直线AP 与4x =的交点为344,21t Q t -⎛⎫⋅ ⎪-⎝⎭,()22,0344,214(2)44t t t OP QP t t t t -⎛⎫--⋅= ⎪-⎝⎭⋅=⋅-=--≥- ,当2t =时,()min 4OP QP ⋅=- (3)若213S S =,设O 到直线AB 距离1d ,M 到直线AB 距离2d ,则2111322AB d AB d ⨯⨯=⨯⨯⨯,即213d d =,31,2A ⎛⎫ ⎪⎝⎭,1(1,0)F -,可得直线AB 方程为()314y x =+,所以135d =,295d =.由题意得,M 点应为与直线AB 平行且距离为95的直线与椭圆的交点,设平行于AB 的直线l 为340x y m -+=,与直线AB 的距离为95,求得6m =-或12,当6m =-时,直线l 为3460x y --=,联立方程:223460143x y x y --=⎧⎪⎨+=⎪⎩,可得27120y y +=,解得()2,0M 或212,77⎛⎫-- ⎪⎝⎭,当12m =时,直线l 为34120x y -+=,联立方程:2234120143x y x y -+=⎧⎪⎨+=⎪⎩可得:2724270y y ++=,∆<0此时方程无解.综上所述,M 点坐标为()2,0或212,77⎛⎫-- ⎪⎝⎭.21.记()(),f x g x ''分别为函数()(),f x g x 的导函数.若存在,满足()()00f x g x =且()()00f x g x ''=,则称0x 为函数()f x 与()g x 的一个“兰亭点”.(1)证明:函数()f x x =与()222g x x x =+-不存在“兰亭点”;(2)若函数()21f x ax =-与()ln g x x =存在“兰亭点”,求实数a 的值;(3)已知函数()()2e ,x bf x x ag x x =-+=.对存在实数0a >,使函数()f x 与()g x 在区间()0,∞+内存在“兰亭点”,求实数b 的取值范围.【正确答案】(1)证明见解析(2)e2(3)()327,00,e ∞⎛⎫-⋃+ ⎪⎝⎭【分析】(1)根据题中“兰亭点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“兰亭点”的定义列两个方程,解方程组可得a 的值;(3)通过构造函数以及结合“兰亭点”的定义列两个方程,再由方程组有解即可求得结果.【详解】(1)函数()()2,22f x x g x x x ==+-,则()()1,22f x g x x '='=+.由()()f x g x =且()()f x g x ⅱ=,得222122x x x x ⎧=+-⎨=+⎩,此方程组无解,因此,()f x 与()g x 不存在“兰亭点”.(2)函数()()21,ln f x ax g x x =-=,则()()12,f x ax g x x''==.设0x 为()f x 与()g x 的“兰亭点”,由()0f x =()0g x 且()0f x '=()0g x ',得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎨=⎩,(*)得01ln 2x =-,即120e x -=,则2121e 22e a -==⎛⎫ ⎪⎝⎭.当e 2a =时,120e x -=满足方程组(*),即0x 为()f x 与()g x 的“兰亭点”.因此,a 的值为e 2.(3)()()()()2e 12,0x b x f x x g x x x -=-='≠',函数()y f x =与()y g x =在区间()0,∞+内存在“兰亭点”,记为x t =,所以()22e e 12tt b t a t b t t t ⎧-+=⎪⎪⎨-⎪-=⎪⎩,解得()3233121e t t t a t t b t ⎧-=⎪-⎪⎨⎪=⎪-⎩,由于0a >,解得01t <<或3t >,而()321e t t b t =-,所以()()2222330(1)1et t t t b t t '-+=>≠-,所以函数()321e t t b t =-在(0,1),(3,)∞+上为增函数,因为0=t 时0b =,1t →时,b →+∞,3t =时,327e b =-,t →+∞时,0b →,所以01t <<时,()0,b ∈+∞;3t >时,327,0e b ⎛⎫∈- ⎪⎝⎭.综上,实数b 的取值范围是()327,00,e ∞⎛⎫-⋃+ ⎪⎝⎭.方法点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.。
2024年高考数学仿真模拟卷(三)(新高考专用)

2024年高考数学仿真模拟卷(三)(新高考专用)(时间:120分钟 满分:150分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2023·北京模拟)已知集合A ={x |-1≤x ≤1},B ={x |0<x ≤2},则A ∪B=( ) A .{x |-1≤x ≤1} B .{x |0<x ≤1} C .{x |0<x ≤2}D .{x |-1≤x ≤2}2.(2023·宁波模拟)设i 为虚数单位,若复数z 满足z i =3-i1-i ,则z 的虚部为( )A .-2B .-1C .1D .23.(2023·青岛模拟)若{a n }为等比数列,则“a 1<a 3<a 5”是“数列{a n }是递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2023·杭州模拟)已知平面向量a =(1,3),|b |=2,且|a -b |=10,则(2a +b )·(a -b )等于( )A .1B .14 C.14 D.105.(2023·长春模拟)安排包括甲、乙在内的4名大学生去3所不同的学校支教,每名大学生只去一个学校,每个学校至少去1名,甲、乙不能安排在同一所学校,则不同的安排方法有( )A .36种B .30种C .24种D .12种 6.(2023·潮州模拟)过圆x 2+y 2=4上一点P 作圆O :x 2+y 2=m 2(m >0)的两条切线,切点分别为A ,B ,若∠APB =π3,则实数m 等于( )A.13B.12C .1D .2 7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),F 为其左焦点,直线y =kx (k >0)与椭圆C交于点A ,B ,且AF ⊥AB .若∠ABF =30°,则椭圆C 的离心率为( ) A.73 B.63 C.76 D.668.(2023·滨州模拟)设a =sin 14,b 4e -1,c =ln 54,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .b >c >aD .c >b >a二、选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求的.全部选对得5分,部分选对得2分,有选错的得0分)9.(2023·岳阳模拟)2022年11月28日,平江-益阳高速公路通车运营,湖南省交通运输厅统计了平益高速2023年1月22日至1月28日的高速公路车流量(单位:万车次),并与2022年12月22日至12月28日比较,得到同比增长率-=⎛⎫ ⎪⎝⎭该月车流量上月同期车流量同比增长率上月同期车流量数据,绘制了如下统计图,则下列结论正确的是( )A .2023年1月22日至1月28日的高速公路车流量的极差为25B .2023年1月22日至1月28日的高速公路车流量的中位数为18C .2023年1月22日至1月28日的高速公路车流量比2022年12月22日至12月28日高速公路车流量大的有4天D .2022年12月25日的高速公路车流量小于20万车次10.(2023·襄阳模拟)A ,B 为随机事件,已知P (A )=0.5,P (B )=0.3,下列结论中正确的是( )A .若A ,B 为互斥事件,则P (A +B )=0.8 B .若A ,B 为互斥事件,则P (A +B )=0.8C .若A ,B 是相互独立事件,P (A +B )=0.65D .若P (B |A )=0.5,则P (B |A )=0.111.(2023·厦门模拟)已知函数f (x ),g (x )的定义域都为R ,g (x )为奇函数,且f (x )+g (x )=2,f (x )+g (x -2)=2,则( ) A .f (0)=0 B .g (1)=0 C.()1ni f i =∑=0D.()1ni g i =∑=012.(2023·黄山模拟)在棱长为2的正四面体ABCD 中,过点C 且与BD 平行的平面α分别与棱AB ,AD 交于点E ,F ,点Q 为线段CD 上的动点,则下列结论正确的是( ) A .AC ⊥EFB .当E ,Q 分别为线段AB ,CD 中点时,CF 与EQ 所成角的余弦值为66C .线段EQ 的最小值为3D .空间四边形BCFE 的周长的最小值为4+3 三、填空题(本大题共4小题,每小题5分,共20分)13.(2023·淮北模拟)6x x ⎛⎝的展开式的常数项是________________.(用数字作答)14.(2023·哈尔滨模拟)在正四棱台ABCD -A 1B 1C 1D 1中,上、下底面边长分别为32,42,该正四棱台的外接球的表面积为100π,则该正四棱台的高为________.15.(2023·淄博模拟)已知函数f (x )=sin ωx -3cos ωx (ω>0)的零点是以π2为公差的等差数列.若f (x )在区间[0,m ]上单调递增,则m 的最大值为________. 16.(2023·蚌埠模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,点M在l 上,点A ,B 在C 上,若A ,B ,F 三点共线,且MF ⊥AB ,△MF A 的外接圆交l 于点M ,P ,△MFB 的外接圆交l 于点M ,Q ,则|MP |·|MQ ||AF |·|BF |=________.四、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)(2023·烟台模拟)已知△ABC 内角A ,B ,C 所对的边分别是a ,b ,c ,b cos C +3c sin B =a +c . (1)求角B 的大小;(2)若△ABC 为钝角三角形,且a -c =2,求△ABC 外接圆半径的取值范围.18.(12分)(2023·淄博模拟)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,过A 1,C 1,B 三点的平面截去长方体的一个角后,得到如图所示的几何体ABCD -A 1C 1D1,且这个几何体的体积为10.(1)求棱A 1A 的长;(2)求平面A 1BC 1和平面BC 1D 夹角的余弦值.19.(12分)(2023·厦门模拟)移动物联网广泛应用于生产制造、公共服务、个人消费等领域.截至2022年底,我国移动物联网连接数达18.45亿户,成为全球主要经济体中首个实现“物超人”的国家.下图是2018-2022年移动物联网连接数W (单位:亿户)与年份代码t 的散点图,其中年份2018-2022对应的t 分别为1~5.(1)根据散点图推断两个变量是否线性相关.计算样本相关系数(精确到0.01),并推断它们的相关程度;(2)①假设变量x 与变量Y 的n 对观测数据为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),两个变量满足一元线性回归模型⎩⎪⎨⎪⎧Y =bx +e ,E (e )=0,D (e )=σ2(随机误差e i =y i -bx i ).请推导:当随机误差平方和Q =21nii e=∑取得最小值时,参数b 的最小二乘估计;②令变量x =t -t ,y =w -w ,则变量x 与变量Y 满足一元线性回归模型⎩⎪⎨⎪⎧Y =bx +e ,E (e )=0,D (e )=σ2,利用①中结论求y 关于x 的经验回归方程,并预测2024年移动物联网连接数.附:样本相关系数()()()()12211niii n niii i t t w w r t t w w ===--=--∑∑∑,()521ii w w =-∑=76.9,()()51ii i tt w w =--∑=27.2,51i i w =∑=60.8,769≈27.7.20.(12分)(2023·邵阳模拟)记S n 为等差数列{a n }的前n 项和,已知a 3=5,S 9=81,数列{b n }满足a 1b 1+a 2b 2+a 3b 3+…+a n b n =(n -1)·3n +1+3. (1)求数列{a n }与数列{b n }的通项公式;(2)若数列{c n }满足c n =⎩⎪⎨⎪⎧b n ,n 为奇数,1a n a n +2,n 为偶数,求{c n }前2n 项和T 2n .21.(12分)(2023·广州模拟)已知圆F 1:x 2+y 2+4x =0,圆F 2:x 2+y 2-4x -12=0,一动圆与圆F 1和圆F 2同时内切. (1)求动圆圆心M 的轨迹方程;(2)设点M 的轨迹为曲线C ,两条互相垂直的直线l 1,l 2相交于点F 2,l 1交曲线C 于M ,N 两点,l 2交圆F 1于P ,Q 两点,求△PQM 与△PQN 的面积之和的取值范围.22.(12分)(2023·盐城模拟)已知函数f (x )=e x -e a (a +ln x ). (1)当a =1时,求f (x )的单调递增区间; (2)若f(x )≥0恒成立,求a 的取值范围.。
2023年全国高考数学模拟试卷(附答案)

2023年全国高考数学模拟试卷一、单选题1.设全集U={1 2 3 4 5 6 7 8} 集合S={1 3 5} T={3 6} 则∁U (S∁T )等于( ) A .∁B .{2 4 7 8}C .{1 3 5 6}D .{2 4 6 8}2.在四边形ABCD 中= +则四边形ABCD 一定是( )A .矩形B .菱形C .正方形D .平行四边形3.已知复数 z =(2+i)(a +2i 3) 在复平面对应的点在第四象限 则实数 a 的取值范围是( ) A .(−∞,−1)B .(4,+∞)C .(−1,4)D .[-1,4]4.在直三棱柱 ABC −A ′B ′C ′ 中 侧棱长为2 底面是边长为2的正三角形 则异面直线 AB ′ 与BC ′ 所成角的余弦值为( ) A .12B .√33C .14D .√555.一个袋子中有5个大小相同的球 其中有3个黑球与2个红球 如果从中任取两个球 则恰好取到两个同色球的概率是( ) A .15B .310C .25D .126.已知 f(x)=√3sin2020x +cos2020x 的最大值为A 若存在实数 x 1 x 2 使得对任意的实数x 总有 f(x 1)≤f(x)≤f(x 2) 成立 则 A|x 1−x 2| 的最小值为( )A .π2020B .π1010C .π505D .π40407.已知函数f(x)是定义在R 上的奇函数 其最小正周期为3 且x∁(-320)时 f(x)=log 2(-3x+1)则f(2011)=( ) A .4B .2C .-2D .log 278.已知函数f(x)={1−x ,0≤x ≤1lnx ,x >1 若f(a)=f(b) 且a ≠b 则bf(a)+af(b)的最大值为( ) A .0 B .(3−ln2)⋅ln2 C .1D .e二、多选题9.下列命题中正确的命题的是()A.已知随机变量服从二项分布B(n,p)若E(x)=30D(x)=20则p=23;B.将一组数据中的每个数据都加上同一个常数后方差恒不变;C.设随机变量ξ服从正态分布N(0,1)若P(ξ>1)=p则P(−1<ξ≤0)=12−P;D.某人在10次射击中击中目标的次数为X X~B(10,0.8)则当x=8时概率最大.10.已知抛物线C:x2=4y的焦点为F准线为l P是抛物线C上第一象限的点|PF|=5直线PF 与抛物线C的另一个交点为Q 则下列选项正确的是()A.点P的坐标为(4 4)B.|QF|=54C.S△OPQ=103D.过点M(x0,−1)作抛物线C的两条切线MA,MB其中A,B为切点则直线AB的方程为:x0x−2y+2=011.已知函数f(x)=e x g(x)=ln x2+12的图象与直线y=m分别交于A、B两点则()A.|AB|的最小值为2+ln2B.∃m使得曲线f(x)在A处的切线平行于曲线g(x)在B处的切线C.函数f(x)−g(x)+m至少存在一个零点D.∃m使得曲线f(x)在点A处的切线也是曲线g(x)的切线12.已知正n边形的边长为a 内切圆的半径为r 外接圆的半径为R 则()A.当n=4时R=√2a B.当n=6时r=√32aC.R=a2sinπ2n D.R+r=a2tanπ2n三、填空题13.某学校有教师300人男学生1500人女学生1200人现用分层抽样的方法从所有师生中抽取一个容量为150人的样本进行某项调查则应抽取的女学生人数为.14.在(2x2﹣√x)6的展开式中含x7的项的系数是.15.函数f(x)=|2x−1|−2lnx的最小值为.16.定义max{a,b}={a,a≥bb,a<b已知函数f(x)=max{(12)x,12x−34}则f(x)最小值为不等式f(x)<2的解集为.四、解答题17.记S n为数列{a n}的前n项和.已知a n>06S n=a n2+3a n−4.(1)求{a n}的通项公式;(2)设b n=a n2+a n+12a n a n+1求数列{b n}的前n项和T n.18.已知数列{a n}的前n项和为S n a1=2n(a n+1−2a n)=4a n−a n+1.(1)证明:{a nn+1}为等比数列;(2)求S n.19.记△ABC的内角A B C的对边分别为a b c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B求C;(2)证明:2a2=b2+c2.20.受突如其来的新冠疫情的影响全国各地学校都推迟2020年的春季开学某学校“停课不停学” 利用云课平台提供免费线上课程该学校为了解学生对线上课程的满意程度随机抽取了100名学生对该线上课程评分、其频率分布直方图如图.(1)求图中a的值;(2)求评分的中位数;(3)以频率当作概率若采用分层抽样的方法从样本评分在[60,70)和[90,100]内的学生中共抽取5人进行测试来检验他们的网课学习效果再从中选取2人进行跟踪分析求这2人中至少一人评分在[60,70)内的概率.21.已知椭圆与双曲线x 22−y2=1有相同的焦点坐标且点(√3,12)在椭圆上.(1)求椭圆的标准方程;(2)设A、B分别是椭圆的左、右顶点动点M满足MB⊥AB垂足为B连接AM交椭圆于点P(异于A)则是否存在定点T使得以线段MP为直径的圆恒过直线BP与MT的交点Q若存在求出点T的坐标;若不存在请说明理由.22.已知函数f(x)=e x(x−2),g(x)=x−lnx.(1)求函数y=f(x)+g(x)的最小值;(2)设函数ℎ(x)=f(x)−ag(x)(a≠0)讨论函数ℎ(x)的零点个数.答案解析部分1.【答案】B 2.【答案】D 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】B 7.【答案】C 8.【答案】D 9.【答案】B,C,D 10.【答案】A,B,D 11.【答案】A,B,D 12.【答案】B,D 13.【答案】60 14.【答案】240 15.【答案】116.【答案】14;(−1,112)17.【答案】(1)解:当 n =1 时 6S 1=a 12+3a 1−4 所以 a 1=4 或 −1 (不合 舍去). 因为 6S n =a n 2+3a n −4① 所以当 n ⩾2 时 6S n−1=a n−12+3a n−1−4② 由①-②得 6a n =a n 2+3a n −a n−12−3a n−1所以 (a n +a n−1)(a n −a n−1−3)=0 . 又 a n >0 所以 a n −a n−1=3 .因此 {a n } 是首项为4 公差为3的等差数列. 故 a n =4+3(n −1)=3n +1 .(2)解:由(1)得 b n =(3n+1)2+(3n+4)2(3n+1)(3n+4)=2+33n+1−33n+4所以 T n =2+34−37+2+37−310+⋯+2+33n+1−33n+4=2n +(34−37+37−310+⋯+33n +1−33n +4)=2n +9n4(3n +4)18.【答案】(1)证明:∵n(a n+1−2a n )=4a n −a n+1∴na n+1−2na n =4a n −a n+1 即(n +1)a n+1=2⋅a n (n +2)∴a n+1n+2=2⋅a nn+1 故{a nn+1}为等比数列. (2)解:由(1)知 a nn+1=1×2n−1⇒a n =(n +1)⋅2n−1 S n =2×20+3×2+4×22⋅⋅⋅+(n +1)⋅2n−1 2S n =2×21+3×22+4×23⋅⋅⋅+(n +1)⋅2n∴−S n =2+2+22+⋯+2n−1−(n +1)⋅2n=2+2−2n−1×21−2−(n +1)⋅2n=−n ⋅2n∴S n =n ⋅2n19.【答案】(1)解:∵sinCsin(A −B)=sinBsin(C −A)且 A =2B∴sinCsinB =sinBsin(C −A) ∵sinB >0∴sinC =sin(C −A)∴C=C-A (舍)或C+(C-A )=π 即:2C-A=π又∵A+B+C=π A=2B ∴C= 5π8(2)证明:由 sinCsin(A −B)=sinBsin(C −A) 可得sinC(sinAcosB −cosAsinB)=sinB(sinCcosA −cosCsinA) 再由正弦定理可得 accosB −bccosA =bccosA −abcosC 然后根据余弦定理可知12(a 2+c 2−b 2)−12(b 2+c 2−a 2)=12(b 2+c 2−a 2)−12(a 2+b 2−c 2) 化简得: 2a 2=b 2+c 2 故原等式成立.20.【答案】(1)解:由题意 (0.005+0.010+0.030+a +0.015)×10=1所以 a =0.040 ;(2)解:由频率分布直方图可得评分的中位数在 [80,90) 内 设评分的中位数为x则 (0.005+0.010+0.030)×10+0.040×(x −80)=0.5 解得 x =81.25 所以评分的中位数为81.25;(3)解:由题知评分在 [60,70) 和 [90,100] 内的频率分别为0.1和0.15 则抽取的5人中 评分在 [60,70) 内的为2人 评分在 [90,100] 的有3人记评分在 [90,100] 内的3位学生为a b c 评分在 [60,70) 内的2位学生为D E 则从5人中任选2人的所有可能结果为:(a,b) (a,c) (a,D) (a,E) (b,c) (b,D) (b,E) (c,D) (c,E) (D,E) 共10种;其中 这2人中至少一人评分在 [60,70) 内可能结果为:(a,D) (a,E) (b,D) (b,E) (c,D) (c,E) (D,E) 共7种;所以这2人中至少一人评分在 [60,70) 的概率 P =710.21.【答案】(1)解:因为双曲线 x 22−y 2=1 的焦点坐标为 (±√3,0)所以设所求的椭圆的方程为 x 2a 2+y 2b2=1 ( a >b >0 )则 {a 2=b 2+33a 2+14b 2=1 解得 a 2=4,b 2=1 所以椭圆的标准方程是 x 24+y 2=1(2)解:设直线AP 的方程是 y =k(x +2) ( k ≠0 )将其与 x 24+y 2=1 联立 消去y 得 (4k 2+1)x 2+16k 2x +16k 2−4=0 设 P(x 1,y 1)则 −2⋅x 1=16k 2−44k 2+1所以 x 1=2−8k 24k 2+1,y 1=4k 4k 2+1 所以 P(2−8k 24k 2+1,4k4k 2+1) 易知 M(2,4k)设存在点 T(x 0,y 0) 使得以MP 为直径的圆恒过直线BP 、MT 的交点Q ⇔MT ⊥BP ⇔4k−y 02−x 0⋅4k−16k2=−1 对于任意 k ≠0 成立 即 4k(1−x 0)+y 0=0 对于任意 k ≠0 成立 x 0=1,y 0=0 所以存在 T(1,0) 符合题意.22.【答案】(1)解:令 φ(x)=f(x)+g(x)φ′(x)=e x(x−1)+(1−1x)=(x−1)(e x+1x)令φ′(x)=0,x=1φ′(x)>0,x>1,φ′(x)<0,0<x<1所以φ(x)的单调递增区间是(1,+∞)单调递减区间是(0,1)所以x=1时φ(x)取得极小值也是最小值所以φ(x)min=φ(1)=1−e(2)解:g′(x)=1−1x=x−1x令g′(x)=0,x=1g′(x)<0,0<x<1,g′(x)>0,x>1 g(x)的递减区间是(0,1)递增区间是(1,+∞)所以g(x)的极小值为g(1)也是最小值g(x)≥g(1)=1>0.所以ℎ(x)=0⇔a=e x(x−2)x−lnx=s(x)因为s′(x)=e x(x−1)(x−lnx−1+2x)(x−lnx)2令k(x)=x−lnx−1+2x⇒k′(x)=(x+1)(x−2)x2令k′(x)=0,x=2k′(x)<0,0<x<2,k′(x)>0,x>2k(x)的递减区间是(0,2)递增区间是(2,+∞)所以k(x)的极小值为k(2)也是最小值所以k(x)≥k(2)=2−ln2>0所以s(x)的递减区间是(0,1)递增区间是(1,+∞)又因为x→0+,s(x)→0,x→+∞,s(x)→+∞且s(1)=−e 所以当a<−e时ℎ(x)有0个零点;当a=−e或a>0时ℎ(x)有1个零点;当−e<a<0时ℎ(x)有2个零点.。
2023-2024学年云南省区域联考高考数学模拟试题(三模)含解析

2023-2024学年云南省区域联考高考数学模拟试题(三模)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若()i1i z a a =+∈-R 是纯虚数,则=a ()A.12-B.12C.1- D.1【正确答案】B【分析】化简复数z ,然后根据实部为0可得.【详解】因为i i(1+i)11i 1i (1i)(1+i)22z a a a =+=+=-+--是纯虚数,所以102a -=,得12a =.故选:B2.设集合{}2|4A x x x =∈≤N ,{|B x y ==,则R A B = ð()A.[]1,2- B.[]0,2 C.{}0,1 D.{}0,1,2【正确答案】C【分析】利用不等式的解法化简集合A ,求解函数定义域求出集合B ,再利用集合的补集和交集运算即可得出结论.【详解】由24x x ≤,即240x x -≤,解得04x ≤≤,所以{}2|4{0,1,2,3,4}A x x x =∈≤=N ,又{|{|2}B x y x x ===≥,{|2}B x x ∴=<R ð,{0,1}A B ∴=R ð,故选:C .3.近期,我国多地纷纷进入“甲流”高发期,某地A 、B 两所医院因发热就诊的患者中分别有37.25%、18%被确诊为“甲流”感染,且到A 医院就诊的发热患者人数是到B 医院的四倍.现从到这两所医院就诊的发热患者中任选一人,则此人未感染“甲流”的概率是()A.0.785B.0.666C.0.592D.0.235【正确答案】B【分析】设到A 医院就诊的发热患者人数为4m ()0m >人,到B 医院就诊的发热患者人数为m 人,利用古典概型的概率公式计算可得.【详解】设到A 医院就诊的发热患者人数为4m ()0m >人,到B 医院就诊的发热患者人数为m 人,因为A 、B 两所医院因发热就诊的患者中分别有37.25%、18%被确诊为“甲流”感染,所以从到这两所医院就诊的发热患者中任选一人,则此人未感染“甲流”的概率()()137.25%4118%0.6664m m P m m-⨯+-==+.故选:B4.若向量()()1,2,3,4a b =-=- ,则a 在b上的投影向量为()A.3344,2525⎛⎫-⎪⎝⎭B.3344,2525⎛⎫-⎪⎝⎭C.()33,44 D.25-【正确答案】A【分析】根据题意,结合a 在b上的投影向量为a b bbb⋅⋅ ,准确运算,即可求解.【详解】由向量()()1,2,3,4a b =-=- ,可得()()1,23,411a b ⋅=-⋅-=-且5a b ==,所以a 在b上的投影向量为()11133443,4(,)552525a b b bb⋅-⋅=⨯⨯-=-.故选:A.5.在3世纪,古希腊数学家帕普斯在他的著作《数学汇编》中完善了欧几里得关于圆锥曲线的统一定义.他指出,到定点的距离与到定直线的距离的比是常数e 的点的轨迹叫做圆锥曲线;当01e <<是地,轨迹为椭圆;当1e =时,轨迹为抛物线;当1e >时,轨迹为双曲线.现有方程()2222144k x y x y x ++=+-+表示的曲线是双曲线,则k 的取值范围为()A.10,5⎛⎫ ⎪⎝⎭B.1,5⎛⎫+∞ ⎪⎝⎭C.()5,+∞ D.()0,5【正确答案】B=1>,即可求解.【详解】由方程()2222144k x y x y x++=+-+,可得()22221(2)k x y x y++=-+,显然0k>21y++=,==,=,可得动点(,)P x y到定点(2,0)和到定直线210x y++=,1>,解得15k>,即实数k的取值范围是1(,)5+∞.故选:B.6.如图,已知半径为r、母线长为l的圆锥SO的侧面展开图是半圆,在其内部作一个半径为0r、母线长为0l的内接圆柱PO(圆柱的下底面在圆锥的底面上,上底面的圆在圆锥的侧面上),若圆柱PO的侧面积与圆锥SO的侧面积之比为4,则0ll=()A.433B.233C. D.【正确答案】A【分析】根据题意,求得2l r =,圆锥的高SO ==,进而得到002ππ4r l rl =,再由SPB SOA ∽,求得00)l r r =-,进而得到032l r =,即可求解.【详解】由圆锥SO 的侧面展开图是半圆,可得π2πl r =,即2l r =,所以圆锥的高SO ==,因为圆柱PO 的侧面积与圆锥SO 的侧面积之比为34,可得002ππ4r l rl =,所以2003384r l rl r ==,又由SPB SOA ∽r r =,所以00)l r r =-,代入上式,可得001,22r r l r ==,所以043332l l ==.故选:A.7.设函数()f x 在R 上的导数存在,且()()1xf x f x +>',则当(),x a b ∈时,()A.()()af b bf a <B.()()xf x b bf b x +<+C.()()xf x a af a x +<+D.()()af b bf a >【正确答案】B【分析】依题意令()()g x xf x x =-,求出函数的导函数,即可得到()g x 在R 上单调递增,即可判断.【详解】因为()()1xf x f x +>',令()()g x xf x x =-,则()()()10g x f x xf x ''=+->,所以()g x 在R 上单调递增,当(),x a b ∈时,()()()g a g x g b <<,即()()()af a a xf x x bf b b -<-<-,所以()()xf x a af a x +>+且()()xf x b bf b x +<+.故选:B8.若ln1.5,tan 0.5,1a b c ===,则()A.c a b>> B.b c a>> C.a b c>> D.c b a>>【正确答案】D【分析】构造函数()tan f x x x =-并利用其单调性得出tan 0.50.5>,再构造函数()()ln 1h x x x =+-并利用其单调性得出b a >;构造函数()πe 1tan 04x g x x x ⎛⎫=--≤<⎪⎝⎭通过单调性可得到c b >,从而得到结果.【详解】设()tan f x x x =-,01x <<,则()2110cos f x x'=->,即当(0,1)x ∈时,()0f x ¢>,∴()f x 在(0,1)上单调递增,∴()()00f x f >=,∴tan 0.50.50->,即tan 0.50.5>,设函数()()ln 1h x x x =+-,()0,x ∈+∞,则()1111x h x x x'=-=-++,当()0,x ∈+∞时,()0h x '<,所以()h x 在()0,∞+上单调递减,所以()()0.5ln1.50.500=-<=h h ,所以ln1.50.5<,所以ln1.5tan 0.5<,所以b a >;设函数()πe 1tan 04xg x x x ⎛⎫=--≤< ⎪⎝⎭,则()e cos cos sin π0cos 4--⎛⎫'=≤< ⎪⎝⎭x x x x g x x x ,令()e cos cos sin xh x x x x =--,()()()()sin cos e sin cos e 1cos sin x x h x x x x x x x =-++-=--',当π04x <<时,()0h x '>,所以()h x 单调递增,而()00h =,所以()0h x ≥,又cos 0x >在π04x <<成立,所以()0g x '>,所以()g x 在π04x <<上单调递增,因为()00g =,所以102g ⎛⎫> ⎪⎝⎭1tan 0.5->,所以c b >,综上,c b a >>.故选:D.思路点睛:构造函数是基本的解题思路,因此观察题目所给的数的结构特点,以及数与数之间的内在联系,合理构造函数,利用导数判断单调性是解题的关键.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求的.全部选对的得5分,部分选对的得2分,有选错的得0分)9.为了解学生的身体状况,某校随机抽取了100名学生测量体重,经统计,这些学生的体重数据(单位:千克)全部介于45至70之间,将数据整理得到如图所示的频率分布直方图,则()A.频率分布直方图中a 的值为0.02B.这100名学生中体重低于60千克的人数为80C.估计这100名学生体重的众数为57.5D.据此可以估计该校学生体重的75%分位数约为61.25【正确答案】ACD【分析】根据频率分布直方图中所有的小矩形的面积之和为1得到方程,求出a 的值,再根据频率分布直方图一一分析即可.【详解】对于A :由()0.010.060.070.0451a ++++⨯=,解得0.02a =,故A 正确;对于B :这100名学生中体重低于60千克的人数为()0.010.060.07510070++⨯⨯=人,故B 错误;对于C :估计这100名学生体重的众数为556057.52+=,故C 正确;对于D :由()0.010.060.0750.70.75++⨯=<,所以该校学生体重的75%分位数位于[)60,65内,设75%分位数为x ,则()0.7600.040.75x +-⨯=,解得61.25x =,故估计该校学生体重的75%分位数约为61.25,即D 正确;故选:ACD10.下列说法错误的是()A.若直线a 不平行于平面α,a α⊄,则α内不存在与a 平行的直线B.若平面α⊥平面1α,平面α 平面1l α=,1l l ⊥,则11l α⊥C.设,,l m n 为直线,,m n 在平面α内,则“l α⊥”是“l m ⊥且l n ⊥”的充分不必要条件D.若平面α⊥平面1α,平面β⊥平面1β,则平面α与平面β所成的二面角和平面1α与平面1β所成的二面角相等或互补【正确答案】BD【分析】可根据线面平行的判定定理可判断A ;根据面面垂直的性质可判断B ;根据线面垂直的判定定理及性质可判断C ;根据11//αβ,αβ⊥时的特殊情况进行判断.【详解】选项A ,若存在直线,则由直线和平面平行的判定定理知直线a 与平面α平行,与条件相矛盾,故选项A 正确;选项B ,由面面垂直的性质可知,若1l ⊂平面α,则11l α⊥,但题目中不确定1l 位置,可能出现11l α⊂,故选项B 错误;选项C ,根据线面垂直的性质可知l α⊥,可得到l m ⊥且l n ⊥,故满足充分性;当直线,m n 不相交时,由线面垂直的判定定理知:l m ⊥且l n ⊥时,得不到l α⊥,故不满足必要性,故选项C 正确;选项D ,当11//αβ,αβ⊥时,可满足题设条件,此时平面α与平面β所成的二面角为90︒,平面1α与平面1β所成的二面角为0︒,故选项D 错误.故选:BD.11.在平面直角坐标系xOy 中,已知任意角θ以坐标原点O 为顶点,x 轴的非负半轴为始边,若终边经过点()00,P x y ,且()0OP r r =>,定义()00si cos 2y rθ=,称“()si cos θ”为“正余弦函数”.对于“正余弦函数()()si cos f x x =”,下列结论中正确的是()A.将()f x 图象向右平移π3个单位长度,得到的图象关于原点对称B.()f x 在区间[]2π,2π-上的所有零点之和为2π3C.()f x 在区间π3π,34⎡⎤⎢⎥⎣⎦上单调递减D.()f x 在区间()0,7π上有且仅有5个极大值点【正确答案】ABC【分析】根据三角函数的定义及“正余弦函数”的定义求出()f x 的解析式,在根据正弦函数的性质一一分析即可.【详解】因为0cos x r x =,0sin y r x =,所以()()00sin cos si cos 22y r x xf x x r r+===1πsin cos sin 223x x x ⎛⎫=+=+ ⎪⎝⎭,对于A :将()f x 图象向右平移π3个单位长度得到ππsin sin 33y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,sin y x =为奇函数,函数图象关于原点对称,故A 正确;对于B :令()πsin 03f x x ⎛⎫=+= ⎪⎝⎭,即ππ,Z 3x k k +=∈,解得ππ,Z 3x k k =-+∈,又[]2π,2πx ∈-,所以4π3x =-或π3x =-或2π3x =或5π3x =,所以()f x 在区间[]2π,2π-上的所有零点之和为4ππ2π5π2π33333⎛⎫-+-++= ⎪⎝⎭,故B 正确;对于C :由π3π,34x ⎡⎤∈⎢⎥⎣⎦,所以π2π131,332πx ⎡⎤+∈⎢⎥⎣⎦,所以()f x 在π3π,34⎡⎤⎢⎥⎣⎦上单调递减,故C 正确;对于D :由()0,7πx ∈,则ππ22π,333x ⎛⎫+∈ ⎪⎝⎭,令ππ2π,Z 32x k k +=+∈,解得π2π,Z 6x k k =+∈,所以()f x 在区间()0,7π上的极大值点有π6,13π6,25π6,37π6共4个,故D 错误;故选:ABC12.在棱长为1的正方体1111ABCD A B C D -中,E ,F 分别为AB ,BC 的中点,则()A.异面直线1DD 与1B F 所成角的正切值为13B.点P 为正方形1111D C B A 内一点,当//DP 平面1B EF 时,DP的最小值为4C.过点1D ,E ,F 的平面截正方体1111ABCD A B C D -22+D.当三棱锥1B BEF -的所有顶点都在球O 的表面上时,球O 的表面积为3π【正确答案】BC【分析】根据11//DD BB 可得1∠BB F 即为异面直线1DD 与1B F 所成的角,即可判断A ,作出截面,找到P 的轨迹,即可求出DP 的最小值,从而判断B ,作出截面,再利用空间向量确定点的位置,从而求出线段的长度,即可得到截面周长,从而判断C ,确定球心及半径,即可求出外接球的表面积,从而判断D.【详解】对于A 选项,11//DD BB ,∴在1Rt BB F 中1∠BB F 即为异面直线1DD 与1B F 所成的角,11112tan 12BF BB F B B ∴∠===,∴异面直线1DD 与1B F 所成的角的正切值为12.故A 错误;对于B 选项,取11A D 的中点11,M D C 的中点N ,取AD 的中点S ,连接MN ,DM ,1,,DN A S SF ,1111//,,//SF AB A B SF AB A B ==∴11A B FS 为平行四边形,11//SA B F ∴,1//A S DM ,1//MD B F ∴,同理可得1//DN B E ,又DM ⊄ 面1B EF ,1B F ⊂面1B EF ,DN ⊄面1B EF ,1B E ⊂面1B EF ,DM ∴//面1B EF ,//DN 面1B EF ,又DM DN D ⋂= ,DM DN ⊂,面DMN ,∴面//DMN 面1B EF ,又//DP 面1B EF ,P ∈面1111D C B A ,P ∴轨迹为线段MN ,∴在DMN 中,过D 作DP MN ⊥,此时DP 取得最小值,在1Rt DD M △中,112D M =,11=D D ,52DM ∴=,在1Rt DD N 中,112D N =,11=D D ,52DN ∴=,在1Rt MD N 中,112D N =,112D M =,22MN =∴,∴如图,在Rt DPN 中,223224MN DP DN ⎛⎫=-= ⎪⎝⎭.故B 项正确;对于C 选项,延长EF 交DA 的延长线于点G ,交DC 的延长线于点H ,连接1D H 交1CC 于点N ,连接1D G 交1AA 于点M ,再连接ME 、NF ,则过点1D ,E ,F 的平面截正方体1111ABCD A B C D -所得的截面图形为五边形1D MEFN ,平面11//AA D D 平面11BB C C ,截面1D MEFN 与平面11AA D D 和平面11BB C C 分别交于1D M 与FN ,1//D M NF ∴,同理可得1//D N ME ,如图以D 为原点,分别以DA 、DC 、1DD方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系D xyz -,设AM m =,CN n =,则()1,0,M m ,()0,1,N n ,11,,02E ⎛⎫ ⎪⎝⎭,1,1,02F ⎛⎫⎪⎝⎭,()10,0,1D ,10,,2ME m ⎛⎫∴=- ⎪⎝⎭ ,()10,1,1D N n =- ,()11,0,1D M m =- ,1,0,2NF n ⎛⎫=- ⎪⎝⎭,1//D M NF ,1//D N ME ,即1//D M NF 且1//D N ME,()()112112m n n m ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,解得1313m n ⎧=⎪⎪⎨⎪=⎪⎩,13AM ∴=,13CN =,123A M ∴=,123C N =,∴在11Rt D A M 中,111D A =,123A M =,1133D M ∴=,同理:1133D N =,在Rt MAE △中,13AM =,12AE =,6ME ∴=,同理:6FN =在Rt EBF △中,12BE BF ==,22EF ∴=,11131322223622D M D N ME FN EF ∴++++=⨯+⨯+=+,即过点1D E F 、、的平面截正方体1111ABCD A B C D -所得的截面周长为22+.故C 正确;对于D 选项,如图所示,取EF 的中点1O ,则111O E O F O B ==,过1O 作11//OO BB ,且使得111122OO BB ==,则O 为三棱锥1B BEF -的外接球的球心,所以OE 为外接球的半径,在Rt EBF △中,22EF =,2222221183224EF R OE OO ⎛⎫⎛⎫⎛⎫∴==+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23π4π2S R ∴==球.故D 项错误,故选:BC .关键点睛:解答本题的关键是结合空间中点、线、面的位置关系确定点的位置,从而求出线段最小值及截面周长.三、填空题(本大题共4小题,每小题5分,共20分)13.已知n S 为等差数列{}n a 的前n 项和.若160S >,790a a +<,则当n S 取最小值时,n 的值为________.【正确答案】8【分析】根据等差数列求和公式及下标和性质得到80a <,90a >,即可判断.【详解】因为()()()1161691618016882a a a S a a a +==+=>+,所以890a a +>,又79820a a a +=<,所以90a >,则980d a a =->所以{}n a 为递增的等差数列,且12890a a a a <<<<<< ,所以()8min n S S =,即当n S 取最小值时,n 的值为8.故814.某产品的质量指标服从正态分布()250,N σ.质量指标介于47至53之间的产品为合格品,为使这种产品的合格率达到99.74%,则需调整生产技能,使得σ至多为________.(参考数据:若()2,X N μσ,则()30.9974X μσP -<≈)【正确答案】1【分析】根据题意以及正态曲线的特征可知,()()503,50347,53σσ-+⊆,然后列不等式组可解.【详解】依题可知,50μ=,又()30.9974X μσP -<≈,所以,要使合格率达到99.74%,则()()503,50347,53σσ-+⊆,所以5034750353σσ-≥⎧⎨+≤⎩,解得:1σ≤,故σ至多为1.故1.15.已知抛物线2x y =上有一点)P,过点P 作圆()2221x y +-=的两条切线分别交抛物线于,M N 两点(异于点P ),则直线MN 的斜率为________.【正确答案】【分析】表示出直线,PM PN 方程,根据与圆相切可得斜率关系,再联立直线MN 与抛物线方程得出坐标关系即可求出斜率.【详解】设221122(,),(,)M x x N x x ,直线PM 的方程为:13(y k x -=-,直线PN 的方程为:23(y k x -=-,因为直线,PM PN1==,所以2211220,0,k k -=-=所以12,k k是方程20k =的两根,所以12k k +=,由方程组123(y k x y x⎧-=⎪⎨=⎪⎩得:21130x k x -+-=,所以11,x k +=同理可得:22,x k +=所以直线MN的斜率为2221211221x x x x k k x x -=+=+-=-故答案为.16.设函数()e ,1xf x x ax a =+>-,若存在唯一整数0x ,使得()00f x <,则a 的取值范围是________.【正确答案】211,e e ⎛⎤--⎥⎝⎦【分析】由题意转化为存在唯一的整数0x 使得()0g x 在直线y ax =-的下方,求得()(1)e x g x x '=+,利用导数求得函数的单调区间和最小值()11eg -=-,以及()00g =和()222eg -=-,根据直线y ax =-恒经过原点(0,0)O ,结合图象,列出方程组,即可求解.【详解】由函数()e ,1xf x x ax a =+>-,设()e xg x x =和,1y ax a =->-因为存在唯一整数0x ,使得()00f x <,所以存在唯一的整数0x 使得()0g x 在直线y ax =-的下方,如图所示,因为()(1)e xg x x '=+,当1x <-时,()0g x '<;当1x >-时,()0g x '>,所以()g x 在(,1)-∞-上单调递减,在(1,)-+∞单调递增,当=1x -时,()g x 取得极小值,也为最小值()()min 11eg x g =-=-,且当0x =时,()00g =,当2x =-时,()222e g -=-,又由直线y ax =-恒经过原点(0,0)O ,斜率为a -(其中1a >-),所以()11e a g >-=-且()2222e g a -=-≥,解得211e e a -<≤-,所以实数a 的取值范围是211,e e ⎛⎤-- ⎥⎝⎦.故211,e e ⎛⎤--⎥⎝⎦四、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.已知数列{}n a 有递推关系*1784N ,343n n n n a a n a a +-⎛⎫=∈≠ ⎪-⎝⎭,16929a =,记(Z)n n a b k k =-∈,若数列{}n b 的递推式形如1nn n rb b pb q+=+(,,R p q r ∈且,0p r ≠),也即分子中不再含有常数项.(1)求实数k 的值;(2)证明:135n b ⎧⎫-⎨⎬⎩⎭为等比数列,并求其首项和公比.【正确答案】(1)1-(2)证明见解析,首项为18,公比为14-【分析】(1)根据n n a b k =-以及17834n n n a a a +-=-推出21(73)3118334n n n k b k k b b k ++---=--,结合已知1nn n rb b pb q+=+,比较系数可求出结果;(2)由(1)得1,4,3,1k r p q =-===-,1431n n n b b b +=-,推出1135n b +-=113(45n b --,根据等比数列定义可证结论正确.【小问1详解】因为n n a b k =-,所以n n b a k =+,117834n n n n a b a k k a ++-=+=+-7()83()4n n b k k b k --=+--2778334334n n n b k kb k kb k --+--=--2(73)3118334n n k b k k b k +---=--,由已知得1nn n rb b pb q+=+,所以23118073334k k k r p k q ⎧---=⎪+=⎪⎨=⎪⎪--=⎩,解得1431k r p q =-⎧⎪=⎪⎨=⎪⎪=-⎩或83134k r p q ⎧=-⎪⎪⎪=-⎨⎪=⎪=⎪⎩,因为Z k ∈,所以1k =-.【小问2详解】由(1)知,1,4,3,1k r p q =-===-,1431n n n b b b +=-,11694012929b a k =+=-=,131131444n n n n b b b b +-==-,1135n b +-=31313113(44542045n n n b b b --=-+=--,因为1132931054058b -=-=≠,所以数列135n b ⎧⎫-⎨⎬⎩⎭为等比数列,首项为18,公比为14-.18.已知函数()()2*12cos 2N 2f x x x ωωω=-+∈在4ππ,3⎛⎫⎪⎝⎭上单调,且π5π412f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的解析式;(2)若钝角ABC 的内角,,A B C 的对边分别是,,a b c ,且2a =,12A f ⎛⎫=⎪⎝⎭,求ABC 周长的最大值.【正确答案】(1)()π2sin 216f x x ⎛⎫=-+ ⎪⎝⎭(2)2+-【分析】(1)利用二倍角公式及辅助角公式将函数化简,根据单调性求出ω的取值范围,再根据对称性求出ω的值,即可得到函数解析式;(2)首先求出A ,再利用余弦定理及基本不等式求出b c +的最大值,即可得解.【小问1详解】因为()212cos 22f x x x ωω=-+cos 1x x ωω=-+1π2sin cos 12sin 1226x x x ωωω⎛⎫⎛⎫=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为()f x 在4ππ,3⎛⎫ ⎪⎝⎭上单调,且*N ω∈,所以12π4ππ23ω⨯≥-,解得03ω<≤,又π5π412f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,所以π5ππ41223x +==为()f x 的一条对称轴,所以ππππ,Z 362k k ω-=+∈,解得23,Z k k ω=+∈,所以2ω=,所以()π2sin 216f x x ⎛⎫=-+ ⎪⎝⎭.【小问2详解】因为π2sin 1126A f A ⎛⎫⎛⎫=-+=+⎪ ⎪⎝⎭⎝⎭,即πsin 62A ⎛⎫-= ⎪⎝⎭,又0πA <<,所以ππ5π666A -<-<,所以ππ63A -=或π2π63A -=,解得π2A =或5π6A =,因为ABC 为钝角三角形,所以5π6A =,由余弦定理2222cos a b c bc A =+-,即224b c =++,即()((224222b c b c bc +⎛⎫+-=-≤ ⎪⎝⎭,当且仅当b c =时取等号,所以b c +≤-2b c a ++≤+,即ABC 周长的最大值为2+.19.某商场在周年庆活动期间为回馈新老顾客,采用抽奖的形式领取购物卡.该商场在一个纸箱里放15个小球(除颜色外其余均相同):3个红球、5个黄球和7个白球,每个顾客不放回地从中拿3次,每次拿1个球,每拿到一个红球获得一张A 类购物卡,每拿到一个黄球获得一张B 类购物卡,每拿到一个白球获得一张C 类购物卡.(1)已知某顾客在3次中只有1次抽到白球的条件下,求至多有1次抽到红球的概率;(2)设拿到红球的次数为X ,求X 的分布列和数学期望.【正确答案】(1)2528(2)分布列见解析,()273455E X =【分析】(1)利用条件概率及古典概型的概率公式计算可得;(2)依题意X 的可能取值为0,1,2,3,求出所对应的概率,即可得到分布列与数学期望.【小问1详解】设事件A :在3次中只有1次拿到白球,事件B :在3次中至多1次拿到红球,则事件AB :在3次中只有1次拿到白球,其它两次至多1次拿到红球,所以()1278315C C 28C 65P A ==,()1111273575315C C C C C 5C 13P AB +==,所以()()()25|28P AB P B A P A ==.【小问2详解】依题意拿到红球的次数为X 的可能取值为0,1,2,3,所以()312315C 440C 91P X ===,()12312315C C 1981C 455P X ===,()21312315C C 362C 455P X ===,()33315C 13C 455P X ===,所以X 的分布列为:X0123P4491198455364551455所以()44198361273012391455455455455E X =⨯+⨯+⨯+⨯=.20.如图,在三棱台111ABC A B C -中,1118,5,4BC AB AC B C CC =====,,M O 分别为11B C ,BC 的中点,侧面11BCC B 为等腰梯形.(1)证明:平面ABC ⊥平面AOM ;(2)记二面角1A BC C --的大小为π6,求直线1BB 与平面11AAC C 所成角的正弦值.【正确答案】(1)证明见解析(2)33737【分析】(1)根据线面垂直的判定定理证明BC ⊥平面AOM ,再根据面面垂直的判定定理可证结论成立;(2)在平面AOM 内,作ON OA ⊥,交AM 的延长线于N ,可证ON ⊥平面ABC ,以O 为原点,,,OB OA ON 分别为,,x y z 轴建立空间直角坐标系,根据线面角的向量公式可求出结果.【小问1详解】因为AB AC =,O 为BC 的中点,所以OA BC ⊥,因为侧面11BCC B 为等腰梯形,,M O 分别为11B C ,BC 的中点,所以OM BC ⊥,因为OA OM O ⋂=,,OA OM ⊂平面AOM ,所以BC ⊥平面AOM ,因为BC ⊂平面ABC ,所以平面ABC ⊥平面AOM .【小问2详解】在平面AOM 内,作ON OA ⊥,交AM 的延长线于N ,因为平面ABC ⊥平面AOM ,ON ⊂平面AOM ,平面AOM 平面ABC OA =,所以ON ⊥平面ABC ,以O 为原点,,,OB OA ON 分别为,,x y z 轴建立空间直角坐标系:因为OA BC ⊥,OM BC ⊥,OA ⊂平面ABC ,OM ⊂平面11BCC B ,所以AOM ∠是二面角1A BC C --的平面角,则π6AOM ∠=,π3MON ∠=,因为5AB AC ==,8BC =,所以3OA =,所以(0,3,0)A ,(4,0,0)B ,(4,0,0)C -,在等腰梯形11BCC B 中,8BC =,1114B C CC ==,所以16423OM =-=,31(0,,)22M,即M,1(C -,1B ,所以(1BB =- ,(4,3,0)CA =,1CC = ,设平面11AAC C 的一个法向量为(,,)n x y z =,则1430230n CA x y n CC x y ⎧⋅=+=⎪⎨⋅=++=⎪⎩ ,取3x =,得4y =-,z =,(3,4,n =- ,所以直线1BB 与平面11AAC C 所成角的正弦值为11||||||n BB n BB ⋅⋅=37=.21.如图,已知椭圆()2222:10x y a b a bΓ+=>>的上、下顶点为()()0,1,0,1M N -,右顶点为P,离心率为2,直线x a =和y b =相交于点A ,过N 作直线交x 轴的正半轴于B 点,交椭圆于C 点,连接MC 交AP 于点D.(1)求Γ的方程;(2)求证.OB ADBP DP=【正确答案】(1)2214x y +=(2)证明见解析【分析】(1)依题意得到1b =、32c e a ==,从而求出a 、b ,即可得解;(2)依题意0NC k >,0MC k <,设直线:NC 11y k x =-,直线:MC 21y k x =+,联立直线方程求出C 点坐标,在根据C 在椭圆上得到1214k k =-,在分别求出OB BP 、AD DP ,结合1214k k =-化简即可得证.【小问1详解】依题意可得1b =,32c e a ==,又222c a b =-,解得21a b c ⎧=⎪=⎨⎪=⎩,所以Γ的方程为2214x y +=.【小问2详解】在椭圆2214x y +=中()0,1M ,()0,1N -,所以0NC k >,0MC k <,设直线:NC 11y k x =-(10k >),直线:MC 21y k x =+(20k <),因为直线NC 与直线MC 相交于点C ,由1211y k x y k x =-⎧⎨=+⎩,解得1212122x k k k k y k k ⎧=⎪-⎪⎨+⎪=⎪-⎩,所以1212122,k k C k k k k ⎛⎫+ ⎪--⎝⎭,又点C 在椭圆上,所以22121212214k k k k k k ⎛⎫⎪-⎛⎫+⎝⎭+= ⎪-⎝⎭,整理得1214k k =-,因为直线:NC 11y k x =-交x 轴正半轴于B 点,令0y =得11x k =,即11,0B k ⎛⎫ ⎪⎝⎭,又因为()2,0P ,所以11OB k =,112BP k =-,所以111111212OB k BPk k ==--,因为直线:MC 21y k x =+交AP 于点D ,令2x =得221y k =+,故()22,21D k +,又()2,1A ,所以()221212AD k k =-+=-,221DP k =+,所以22221AD k DP k -=+,又1214k k =-,所以1214k k =-,所以212221121211214OBAD k BPk k DP k -====-+⎛⎫-- ⎪⎝⎭,所以OB AD BP DP =.22.已知函数()2ln ,R ax xf x a x-=∈.(1)当1a =时,求()()g x xf x =的单调区间;(2)若()f x 有2个不同的零点()1212,x x x x <,求证.2212542x x a+>【正确答案】(1)单调递减区间为20,2⎛⎫ ⎪ ⎪⎝⎭,单调递增区间为2,2⎛⎫+∞ ⎪ ⎪⎝⎭.(2)证明见解析【分析】(1)求出函数解析式,再利用导数求出函数的单调区间;(2)依题意可得2ln x a x =有2个不同的实数根,令()2ln xF x x=,利用导数说明函数的单调性,求出函数的最大值,即可得到a 的取值范围,再由211222ln ln x ax x ax ⎧=⎨=⎩,两式相除得222211ln ln x x x x =,令21x t x =,即可得到12ln ln 1t x t =-,222ln ln 1t tx t =-,将问题转化为关于t 的函数,即证1t >时()()2251ln 0241t t t -->+,构造函数,说明函数的单调性,即可得证.【小问1详解】当1a =时()2ln x x f x x-=,则()()2ln g x xf x x x ==-,定义域为()0,∞+,又())2111212x g x x x xx-+-'=-==,所以当02x <<时()0g x '<,即()g x单调递减,当2x >时()0g x '>,即()g x 单调递增,所以()g x 的单调递减区间为20,2⎛⎫⎪ ⎪⎝⎭,单调递增区间为2,2⎛⎫+∞ ⎪ ⎪⎝⎭.【小问2详解】证明:因为()f x 定义域为()0,∞+,则()f x 有2个不同的零点等价于2ln xa x=有2个不同的实数根,令()2ln x F x x =,()0,x ∈+∞,则()312ln xF x x-'=,所以当0x <<时()0F x '>,()F x单调递增,当x >()0F x '<,()F x 单调递减,所以()F x在x =处取得极大值即最大值,即()max 12eF x F==,又()10F =,当01x <<时()0F x <,当1x >时()0F x >,且x →+∞时()0F x →,所以121x x <<<,且10,2e a ⎛⎫∈ ⎪⎝⎭,因为1x ,2x 是方程2ln xa x =有2个不同的实数根,即211222ln ln x ax x ax ⎧=⎨=⎩,两式相除得222211ln ln x x x x =,令21x t x =,则1t >,221ln ln x t x =,所以12ln ln 1t x t =-,222ln ln 1t t x t =-,又211ln x x a =,222ln x x a =,因此要证2212542x x a +>,只需证明12ln 4ln 52x x a a a+>,又0a >,所以只需证明125ln 4ln 2x x +>,即证222ln 4ln 5112t t t t t +>--,因为1t >,所以即证()()2251ln 0241t t t -->+,令()()()()2251ln 1241t G t t t t -=->+,则()()()()()2242222216111617104141t t t t G t t t t t ---+'==>++,所以()G t 在()1,+∞上单调递增,则()()10G t G >=,即当1t >时()()2251ln 0241t t t -->+成立,命题得证.方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.。
2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。
2023-2024学年安徽省合肥市高三下学期高考数学模拟试题(三模)含解析

2023-2024学年安徽省合肥市高三下学期高考数学模拟试题(三模)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合301x A x x ⎧⎫-=∈≤⎨⎬+⎩⎭Z ,{}2,B y y x x A ==∈,则集合A B ⋃的非空真子集的个数为()A.14B.15C.30D.62【正确答案】D【分析】解集合A 中的不等式,得到集合A ,由集合B 中元素的条件得到集合B ,再求集合A B ⋃,由集合中元素的个数,判断非空真子集的个数.【详解】不等式301x x -≤+解得13x -<≤,由x ∈Z ,得集合{}0,1,2,3A =,则集合{}0,1,4,9B =,所以集合{}0,1,2,3,4,9A B ⋃=,集合A B ⋃中有6个元素,所以集合A B ⋃的非空真子集的个数为62262-=.故选:D .2.已知复数z满足1i =1iz +(i 为虚数单位),则复数z 在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【正确答案】D【分析】根据复数的除法、模长运算化简复数z ,再结合复数的几何意义即可得答案.【详解】由)112i i =1i2z +=+得))12i i 21i 2i22z ++===--,∴复数z 在复平面内对应的点为21,2⎛⎫- ⎪ ⎪⎝⎭,∴复数z 在复平面内对应的点所在的象限为第四象限.故选:D .3.给出下列四个命题,其中正确命题为()A.“0x ∀>,21x x +>”的否定是“00x ∃>,2001x x +<”B.“αβ>”是“sin sin αβ>”的必要不充分条件C.α∃,β∈R ,使得()sin sin sin αβαβ+=+D.“a b >”是“22a b >”的充分不必要条件【正确答案】C【分析】利用全称量词命题的否定判断A ;利用充分条件、必要条件的定义判断BD ;判断存在量词命题的真假判断C 作答.【详解】对于A ,“0x ∀>,21x x +>”是全称量词命题,其否定是存在量词命题,该命题的否定为00x ∃>,2001x x +≤,A 错误;对于B ,“若sin sin αβ>,则αβ>”是假命题,如π5πsin sin 36>,而π5π36<,B 错误;对于C ,取0αβ==,则()sin sin 0sin 0sin 0sin sin αβαβ+==+=+,C 正确;对于D ,因为函数2x y =是R 上的增函数,则“a b >”是“22a b >”的充要条件,D 错误.故选:C4.如图,用M ,1A ,2A 三类不同的元件连接成一个系统,当M 正常工作且1A ,2A 至少有一个正常工作时,系统正常工作,已知M ,1A ,2A 正常工作的概率依次是12,34,34,已知在系统正常工作的前提下,则只有M 和1A 正常工作的概率是()A.59B.34C.15D.19【正确答案】C【分析】利用独立事件的乘法公式求得系统正常工作和只有M 和1A 正常工作的概率,再利用条件概率公式求解即可.【详解】设事件A 为系统正常工作,事件B 为只有M 和1A 正常工作,因为并联元件1A 、2A 能正常工作的概率为33151114416⎛⎫⎛⎫---= ⎪⎪⎝⎭⎝⎭,所以()1151521632P A =⨯=,又()()1333124432P AB P B ⎛⎫==⨯⨯-= ⎪⎝⎭,所以()()()15P AB P B A P A ==.即只有M 和1A 正常工作的概率为15.故选:C .5.以边长为2的等边三角形ABC 每个顶点为圆心,以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成曲边三角形,已知P 为弧AC 上的一点,且π6PBC ∠=,则BP CP ⋅ 的值为()A.4-B.4C.4-D.4+【正确答案】C【分析】如图所示,以B 为坐标原点,建立平面直角坐标系,利用向量数量积的坐标表示计算即可.【详解】如图所示,以B 为坐标原点,直线BC 为x 轴,过点B 且垂直于BC 的直线为y 轴,建立平面直角坐标系,则()0,0B ,()2,0C ,由π6PBC ∠=,得)P ,所以)BP = ,)2,1CP =-,所以)2114BP CP ⋅=-+⨯=- .故选:C.6.已知函数()213cos sin 2222x x x f x =-+,则下列结论正确的有()A.()f x 的最小正周期为2πB.直线π3x =-是()f x 图像的一条对称轴C.()f x 在π0,2⎛⎫⎪⎝⎭上单调递增D.若()f x 在区间π,2m ⎡⎤-⎢⎥⎣⎦上的最大值为1,则π3m ≥【正确答案】D【分析】利用倍角公式和辅助角公式,化简函数解析式,根据函数解析式研究最小正周期、对称轴、单调区间和最值.【详解】()2131cos 1π3cos sin sin sin 22222226x x x x f x x x -⎛⎫=-+=-+=+ ⎪⎝⎭,所以()f x 的最小正周期为π,A 错误;因为πππ366-+=-,ππ1sin 1362f ⎛⎫⎛⎫-=-=-≠± ⎪ ⎪⎝⎭⎝⎭,所以直线π6x =-不是()f x 图像的一条对称轴,B 错误;当π02x <<时,ππ2π663x <+<,而函数sin y x =在π2π,63⎛⎫ ⎪⎝⎭上不单调,C 错误;当π2x m -≤≤时,πππ366x m -≤+≤+,因为()f x 在区间π,2m ⎡⎤-⎢⎥⎣⎦上的最大值为1,即πsin 16x ⎛⎫+≤ ⎪⎝⎭,所以ππ62m +≥,解得π3m ≥,D 正确.故选:D .7.已知()f x 是定义在R 上的奇函数,其图象关于点()2,0对称,当[]0,2x ∈时,()f x =()()20f x k x --=的所有根的和为6,则实数k 的取值范围是()A.26,412⎛⎫⋃-∞- ⎪ ⎪⎪⎪⎩⎭⎝⎭ B.62,124⎛⎫⋃-∞- ⎪⎨⎪⎪⎪⎩⎭⎝⎭C.,412⎧⎫⎛⎫⎪⎪-⋃+∞ ⎪⎨⎬⎪⎪⎩⎭⎝⎭D.26,412⎧⎛⎫⎪-⋃-+∞ ⎪⎨ ⎪⎪⎪⎩⎭⎝⎭【正确答案】A【分析】数形结合思想,方程()()20f x k x --=的根转化为()y f x =和()2y k x =-的图象的公共点的横坐标,根据直线与圆的位置关系求解.【详解】方程()()20f x k x --=的根转化为()y f x =和()2y k x =-的图象的公共点的横坐标,因为两个图象均关于点()2,0对称,要使所有根的和为6,则两个图象有且只有3个公共点.因为[]0,2x ∈时,()f x =所以22(1)1x y -+=,所以图象为圆的一部分,作出()y f x =和()2y k x =-的图象如图所示.当0k >时,只需直线()2y k x =-与圆()2251x y -+=相切,1=,可得24k =;当0k <时,只需直线()2y k x =-与圆22(3)1x y ++=相离,1>,解得得612k<-或12k >(舍).故k的取值范围是,412⎛⎫⋃-∞- ⎪ ⎪⎪⎪⎩⎭⎝⎭.故选:A .8.已知函数()()e 1,xf x m x n m n =---∈R ,若()1f x ≥-对任意的x ∈R 恒成立,则mn 的最大值是()A.2e - B.2e -- C.1e - D.1e --【正确答案】B【分析】讨论0m ≤,0m >,利用导数得出()ln 1m m mn +≥,构造函数()()ln 1h m m m =+,由导数得出()min h m ,进而得出mn 的最大值.【详解】()e 1xf x m x n =---,()e 1xf x m '=-,当0m ≤时,()0f x '<恒成立,则()f x 单调递减,()01f m n =--,显然()1f x ≥-不恒成立;当0m >时,(),ln x m ∈-∞-时,()0f x '<,函数()f x 单调递减;()ln ,x m ∈-+∞时,()0f x ¢>,函数()f x 单调递增,∴()()min ln ln f x f m m n =-=-,∵()1f x ≥-恒成立,∴ln 10m n -+≥,∴()ln 1m m mn +≥,令()()ln 1h m m m =+,0m >,()ln 2h m m '=+,()20,e m -∈时,()0h m ¢<;()2e ,m -∈+∞时,()0h m ¢>.()h m 在区间()20,e -上单调递减,在区间()2e ,-+∞上单调递增,∴()()22min e eh m h --==-,即mn 的最大值是2e --.故选:B .关键点睛:解决本题的关键在于,将不等式的恒成立问题转化为最值问题得出()ln 1m m mn +≥,再由导数得出()min h m mn ≥.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.在某市高三年级举行的一次模拟考试中,某学科共有20000人参加考试.为了了解本次考试学生成绩情况,从中抽取了部分学生的成绩(成绩均为正整数,满分为100分)作为样本进行统计,样本容量为n ,按照[)50,60,[)60,70,[)70,80,[)80,90,[]90,100的分组作出频率分布直方图如图所示.其中,成绩落在区间[)50,60内的人数为16.则下列结论正确的是()A.图中0.016x =B.样本容量1000n =C.估计该市全体学生成绩的平均分为70.6分D.该市要对成绩前25%的学生授予“优秀学生”称号,则授予“优秀学生”称号的学生考试成绩大约至少为77.25分【正确答案】ACD【分析】根据频率之和等于1,即可判断A ;根据频率,频数和样本容量之间的关系即可判断B ;根据频率分布直方图平均数的求解方法即可判断C ;根据题意算出25%分位数,即可判断D .【详解】对于A ,因为()0.0300.0400.0100.004101x ++++⨯=,解得0.016x =,故A 正确;对于B ,因为成绩落在区间[)50,60内的人数为16,所以样本容量161000.01610n ==⨯,故B 错误;对于C,学生成绩平均分为0.01610550.03010650.04010750.01010850.004109570.6⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=,故C 正确;对于D ,因为()()100.0040.010800.0400.25x ⨯++-⨯=,解得77.25x =,所以大约成绩至少为77.25的学生能得到此称号,故D 正确.故选:ACD .10.已知正实数,,a b c 满足2240a ab b c -+-=,当cab取最小值时,下列说法正确的是()A.2a b =B.24=c bC.216a b c +-的最大值为1 D.216a b c+-的最小值为12【正确答案】AC【分析】由224c a ab b =-+,代入cab用基本不等式求得最小值,得结论2a b =判断A ,此处条件代入已知得26c b =可判断B ,判断AB 过程中两个结论代入216a b c+-后利用二次函数性质求得最值判断CD .【详解】∵正实数,,a b c 满足2240a ab b c -+-=,∴2244113c a ab b a b ab ab b a -+==+-≥-=,当且仅当4a b b a =,即2a b =时等号成立,A 正确;2a b =时,2222(2)246c b b b b =-+=,B 错;2222161161211)16a b c b b b b b b +-=+-=-+=--+(,11b =,即1b =时,216a b c+-的最大值1,C 正确D 错误.故选:AC .11.已知正方体1111ABCD A B C D -棱长为4,M 为棱1CC 上的动点,AM ⊥平面α,则下列说法正确的是()A.若N 为1DD 中点,当AM MN +最小时,1212CM CC =-B.当点M 与点1C 重合时,若平面α截正方体所得截面图形的面积越大,则其周长就越大C.直线AB 与平面α所成角的余弦值的取值范围为26,23⎣⎦D.当点M 与点C 重合时,四面体11AMD B 内切球表面积为16π3【正确答案】ACD【分析】对于A ,由展开图求解;对于B ,取特殊位置判断;对于C ,由空间向量求解;对于D ,由正四面体的性质可求内切球半径,可得内切球的表面积,.【详解】对于A ,矩形11ACC A 与正方形11CC D D展开成一个平面,如图所示,若AM MN +最小,则A 、M 、N 三点共线,因为11//CC DD ,所以2MC AC DN AD ===(1222MC DN CC ==,即1222122MC CC ==-,故A 正确;对于B ,当点M 与点1C 重合时,连接1A D 、BD 、1A B 、AC 、1AC,如图所示,在正方体1111ABCD A B C D -中,1CC ⊥平面ABCD ,BD ⊂平面ABCD ,所以1BD CC ⊥,又因为BD AC ⊥,且1AC CC C = ,1,AC CC ⊂平面1ACC ,所以BD ⊥平面1ACC ,又1AC ⊂平面1ACC ,所以1BD AC ⊥,同理可证11A D AC ⊥,因为1A D BD D ⋂=,1,A D BD ⊂平面1A BD ,所以1AC ⊥平面1A BD ,易知1A BD是边长为的等边三角形,其面积为(1234A BD S =⨯=△,周长为3=;设E 、F 、Q 、N ,G ,H 分别为11A D ,11A B 、1BB ,BC ,CD ,1DD 的中点,易知六边形EFQNGH是边长为的正六边形,且平面//EFQNGH 平面1A BD ,正六边形EFQNGH的周长为,面积为(2364⨯⨯=,则1A BD 的面积小于正六边形EFQNGH 的面积,它们的周长相等,即B 错误;对于C ,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,如图所示:则()4,0,0A ,()4,4,0B ,设()()0,4,04M a a ≤≤,因为AM ⊥平面α,所以AM是平面α的一个法向量,且()4,4,AM a =- ,()0,4,0AB = ,故32cos ,,32AM AB ==⎣⎦ ,所以直线AB 与平面α所成角的正弦值的取值范围为,32⎣⎦,则直线AB 与平面α所成角的余弦值的取值范围为,23⎣⎦,故C 正确;对于D ,当点M 与点C 重合时,四面体11AMD B 即为11ACD B 为正四面体,棱长AC =,由正四面体的性质可得,其内切球半径6123343r =⨯=,所以表面积为216π4π3r =,故D 正确.故选:ACD .12.已知抛物线2:2C x y =的焦点为F ,准线为l ,A 、B 是C 上异于点O 的两点(O 为坐标原点)则下列说法正确的是()A.若A 、F 、B 三点共线,则AB 的最小值为2B.若32AF =,则AOF 的面积为24C.若OA OB ⊥,则直线AB 过定点()2,0D.若60AFB ∠=,过AB 的中点D 作DE l ⊥于点E ,则ABDE的最小值为1【正确答案】ABD【分析】设出直线AB 的方程,将直线AB 的方程与抛物线的方程联立,利用韦达定理、焦半径公式以及基本不等式可求得AB 的最小值,可判断A 选项;求出点A 的横坐标的绝对值,利用三角形的面积公式可判断B 选项;设直线AB 的方程为y kx b =+,将直线AB 的方程与抛物线的方程联立,利用韦达定理以及0OA OB ⋅=求出b 的值,求出直线AB 所过定点的坐标,可判断C 选项;利用抛物线的定义以及基本不等式可判断D 选项.【详解】对于A 选项,易知抛物线C 的焦点为10,2F ⎛⎫ ⎪⎝⎭,当直线AB 与y 轴重合时,直线AB 与抛物线C 只有一个公共点,不合乎题意,设直线AB 的方程为12y kx =+,设点()11,A x y 、()22,B x y ,联立2122y kx x y⎧=+⎪⎨⎪=⎩可得2210x kx --=,2440k ∆=+>,由韦达定理可得122x x k +=,121x x =-,则221212144x x y y ==,易知10y >,20y >,所以,12112AB y y =++≥+=,当且仅当1212y y ==时,等号成立,故AB 的最小值为2,A 对;对于B 选项,设点()11,A x y ,11322AF y =+=,可得11y =,所以,21122x y ==,则1x =,所以,11112224AOF S OF x =⋅=⨯=△,B 对;对于C 选项,易知AB 的斜率存在,设直线AB 的方程为y kx b =+,设点()11,A x y 、()22,B x y ,由于直线AB 不过原点,所以,0b ≠,联立22y kx bx y=+⎧⎨=⎩可得2220x kx b --=,2480k b ∆=+>,由韦达定理可得122x x b =-,所以,22212124x x y y b ==,因为OA OB ⊥,则2121220OA OB x x y y b b ⋅=+=-+=,解得2b =,所以,直线AB 的方程为2y kx =+,故直线AB 过定点()0,2,C 错;对于D 选项,过点A 作1AA l ⊥于点1A ,过点B 作1BB l ⊥于点1B ,设AF m =,BF n =,所以1122AA BB m nDE ++==,因为()2222222cos 3AB m n mn AFB m n mn m n mn=+-∠=+-=+-()()2222342m n m n m n DE ++⎛⎫≥+-== ⎪⎝⎭,所以AB DE ≥,则ABDE的最小值为1,当且仅当m n =时,等号成立,D对.故选:ABD .方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.三、填空题:共4小题,每小题5分,共20分.13.函数()24,2,1log ,2x x f x x x -+≤⎧=⎨+>⎩的值域是______.【正确答案】[)2,+∞【分析】根据分段函数结合常见函数的取值情况即可求得函数的值域.【详解】当2x ≤时,满足()42f x x =-+≥;当2x >时,由()21log 2f x x =+>,所以函数()f x 的值域为[)2,+∞.故[)2,+∞.14.某企业五一放假4天,安排甲、乙、丙、丁四人值班,每人只值班一天.已知甲不安排在第一天,乙不安排在最后一天,则不同的安排种数为______.【正确答案】14【分析】根据特殊元素法进行安排即可.【详解】①若甲安排在最后一天,则不同的安排数为33A 6=;②若甲不安排在最后一天,则不同的安排数为112222A A A 8=.综上,不同的安排种数为14.故答案为.1415.过双曲线()2222:10,0x y C a b a b-=>>右焦点F 的直线l 与双曲线C 的一条渐近线垂直,垂足为点A ,O 为坐标原点,若OAF ∠的角平分线与x 轴交于点M ,且点M 到OA 与AF 的距离都为3b,则双曲线C 的离心率为______.【分析】如图设点A 在第一象限,根据点到直线的距离公式可得F 到渐近线by x a=的距离为b ,得OA a =,由题意得四边形MTAN 为正方形,有3tan 3bMN bAOF b ON a a ∠===-,整理可得2b a =,即可求解.【详解】由题意得,双曲线的渐近线为0bx ay ±=,(c,0)F ,如图,设点A 在第一象限,则点F 到渐近线by x a=的距离为AF d b ===,所以OA a ===,过点M 分别作MN OA ⊥于点N ,MT AF ⊥于点T ,又FA OA ⊥于A ,所以四边形MTAN 为正方形,得3b NA MN ==,所以3bON OA NA a =-=-,又3tan 3bMN b AOF b ON a a ∠===-,所以33a ba =-,得2b a =,则22225c a b a =+=,所以5c a =,故5ce a==,即双曲线的离心率为5.故答案为.516.已知四面体ABCD 的四个顶点都在球O 的球面上,ADC △是边长为2的等边三角形,ADC △外接圆的圆心为O '.若四面体ABCD 的体积最大时,π3BAO ∠'=,则球O 的半径为______;若213AB BC ==,点E 为AC 的中点,且2π3BED ∠=,则球O 的表面积为______.【正确答案】①.43②.19π3【分析】先确定ADC △的外接圆半径,若四面体ABCD 的体积最大时,结合直角三角形的边角关系即可求得此时球O 的半径;若213AB BC ==,根据四面体的线面关系确定外接球球心O 的位置,求解半径大小,即可得此时球O 的表面积.【详解】设ACD 的外接圆的半径R ,由题可得2πsin 3ACR =,解得233R =;若四面体ABCD 的体积最大时,则点B 在过O 和O '的直径上,且,B O '在O 的两侧,在ACD 中,233AO R ==',又π3BAO ∠'=,所以πtan 23BO AO =⨯'=',设球O 的半径为r ,则在Rt AO O '△中,()2222323r r ⎛⎫=+- ⎪ ⎪⎝⎭,解得43r =;如图,取AC 的中点E ,连接DE 并延长DE 交圆O '于点F .连接,BE BF ,由2π3BED ∠=得,则2πππ33BEF ∠=-=.33223EF R AD =-⨯=.在ABE 中,223BE AB AE =-=,所以在BEF △中,由余弦定理得2222cos 1BF EF BE EF BE BEF =+-⋅∠=,可得BF EF ⊥,结合图形可得BF ⊥圆O '.连接OO ',过点O 作BF 的垂线,垂足为点G ,连接BO ,四面体ABCD 外接球的半径2222r GO BG OO O D ''=+=+解得1122OO BG BF '===,所以球O 的半径2212192123r ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭四面体ABCD 外接球的表面积为19π3.故43;19π3.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 3b aA A c+=.(1)求角C ;(2)设BC 的中点为D ,且3AD =,求2+a b 的取值范围.【正确答案】(1)π3C =(2)(23,43【分析】(1)已知等式,由正弦定理和两角和的正弦公式化简,可求角C ;(2)设CAD θ∠=,由正弦定理,把2+a b 表示成θ的三角函数,利用三角函数的性质求取值范围.【小问1详解】ABC中,cos b a A A c +=,由正弦定理得sin sin cos sin B AA A C++=.所以sin cos sin sin sin C A A C B A +=+,即()sin cos sin sin sin sin cos sin cos sin C A A C A C A A C C A A +=++=++,sin sin cos sin A C A C A =+;又()0,πA ∈,则sin 0A ≠,所以cos 1C C -=,则有π1sin 62C ⎛⎫-= ⎪⎝⎭,又因为()0,πC ∈,则ππ66C -=,即π3C =;【小问2详解】设CAD θ∠=,则ACD 中,由π3C =可知2π0,3θ⎛⎫∈ ⎪⎝⎭,由正弦定理及AD =可得2π2πsin sinsin 33CD AC AD θθ===⎛⎫- ⎪⎝⎭,所以2sin CD θ=,2π2sin 3AC θ⎛⎫=- ⎪⎝⎭,所以2ππ24sin 4sin 6sin 36a b θθθθθ⎛⎫⎛⎫+=+-=+=+⎪ ⎪⎝⎭⎝⎭,由2π0,3θ⎛⎫∈ ⎪⎝⎭可知,ππ5π,666θ⎛⎫+∈ ⎪⎝⎭,π1sin ,162θ⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,所以(2a b +∈.即2+a b的取值范围(.18.在数列{}n a 中,10a =,且对任意的*n ∈N ,都有12nn n a a +-=.在等差数列{}n b 中,前n 项和为n S ,12b =,35228b S +=.(1)求数列{}n a 和{}n b 的通项公式;(2)设()*22nn n b c n a =∈+N ,求数列{}n c 的前n 项和n T .【正确答案】(1)22nn a =-,1n b n =+;(2)737994n nn T +=-⨯【分析】(1)由递推关系12n n n a a +-=,可用累加法即可求得22nn a =-,再对12b =,35228b S +=化简解得1d =,从而可得{}n b 的通项公式;(2)由知(1)结论即可求得14n n n c +=,利用错位相减法、等比数列的前n 项和公式即可得出结论.【小问1详解】由12nn n a a +-=得2n ≥时,()()21121122222n n n n n a a a a a a --=+-+⋅⋅⋅+-=++⋅⋅⋅+=-.又10a =,满足22n n a =-,所以22nn a =-.设等差数列{}n b 的公差为d ,则()35111542225714282b S b d b d b d ⨯+=+++=+=,解得1d =,所以1n b n =+;【小问2详解】2124n n n n b n c a +==+,223414444n n n T 3+=+++⋅⋅⋅+①,231123144444n n n n n T ++=++⋅⋅⋅++②①-②得231111132111111164414444442414n n n n n n n T ++-⨯++=+++⋅⋅⋅+-=+-111141117372316441234n n n n n +++++⎛⎫=+--=- ⎪⨯⎝⎭所以737994n nn T +=-⨯.19.2022年卡塔尔世界杯是第二十二届世界杯足球赛,是历史上首次在卡塔尔和中东国家境内举行、也是第二次在亚洲举行的世界杯足球赛.卡塔尔世界杯后,某校为了激发学生对足球的兴趣,组建了足球社团.足球社团为了解学生喜欢足球是否与性别有关,随机抽取了男、女同学各100名进行调查,统计得出的数据如下表:喜欢足球不喜欢足球合计男生50女生25合计(1)根据所给数据完成上表,试根据小概率值0.001α=的独立性检验,分析该校学生喜欢足球与性别是否有关.(2)社团指导老师从喜欢足球的学生中抽取了2名男生和1名女生示范点球,已知男生进球的概率为34,女生进球的概率为13,每人踢球一次,假设各人踢球相互独立,求3人进球总次数的分布列和数学期望.附:()()()()()22n ad bca b c d a c b dχ-=++++,a b c d n+++=.α0.0500.0100.001 xα 3.841 6.63510.828【正确答案】(1)表格见解析,该校学生喜欢篮球与性别有关;(2)分布列见解析,数学期望为11 6.【分析】(1)根据题意中的数据分析,补充列联表,利用卡方公式计算,结合独立性检验的思想即可下结论;(2)3人进球总次数ξ的所有可能取值为0,1,2,3.利用独立事件的乘法公式求出对应的概率,得出分布列,结合求数学期望公式计算即可求解.【小问1详解】因为随机抽取了男、女同学各100名进行调查,男生不喜欢篮球的有50人,女生喜欢篮球的有25人,所以男生喜欢篮球的有50人,女生不喜欢篮球的有75人.22⨯列联表如下:喜欢篮球不喜欢篮球合计男生5050100女生2575100合计75125200零假设为0H:该校学生喜欢篮球与性别无关.根据列联表中的数据,经计算得到()220.0012005075502513.310.82810010075125x χ⨯⨯-⨯=≈>=⨯⨯⨯,∴根据小概率值0.001α=的独立性检验,我们推断0H 不成立,即认为该校学生喜欢篮球与性别有关.【小问2详解】3人进球总次数ξ的所有可能取值为0,1,2,3.()212104324P ξ⎛⎫==⨯= ⎪⎝⎭,()21231211131C 4433448P ξ⎛⎫==⋅⋅⨯+⨯= ⎪⎝⎭,()2121313212C 443432P ξ⎛⎫==⋅⋅⋅+⨯= ⎪⎝⎭,()231334316P ξ⎛⎫==⨯=⎪⎝⎭.∴ξ的分布列如下:ξ0123P124134812316∴ξ的数学期望:()1131311012324482166E ξ=⨯+⨯+⨯+⨯=.20.如图,在三棱锥-P ABC 中,ABC 为直角三角形,90ACB ∠=︒,PAC △的边长为4的等边三角形,4PB =,BC =.(1)求证:平面PAB ⊥平面ABC ;(2)求二面角A PB C --的余弦值.【正确答案】(1)证明见解析(2)91【分析】(1)通过等腰三角形性质、中位线的性质、勾股定理,证明PE ⊥平面ABC ,可证平面PAB ⊥平面ABC .(2)建立空间直角坐标系,利用法向量求二面角的余弦值.【小问1详解】(方法一)证明:如图,分别取AC ,AB 的中点D ,E ,连接PD ,DE ,PE ,则//DE BC .因为90ACB ∠=︒,BC =,所以DE AC ⊥,DE =因为PAC △是边长为4的等边三角形,所以PD AC ⊥,PD =,在ACB △中,(22222428AB AC BC =+=+=,AB =因为PA PB =,点E 为AB 的中点,所以PE AB ⊥,3PE =,在PDE △中,有222PD PE ED =+,所以PE ED ⊥,ED AB E ⋂=,,ED AB ⊂平面ABC ,所以PE ⊥平面ABC ,因为PE ⊂平面PAB ,所以平面PAB ⊥平面ABC .(方法二)证明:如图,分别取AC ,AB 的中点D ,E ,连接PD ,PE ,DE ,则DE BC ∥.因为90ACB ∠=︒,所以BC AC ⊥,AC DE ⊥,PAC △是等边三角形,则PD AC ⊥,由PD DE D =I ,,PD DE ⊂平面PDE ,所以AC ⊥平面PDE ,又PE ⊂平面PDE ,所以AC PE ⊥,因为PA PB =,点E 为AB 的中点,所以PE AB ⊥,又AC AB A ⋂=,,AC AB ⊂平面ABC ,则有PE ⊥平面ABC ,因为PE ⊂平面PAB ,所以平面PAB ⊥平面ABC .【小问2详解】以点C 为原点,直线CA ,CB 分别为x ,y 轴,过点C 且与PE 平行的直线为z 轴,建立空间直角坐标系,如图所示,则()0,0,0C ,()0,3,0B ,()4,0,0A ,()3,0E ,()3,3P ,()4,3,0AB =-,()0,23,0CB =,()3,3CP = ,()0,0,3PE =-.设平面PBC 的一个法向量为()111,,m x y z =r,则1111302330m CB m CP x y z ⎧⋅==⎪⎨⋅=++=⎪⎩ ,取13x =,得110,2y z ==-,则()3,0,2m =- .设平面PAB 的一个法向量为()222,,n x y z =r ,则22243030n AB x y n PE z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,取23x =,得222,0y z ==,则)3,2,0n =.设二面角A PB C --的平面角为θ,所以333273cos cos ,91137m n θ===⋅.21.如图,椭圆()222:10416x y b bΓ+=<<的左、右焦点分别为1F ,2F ,点A ,B ,C 分别为椭圆Γ的左、右顶点和上顶点,O 为坐标原点,过点1F 的直线l 交椭圆Γ于E ,F 两点,线段2EF 的中点为10,2⎛⎫⎪⎝⎭.点P 是Γ上在第一象限内的动点,直线AP 与直线BC 相交于点Q ,直线CP 与x 轴相交于点M.(1)求椭圆Γ的方程;(2)设OCQ △的面积为1S ,OCM 的面积为2S ,求12S S ⋅的值.【正确答案】(1)221164x y +=(2)16【分析】(1)根据题意,利用待定系数法即可求出结果;(2)由题可知()4,0B ,()0,2C ,所以直线BC 的方程的截距式为142x y+=,即为240x y +-=.设直线AP 的斜率为k ,点P 的坐标为(),P P x y ,则AP 的方程为()4y k x =+,并与椭圆方程221164x y +=联立方程组解得2241614P k x k -=+,2814Pk y k =+,从而表达出点P 坐标,同理可得出M x ,Q x 的值,继而求得12S S ⋅的值.【小问1详解】因为线段2EF 的中点为10,2⎛⎫⎪⎝⎭在y 轴上,O 为12F F 的中点,所以1EF y ∥轴,即EF x ⊥轴,设(),1E c -,(),1F c --,222a b c =+,代入椭圆Γ的方程得,221116c b+=,又222216c a b b =-=-,所以22161116b b -+=,即2211116b b-+=,所以22116b b =,解得24b =,所以椭圆Γ的方程为221164x y +=.【小问2详解】由题意可得()4,0B ,()0,2C ,所以直线BC 的方程的截距式为142x y+=,即为240x y +-=.设直线AP 的斜率为k ,点P 的坐标为(),P P x y ,则AP 的方程为()4y k x =+,联立()221,1644,x y y k x ⎧+=⎪⎨⎪=+⎩得()2222143264160k x k x k +++-=,所以()226416414P k x k --=+,即2241614P k x k-=+,()28414P P k y k x k =+=+.所以2224168,1414k k P k k ⎛⎫- ⎪++⎝⎭102k ⎛⎫<< ⎪⎝⎭.直线CP 的方程为22P P y y x x -=+,设点M ,Q 的坐标分别为(),0M x ,(),Q Q x y ,在22P P y y x x -=+中,令0y =得()4122212P M P k x x y k+-==--.解()240,4,x y y k x +-=⎧⎨=+⎩得()41212Q k x k -=+.所以()()12412412161212k k S S k k-+⋅=⋅=+-.关键点睛:本题第二问的关键是采取设线法,AP 的方程为()4y k x =+,并与椭圆方程221164x y +=联立方程组,解得P x ,P y 是关键;本题考查了椭圆的标准方程以及椭圆中三角形面积的问题,属于较难题.22.若对任意的实数k ,b ,函数()y f x kx b =++与直线y kx b =+总相切,则称函数()f x 为“恒切函数”.(1)判断函数()3f x x =是否为“恒切函数”;(2)若函数()()1e 1e 2x x f x x m =--+是“恒切函数”,求证:108m -<≤.【正确答案】(1)是“恒切函数”;(2)证明见解析.【分析】(1)设函数()f x 的切点为()00,x y ,分析“恒切函数”的性质可得()()0000f x f x ⎧=⎪⎨='⎪⎩,对于函数()3f x x =,则有3020030x x ⎧=⎨=⎩,解可得00x =,即可得出结论.(2)设函数()f x 的切点为()00,x y ,分析可得()000001e 1e 22e 2x x x m x x ⎧=---⎪⎨⎪=+⎩ ,设2e 2x x =+,考查2e 2x x =+的解,综合即可得答案.【小问1详解】根据题意,若函数()3f x x =为“恒切函数”,切点为()00,x y ,则()()0000,,f x kx b kx b f x k k ⎧++=+⎪⎨+=⎪⎩' 即()()0000f x f x ⎧=⎪⎨='⎪⎩,对于函数()3f x x =,()23f x x '=,所以30200,30,x x ⎧=⎨=⎩解得00x =.因此,函数()3f x x =是“恒切函数”;【小问2详解】根据题意,函数()()1e 1e 2xx f x x m =--+是“恒切函数”,设切点为()00,x y ,由()()1e 1e 2x x f x x m =--+,可得()()12e 2e 2x x f x x '=--,则有()()0000001e 1e 0,212e 2e 0,2x x x x x m x ⎧--+=⎪⎪⎨⎪--=⎪⎩ 即()000001e 1e ,22e 2,x x x m x x ⎧=---⎪⎨⎪=+⎩ 考查方程2e 2x x =+的解,设()2e 2x g x x =--,因为()2e 1x g x '=-,令()0g x '=,得ln 2x =-.当(),ln 2x ∈-∞-时,()0g x '<;当()ln 2,x ∈-+∞时,()0g x '>.所以,函数()y g x =的单调递减区间为(),ln 2-∞-,单调递增区间为()ln 2,-+∞.所以()()min ln 2ln 210g x g =-=-<.(i )当(),ln 2x ∞∈--时,因为()2220e g -=>,()2110eg -=-<,所以,函数()y g x =在区间(),ln 2-∞-上存在唯一零点()02,1x ∈--.又因为()()()002000011111e 1e 21,028888x x m x x x x ⎛⎫=---=+=+-∈- ⎪⎝⎭;(ii )当()ln 2,x ∈-+∞时,因为()00g =,所以函数()y g x =在区间()ln 2,-+∞上有唯一零点,则0m =,综上所述,108m -<≤.本题考查利用导数分析函数的切线以及函数的单调性,关键是理解“恒切函数”的定义,属于较难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考模拟复习试卷试题模拟卷【高频考点解读】1.认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二测画法画出它们的直观图.3.会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4.了解球、棱柱、棱锥、台的表面积和体积的计算公式.【热点题型】题型一空间几何体的三视图和直观图例1、(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是________.答案(1)B(2)6 16a2解析(1)该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选B.(2)画出坐标系x′O′y′,作出△OAB 的直观图O′A′B′(如图).D′为O′A′的中点.易知D′B′=12DB(D 为OA 的中点),∴S △O′A′B′=12×22S △OAB =24×34a2=616a2.【提分秘籍】(1)三视图中,正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系.【举一反三】(1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6cm ,O′C′=2cm ,则原图形是( )A .正方形B .矩形C .菱形D .一般的平行四边形答案 (1)B (2)C解析 (1)如图,几何体为三棱柱.题型二 空间几何体的表面积与体积例2、(1)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13(2)一个多面体的三视图如图所示,则该多面体的体积为( )A.233B.476C .6D .7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为________.答案 (1)C (2)A (3)1∶2∶3解析 (1)由三视图可知几何体是如图所示的两个圆柱的组合体.其中左面圆柱的高为4cm ,底面半径为2cm ,右面圆柱的高为2cm ,底面半径为3cm ,则组合体的体积V1=π×22×4+π×32×2=16π+18π=34π(cm3),原毛坯体积V2=π×32×6=54π(cm3),则所求比值为54π-34π54π=1027.(2)该几何体是正方体去掉两个角所形成的多面体,其体积为V =2×2×2-2×13×12×1×1×1=233.(3)设正方体的棱长为a ,①正方体的内切球球心是正方体的中心,切点是六个面的中心,经过四个切点及球心作截面如图①所示,有2r1=a ,∴r1=a 2,S1=4πr 21=πa2.【提分秘籍】(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法.【举一反三】(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48 B.32+817C.48+817 D.80(2)把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD⊥平面CBD,形成三棱锥C-ABD 的正视图与俯视图如图所示,则侧视图的面积为()A.12 B .22 C.14 D.24答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)因为C 在平面ABD 上的射影为BD 的中点O ,在边长为1的正方形ABCD 中,AO =CO =12AC =22,所以侧视图的面积等于S △AOC =12CO·AO =12×22×22=14,故选C.题型三 空间几何体的结构特征例3、 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体;⑤棱台的侧棱延长后交于一点.其中正确命题的序号是________.答案 ②③④⑤解析 ①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC1中的三棱锥C1-ABC,四个面都是直角三角形;⑤正确,由棱台的概念可知.【提分秘籍】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.【举一反三】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1 C.2 D.3答案A图1 图2【高考风向标】1.【高考浙江,文2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是()A .83cmB .123cmC .3233cmD .4033cm【答案】C【解析】由三视图可知,该几何体是一个棱长为2的正方体与一个底面边长为2,高为2的正四棱锥的组合体,故其体积为32313222233V cm =+⨯⨯=.故选C. 2.【高考重庆,文5】某几何体的三视图如图所示,则该几何体的体积为( )123π+ (B) 136π (C) 73π (D) 52π 【答案】B【解析】由三视图可知该几何体是由一个底面半径为1,高为2的圆柱,再加上一个半圆锥:其底面半径为1,高也为1,构成的一个组合体,故其体积为61311612122πππ=⨯⨯⨯+⨯⨯,故选B. 3.【高考陕西,文5】一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .24π+D .34π+【答案】D4、【高考新课标1,文11】圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.5.【高考福建,文9】某几何体的三视图如图所示,则该几何体的表面积等于()1112A.822+ B.1122+ C.1422+ D.15【答案】B6.【高考山东,文9】已知等腰直角三角形的直角边的长为,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )(A)223π(B)423π()22π()42π【答案】B【解析】由题意知,该等腰直角三角形的斜边长为22,斜边上的高为2,所得旋转体为同底等高的全等圆锥,所以,其体积为2142(2)223ππ⨯⨯=,故选B.7【高考安徽,文9】一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13+ (B )122+ (C )23+ (D )22 【答案】C【解析】由该几何体的三视图可知,该几何体的直观图,如下图所示:其中侧面PAC ⊥底面ABC ,且PAC ∆≌ABC ∆,由三视图中所给数据可知:2====BC AB PC PA ,取AC 中点,O 连接BO PO ,,则POB Rt ∆中,1==BO PO ⇒2=PB ∴3222212432+=⋅⋅+⋅⋅=S ,故选C. 8.【高考天津,文10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .【答案】8π3【解析】该几何体是由两个高为1的圆锥与一个高为2的圆柱组合而成,所以该几何体的体积为318π2π1π2(m )33⨯⨯⨯+⨯= .9.【高考四川,文14】在三棱住ABC -A1B1C1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B1C1的中点,则三棱锥P -A1MN 的体积是______.【答案】12410.(·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是( )图1-2A.233B.476 C .6 D .7【答案】A 【解析】如图所示,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其体积V =8-2×13×12×1×1×1=233.11.(·湖南卷)一块石材表示的几何体的三视图如图1-2所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-2A .1B .2C .3D .4 【答案】B【解析】由三视图可知,石材为一个三棱柱(相对应的长方体的一半),故可知能得到的最大球为三棱柱的内切球.由题意可知正视图三角形的内切圆的半径即为球的半径,可得R =6+8-102=2. 12.(·陕西卷)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π 【答案】C【解析】由题意可知,旋转体是一个底面半径为1,高为1的圆柱,故其侧面积为2π×1×1=2π. 13.(·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9π D.27π4 【答案】A14.(·陕西卷)四面体ABCD 及其三视图如图1-4所示,平行于棱AD ,BC 的平面分别交四面体的棱AB ,BD ,DC ,CA 于点E ,F ,G ,H.图1-4(1)求四面体ABCD 的体积;(2)证明:四边形EFGH 是矩形.【解析】解:(1)由该四面体的三视图可知, BD ⊥DC ,BD ⊥AD ,AD ⊥DC ,BD =DC =2,AD =1, ∴AD ⊥平面BDC ,∴四面体ABCD 的体积V =13×12×2×2×1=23.(2)证明:∵BC ∥平面EFGH ,平面EFGH∩平面BDC =FG ,平面EFGH∩ 平面ABC =EH ,∴BC ∥FG ,BC ∥EH ,∴FG ∥EH. 同理EF ∥AD ,HG ∥AD ,∴EF ∥HG , ∴四边形EFGH 是平行四边形.又∵AD ⊥平面BDC ,∴AD ⊥BC ,∴EF ⊥FG , ∴四边形EFGH 是矩形. 【高考押题】1.下列结论中正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任一点的连线都是母线 答案 D解析 当一个几何体由具有相同的底面且顶点在底面两侧的两个三棱锥构成时,尽管各面都是三角形,但它不是三棱锥,故A 错误;若三角形不是直角三角形或是直角三角形但旋转轴不是直角边所在直线,所得几何体就不是圆锥,B 错误;若六棱锥的所有棱都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,则棱长必然要大于底面边长,故C 错误.2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有( )A .20B .15C .12D .10答案 D解析 如图,在五棱柱ABCDE -A1B1C1D1E1中,从顶点A 出发的对角线有两条:AC1,AD1,同理从B ,C ,D ,E 点出发的对角线均有两条,共2×5=10(条).3.已知底面边长为1,侧棱长为2的正四棱柱(底面是正方形的直棱柱)的各顶点均在同一个球面上,则该球的体积为( )A.32π3B .4πC .2πD.4π3 答案 D解析 正四棱柱的外接球的球心为上下底面的中心连线的中点, 所以球的半径r =222+222=1,球的体积V =4π3r3=4π3.故选D.4.某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .72cm3B .90cm3C .108cm3D .138cm3 答案 B解析 该几何体为一个组合体,左侧为三棱柱,右侧为长方体,如图所示. V =V 三棱柱+V 长方体=12×4×3×3+4×3×6=18+72=90(cm3).5.沿一个正方体三个面的对角线截得的几何体如图所示,则该几何体的侧视图为()答案B解析由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故A不正确.6.若一个圆柱的正视图与其侧面展开图相似,则这个圆柱的侧面积与表面积的比值为________.答案2π2π+17.一个几何体的三视图如图所示,其中侧视图与俯视图均为半径是2的圆,则这个几何体的体积是________.答案 8π解析 由三视图知该几何体是半径为2的球被截去四分之一后剩下的几何体,则该几何体的体积V =43×π×23×34=8π.8.如图所示的三个几何体,一个是长方体,一个是直三棱柱,一个是过圆柱上、下底面圆心切下圆柱的四分之一部分,若这三个几何体的正视图和俯视图是相同的正方形,求它们的表面积之比.9.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20cm 和30cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,三棱台ABC —A1B1C1中,O 、O1分别为两底面中心,D 、D1分别为BC 和B1C1的中点,则DD1为棱台的斜高.由题意知A1B1=20,AB =30, 则OD =53,O1D1=1033,由S 侧=S 上+S 下,得12×(20+30)×3DD1=34×(202+302), 解得DD1=1333, 在直角梯形O1ODD1中, O1O =DD21-OD -O1D12=43,所以棱台的高为43cm.高考模拟复习试卷试题模拟卷高考模拟复习试卷试题模拟卷第八章 直线与圆一.基础题组1.(重庆市巴蜀中学高三月考数学、文、1)若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于( )A .1B .13-C .23-D .2- 2.(文昌中学高三模拟考试、文、15)圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________________.3.(重庆市巴蜀中学高三月考数学、文、15)在平面直角坐标系xOy 中,以点)0,1(为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为.4.(重庆市部分区县高三上学期入学考试、文、16)若实数c b a ,,成等差数列,点)0,1(-P 在动直线0:==+c by ax l 上的射影为M ,点)3,0(N ,则线段MN 长度的最小值是.二.能力题组1.(五校协作体高三上学期期初考试数学、文、9)曲线21y x =+在点(1,2)处的切线为l ,则直线l 上的任意点P 与圆22430x y x +++=上的任意点Q 之间的最近距离是( )A.4515- B.2515- C.51- D.2 2.(示范高中高三第一次联考、文、14)已知圆的方程为()2214x y +-=。