平行线的性质定理教学设计
(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)

5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。
平行线的性质教案

平行线的性质教案课题:平行线的性质一、教学目标1.理解平行线的性质与平行线的判定是相反的问题,掌握平行线的性质.2.会用平行线的性质进行推理和计算.3.通过平行线性质定理的推导,培养学生观察分析和进行简单的逻辑推理的能力.4.通过学习平行线的性质与判定的联系与区别,让学生懂得事物是普遍联系又相互区别的辩证唯物主义思想.二、学法引导1.教师教法:采用尝试指导、引导发现法,充分发挥学生的主体作用,体现民主意识和开放意识.2.学生学法:在教师的指导下,积极思维,主动发现,认真研究.三、重点·难点解决办法(一)重点:平行线的性质公理及平行线性质定理的推导.(二)难点:平行线性质与判定的区别及推导过程.(三)解决办法1.通过教师创设情境,学生积极思维,解决重点.2.通过学生自己推理及教师指导,解决难点.3.通过学生讨论,归纳小结.四、课时安排:1课时五、师生互动活动设计1.通过引例创设情境,引入课题.2.通过教师指导,学生积极思考,主动学习,练习巩固,完成新授.3.通过学生讨论,完成课堂小结.六、教学过程(一)创设情境,复习导入1.如图1,(1)∵ (已知),∴ ().(2)∵ (已知),∴ ().(3)∵ (已知),∴ ().2.如图2,(1)已知,则与有什么关系?为什么?(2)已知,则与有什么关系?为什么?图2 图33.如图3,一条公路两次拐弯后,和原来的方向相同,第一次拐的角是,第二次拐的角是多少度?学生活动:学生口答第1、2题.师:第3题是一个实际问题,要给出的度数,就需要我们研究与判定相反的问题,即已知两条直线平行,同位角、内错角、同旁内角有什么关系,也就是平行线的性质.板书课题:[板书]平行线的性质【教法说明】通过第1题,对上节所学判定定理进行复习,第2题为性质定理的推导做好铺垫,通过第3题的实际问题,引入新课,学生急于解决这个问题,需要学习新知识,从而激发学生学习新知识的积极性和主动性,同时让学生感知到数学知识来源于生活,又服务于生活.(二)探究新知,讲授新课师:我们都知道平行线的画法,请同学们画出直线AB 的平行线CD ,结合画图过程思考画出的平行线,找一对同位角看它们的关系是怎样的?学生活动:学生在练习本上画图并思考.学生画图的同时教师在黑板上画出图形(见图4),当同学们思考时,教师有意识地重复演示过程.【教法说明】让同学们动手、动脑、观察思考,使学生养成自己发现问题得出规律的习惯.学生活动:学生能够在完成作图后,迅速地答出:这对同位。
《平行线的性质》数学教案

《平行线的性质》数学教案
标题:《平行线的性质》
一、教学目标
1. 让学生理解并掌握平行线的基本概念。
2. 通过实例让学生熟练掌握平行线的性质。
3. 培养学生的空间观念和逻辑思维能力。
二、教学重点与难点
1. 教学重点:平行线的基本概念及性质。
2. 教学难点:如何理解和应用平行线的性质。
三、教学过程
1. 导入新课:
- 创设情境,引发学生对平行线的好奇心。
- 提出问题,引导学生思考平行线的相关知识。
2. 新知探索:
- 平行线的基本概念:在同一平面上,不相交的两条直线叫做平行线。
- 平行线的性质:
- 同位角相等
- 内错角相等
- 同旁内角互补
3. 实例解析:
- 通过具体实例,让学生直观感受平行线的性质。
- 鼓励学生动手操作,亲自验证平行线的性质。
4. 练习巩固:
- 设计一些题目,让学生运用所学知识解决实际问题。
- 对学生的解答进行点评,帮助他们改正错误,加深理解。
5. 小结与反思:
- 引导学生总结本节课的学习内容。
- 鼓励学生分享自己的学习心得,提出疑问或困惑。
四、作业布置
- 安排一些练习题,让学生在课后进一步巩固所学知识。
五、教学反思
- 反思本节课的教学效果,评估学生的学习情况。
- 思考如何改进教学方法,提高教学质量。
第3讲 平行线的性质

全方位教学辅导教案学科:数学任课教师:授课时间: 2020 年月日(星期)【知识讲解】一、平行线的性质1、性质1:两条平行线被第三条直线所截,同位角相等。
2、性质2:两条平行线被第三条直线所截,内错角相等。
3、性质3:两条平行线被第三条直线所截,同旁内角互补。
提示:(1)只有当两条直线平行时,才会有同位角相等、内错角相等、同旁内角互补。
(2)平行线的性质和判定是直线的位置关系和角的数量关系之间的相互转换,不同的是性质以平行为条件,即由平行得到角相等或互补;判定是以平行为结论,即由角相等或互补得到两条直线平行。
二、命题1.命题的定义:判断一件事的语句叫做命题2.命题的构成:(1)命题是由题设和结论两部分组成的,题设是已知事项,结论是由已知事项退出的事项。
(2)命题通常可以写成“如果……那么……”的形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论。
例如,命题是“对顶角相等”,可以改写成:如果两个角使对顶角,那么这两个角相等。
题设:两个角是对顶角,结论:这个两个角相等。
3.命题分类:如果题设成立,结论一定成立,这样的命题是真命题;如果题设成立,结论不一定成立,这样的命题是假命题。
提示:(1)命题是用语句的形式对某件事作出肯定或否定的判断,这些判断包含“是”或“不是”,“具有”或“不具有”的特点。
(2)命题是一种判断,这种判断可能正确也可能错误。
(3)在找命题的题设和结论时,要分清命题的“已知事项”和“推出事项”(4)为了准确表达命题的题设和结论,有时需要对命题的语序进行调整或增减,使语句通顺、语意明确,但是不能改变原意。
总结:判断一个语句是不是命题,关键是看他是否对一件事作出了判断,命题的题设和结论不明显时,通常把语句改写成:如果……那么……的形式,“如果”后面接的是题设,“那么”后面接的是结论。
三、定理和证明1.定理:一些命题,它们的正确性是经过推理证实的,这样得到的真命题叫做定理,即所有的定理都是真命题。
北师大版八年级数学上册7.4平行线的性质教学设计

平行线的性质一、教学目标:①运用已学知识推导平行线的性质定理;②应用平行线的性质进行简单的推理和计算;③应用平行线的性质解决相关问题。
二、学习者分析:通过课前推送自主学习任务单,通过云平台收集并分析学生学情数据(包括知识储备和活动经验基础两个方面)三、教学重难点及解决措施:教学重点是探索平行线的性质,并进行简单的推理和计算,教学难点是应用平行线的性质解决问题。
通过自主学习发现问题、小组合作探究解决问题,利用智慧学习环境进行展示交流、小组互评等活动,进而掌握平行线的性质;通过精准测评、分层练习检测学生能否应用平行线的性质进行推理和计算以及解决生活中的实际问题。
四、过程设计第一环节:复习回顾该环节包括阅读理解、作业、提问与理答三个学习活动。
①阅读理解:课前教师通过教育云平台创建并推送学习任务单及检测题,学生通过阅读教材和学习任务单进行自主学习。
②作业:学生完成并提交检测题,教师利用云平台数据分析学生学习效果,精准掌握学生学情。
③提问与理答:教师利用思维导图对学生已学知识进行回顾,通过个别提问,交流学习困惑,进一步了解学情,为后续调整教学提供依据。
第二环节:新知探究该环节通过完成两个探究任务来达成第1个教学目标。
第一个探究任务,主要通过作业、讨论与交流、汇报与成果展示等学习活动完成。
①作业。
教师安排第一个探究活动,学生自主完成任务。
(设计意图:通过自主探究,激发学生探究数学问题的兴趣,通过动手测量获得感性体验,帮助学生得出猜想。
)作业内容:学生利用练习本中的直线或用直尺和三角尺画两条平行线a∥b,再画一条截线 c 与这两条平行线相交,标出图中的八个角。
并完成以下任务:任务1:找出图中的同位角任务2:观察每组同位角之间有什么数量关系?说出你的猜想任务3:再任意画一条截线d,你的猜想还成立吗?②讨论与交流。
自主完成学习任务后,小组合作进行讨论交流,将结果拍照上传至云平台,并浏览其他小组成果。
(设计意图:通过小组合作探究,实现知识的协同建构,同时提升学生的沟通、表达、合作的能力。
八年级数学上册《平行线的性质定理和判定定理》教案、教学设计

(3)综合应用平行线的性质和判定定理解决几何问题。
2.根据课堂学习,同学们尝试自己设计一道关于平行线的性质或判定的几何题目,并给出解题步骤和答案。
3.结合生活中的实例,举例说明平行线的性质定理在实际中的应用,并简述其原理。
4.撰写一篇关于平行线性质定理和判定定理的学习心得,内容包括:
(4)情境教学:创设生活情境,让学生在实际问题中感受几何知识的应用价值。
3.教学评价:
(1)过程性评价:关注学生在课堂上的表现,如参与度、思维活跃度等,及时给予鼓励和指导。
(2)形成性评价:通过作业、测试等形式,了解学生对平行线性质定理和判定定理的掌握程度。
(3)综合性评价:结合学生的课堂表现、作业完成情况和测试成绩,全面评估学生的学习成果。
3.布置课后作业,巩固学生对平行线性质和判定方法的理解。
4.鼓励学生继续探索几何知识,激发他们对数学的兴趣和热情。
五、作业布置
为了巩固学生对平行线性质定理和判定定理的理解,以及提高学生的几何解题能力,特布置以下作业:
1.请同学们完成课本第十章第2节后的练习题,重点掌握以下题型:
(1)运用性质定理解决角度问题。
八年级数学上册《平行线的性质定理和判定定理》教案、教学设计
一、教学目标
(一)知识与技能
1.理解平行线的定义,掌握平行线的性质定理,如同位角相等、内错角相等、同旁内角互补等。
2.学会使用直尺和圆规画平行线,掌握平行线的判定定理,如同位角相等、内错角相等、同旁内角互补等。
3.能够运用平行线的性质和判定定理解决几何图形中的相关问题,如求角度、证明线段平行等。
(1)自己在本节课中的收获和感悟。
(2)对平行线性质定理和判定定理的理解。
平行线教案5篇
平行线教案5篇平行线教案篇1一、教学目标1.了解推理、证明的格式,理解判定定理的证法.2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.二、学法引导1.教师教法:启发式引导发现法.2.学生学法:积极参与、主动发现、发展思维.三、重点·难点及解决办法(一)重点判定定理的推导和例题的解答.(二)难点使用符号语言进行推理.(三)解决办法1.通过教师正确引导,学生积极思维,发现定理,解决重点.2.通过教师指导,学生自行完成推理过程,解决难点及疑点.四、课时安排1课时五、教具学具准备三角板、投影仪、自制胶片.六、师生互动活动设计1.通过设计练习,复习基础,创造情境,引入新课.2.通过教师指导,学生探索新知,练习巩固,完成新授.3.通过学生自己总结完成小结.七、教学步骤(一)明确目标掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.(二)整体感知以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.(三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).学生活动:学生口答第1、2题.师:你能说出有什么条件,就可以判定两条直线平行呢?学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.教师将第3题图形画在黑板上.学生活动:学生口答理由,同角的补角相等.师:要求学生写出符号推理过程,并板书.【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?学生活动:同分内角.师:它们有什么关系.学生活动:互补.师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题.平行线教案篇2平行线的判定(1)课型:新课:备课人:韩贺敏审核人:霍红超学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.2.掌握直线平行的条件,领悟归纳和转化的数学思想学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.一、探索直线平行的条件平行线的判定方法1:二、练一练1、判断题1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∠b,理由是__________.(2)(3)2.如图2,若∠2=∠6,则______∠_______,如果∠3+∠4+∠5+∠6=180°, 那么____∠_______,如果∠9=_____,那么ad∠bc;如果∠9=_____,那么ab∠∠ef,cd∠ef b.∠5=∠a; c.∠abc+∠bcd=180° d.∠2=∠32.右图,由图和已知条件,下列判断中正确的是( )a.由∠1=∠6,得ab∠fg;b.由∠1+∠2=∠6+∠7,得ce∠eic.由∠1+∠2+∠3+∠5=180°,得ce∠fi;d.由∠5=∠4,得ab∠fg四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b 的位置关系,并说明理由.五、作业课本15页-16页练习的1、2、3、5.2.2平行线的判定(2)课型:新课:备课人:韩贺敏审核人:霍红超学习目标1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.学习重点:直线平行的条件的应用.学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.一、学习过程平行线的判定方法有几种?分别是什么?二.巩固练习:1.如图2,若∠2=∠6,则______∠_______,如果∠3+∠4+∠5+∠6=180°, 那么____∠_______,如果∠9=_____,那么ad∠bc;如果∠9=_____,那么ab∠cd.(第1题) (第2题)2.如图,一个合格的变形管道abcd需要ab边与cd边平行,若一个拐角∠abc=72°,则另一个拐角∠bcd=_______时,这个管道符合要求.二、选择题.1.如图,下列判断不正确的是( )a.因为∠1=∠4,所以de∠abb.因为∠2=∠3,所以ab∠ecc.因为∠5=∠a,所以ab∠ded.因为∠ade+∠bed=180°,所以ad∠be2.如图,直线ab、cd被直线ef所截,使∠1=∠2≠90°,则( )a.∠2=∠4b.∠1=∠4c.∠2=∠3d.∠3=∠4三、解答题.1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.2.已知,如图2,点b在ac上,bd∠be,∠1+∠c=90°,问射线cf与bd平行吗?试用两种方法说明理由.平行线教案篇3一、教学目标1.知识与技能(1)让学生在丰富的现实情境中进一步了解两条直线的平行关系,掌握有关的符号表示;(2)让学生经历用三角板、量角器画平行线的方法,积累操作经验;(3)在实践操作中,探索并了解平行线的有关性质;2、数学思考能在观察和想象两直线存在平行关系,并在实践、探索中获取平行线的有关性质。
5.4平行线的性质定理和判定定理-青岛版八年级数学上册教案
5.4 平行线的性质定理和判定定理-青岛版八年级数学上册教案一、知识要点1. 平行线的判定定理1.1 垂线垂直于同一直线的两个线段互相垂直。
1.2 夹角同侧两条直线与第三条直线所成的内角互不相等,则这两条直线平行。
1.3 平移若平面上两条直线同向平移,它们平行。
1.4 平行线的性质(定理)1.4.1 平行线的性质一:平行线夹角定理平面上两条平行线与第三条直线所成的内角互不相等。
1.4.2 平行线的性质二:同位角同位角是两条平行线加上一条第三条直线所形成的内角,同位角互相相等。
1.4.3 平行线的性质三:对顶角对顶角是两个交叉直线形成的补角,对顶角互相相等。
2. 平行线的性质定理2.1 垂线定理过平面外一点引平面上一条直线,该直线与引线段的垂线所形成的直角是唯一的。
2.2 垂线之间的关系式设两个垂线互相垂直,则它们分别在同一平面内,而且它们的交点是这两个平面的公共点。
2.3 垂线和平行线之间的关系式设一条直线与两条平行线相交,则所成的两个内角互不相等;设一条直线与两条平行线相交,则向所成的内角相等。
2.4 平行线夹角的定理若两直线在平面内一个点的两侧分别与另外一条直线交成两对内角互相相等,那么这两条直线互相平行。
3. 平行线的应用由平行线夹角定理和对位角性质,常用于平面图形中的切线和垂足问题的求解。
二、教学重点与难点重点:1.了解平行线的判定定理、性质定理和应用。
2.能够掌握垂线、夹角和平移等概念。
3.了解平行线夹角定理及对位角的性质。
难点:1.掌握平行线夹角定理及对位角的性质。
2.根据所给的数据判断直线是否平行。
3.利用平行线夹角定理和对位角的性质解决实际问题。
三、教学建议•学生可通过上网查找资料、阅读相关文献加深对平行线相关知识的理解。
•教师可配合多媒体教学工具,通过图片、图示等形式让学生更好的理解和掌握知识。
•教师可以将平行线运用到实际日常生活中的问题中,让学生更好地理解和应用平行线。
四、教学方法•理论教学:让学生在理论硬知识上有更加深刻的理解,注重同步练习(例如平行线的相关定理)•活动教学:在教学过程中,增加设计相关的实际操作活动,能够提高学生对知识的实用性的掌握(例如画出相关的图形)•启发式教学:注重启发学生的思维,引导学生,在实际应用中独立发掘相关知识,培养学生的发散性思维和创造性思维。
《平行线的性质》教学设计
《平行线的性质》教学设计【课题】北师大版数学七年级下册第二章第三节【必修课时】第1课时【课程标准要求】课标要求:掌握平行线的性质定理,了解平行线性质定理的证明课程标准分析:考虑到七年级学生的年龄状况和认知特点,本部分侧重于合理推理,即通过归纳和类比,结合经验和直觉,推断图形的某些属性,同时渗透演绎推理的相关思想。
【教材及学情分析】教材分析:本课程是《汉语图板必修2》第2章第2节的内容。
在系统研究了第一章人口和第二章第一节关于城市空间结构的内容后,本节主要从时间维度探讨了城市的发展过程和未来趋势。
为此,本文重点研究了城市化的内涵和标志、世界城市化进程以及城市化对地理环境的影响。
其中,城市化的内涵是基础,城市化的过程和特征是关键,城市化对地理环境的影响是关键。
根据教科书的内容,它需要分为两类:第一类:什么是城市化进程和世界城市化。
第2课:城市化对地理环境的影响。
学情分析:学生的知识技能基础:学生在小学就已经直观认识了角、平行与垂直,对其性质有了一定的了解。
在本章前面几节课中,在学习判定直线平行的条件的同时,自然引入了“三线八角”,认识了同位角、内错角和同旁内角。
这些知识储备为学生本节课的学习奠定了良好的知识技能基础。
学生活动体验的基础:7年级第一学期,学生在学习几何知识的过程中经历了一些探索和发现的数学活动,积累了一些直观的活动体验,具有一定的图形识别能力和借助图形分析和解决问题的能力,初步感受到解释论证的必要性;同时,经过一个学期的合作与交流,七年级学生初步形成了一定的合作学习经验,具备了一定的合作与交流能力。
c层学生整体思维活跃,学习主动性较强,数学思维能力及学习习惯方面较a层,b 层学生好,在教学过程中更应当给予足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程,进而达到发展学生思维的目的。
[学习目标]1.知识与技能:经历探索平行线性质的过程,掌握平行线的三条性质,进一步发展空间观念,推理能力和有条理的表达能力。
直线与平面平行的性质定理(公开课教案设计)
2.2.3 直线与平面平行的性质时间: 地点:高二( )班 授课人:一、教学目标 1.知识与技能通过教师的适当引导和学生的自主学习,使学生由直观感知获得猜想,经过逻辑论证,推导出直线与平面平行的性质定理,并掌握这一定理. 2.过程与方法(1)通过直观感知和操作确认的方法,发展几何直觉、运用图形语言进行交流的能力; (2)体会和感受通过自己的观察、操作等活动进行合情推理发现并获得数学结论的过程; (3)通过直线与平面平行的性质定理的实际应用,让学生体会定理的现实意义与重要性. 3.情感、态度与价值观通过主动参与、积极探究的学习过程,提高学生学习数学的自信心和积极性,培养合作意识和交流能力,领悟化归与转化的数学思想,提高学生分析、解决问题的能力. 二、教学重点与难点教学重点:直线与平面平行的性质定理.教学难点:综合应用线面平行的判定定理和性质定理. 三、授课类型:新授课 四、教学方法:师生合作探究 五、教具准备:三角板、小黑板 六、课时安排:1课时 七、教学过程教学内容师生互动 【回顾旧知】1.直线与平面的位置关系;线在面内;线面平行、线面相交(统称为“线在面外”) 2.直线与平面平行判定定理的内容.通过复习直线与平面平行的判定定理,温故而知新,为后面线线平行与线面平行的相互转化做铺垫.ααα////a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄【新课引入】思考:1.如果一条直线a 与平面α平行,那么这条直线与这个平面内的直线有哪些位置关系?2.在平面α内,哪些直线与直线a 平行?3.在什么条件下,平面α内的直线与直线a 平行呢? 通过演示实验,让学生观察、发现规律,并对发现的结论进行归纳.引导学生结合直观感知,层层递进,逐步探索,体会数学结论的发现过程.学生根据问题进行直观感知,进而提出合理猜想.并逐步探索,认真思考,画出相应图形,进行观察、感知、猜想.发现:过直线a 的某一平面,若与平面α相交,则直线a 就平行于这条交线. 已知://a α,a β⊂,b αβ=.求证://a b .证明:因为 b αβ=,所以 b α⊂.又因为 //a α, 所以 a 与b 无公共点. 又因为ββ⊂⊂b a ,, 所以 b a //.引导学生得出猜想,形成经验性结论,体会与感受数学结论的发现与形成过程:直观感知→操作确认→逻辑证明→形成经验.要求学生用语言描述发现的结论,并给出证明.【直线与平面平行的性质定理】一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.b a b a a ////⇒⎪⎭⎪⎬⎫=⊂βαβα要求学生总结归纳,并能用文字语言、符号语言图形语言描述直线与平面平行的性质定理,为学生正确使用定理打下基础.【定理探微】1.定理可以作为直线与直线平行的判定方法;2.定理中三个条件缺一不可....; 3.提供了过已知平面内一点作与该平面的平行线相平行的直线的方法,即:辅助平面法.明确定理的条件和结论及定理的用途.【例题讲解】例1(教材P59例3) 如图所示的一块木料中,棱BC 平行于面''A C . (1)要经过面''A C 内的一点P 和棱BC 将木料锯开,应怎样画线?(2)所画的线与平面AC 是什么位置关系? ★思路点拔1.怎样确定截面?过点P 所画的线应怎样画? 2.“线面平行” 与“线线平行”之间有怎样的联系? ★解答过程 解:(1)在平面''A C 内,过点P 作直线EF ,使//''EF B C ,并分别交棱''A B ,''C D 于点E ,F .连接BE ,CF ,则EF ,BE ,CF 就是应画的线. (2)因为棱BC 平行于平面''A C ,平面'BC 与平面''A C 交于''B C ,所以//''BC B C ,由(1)知,//''EF B C ,所以,//EF BC ,因此引导学生分析画截面的关键是确定截面与上底面的交线,怎样过P 点作BC 的平行线是作图的难点.学生经过认真思考,运用所学知识找到作图方法,体会到解决问题后成功的喜悦,认识到数学来源于实践又反过来为实践服务,加强用数学的意识.////EF BCEF AC EF AC BC AC ⎫⎪⊄⇒⎬⎪⊂⎭平面平面平面BE ,CF 显然都与平面AC 相交.思想方法:例2(教材P59例4)已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面. ★思路点拔1.文字性命题的解题步骤是什么? 2.“线面平行”与“线线平行”之间有怎样的联系? ★解答过程已知:如图所示,已知直线a 、b ,平面α, 且//a b ,//a α,a α⊄,b α⊄. 求证://b α. 证明:过a 作平面β,使c αβ=.因为//a α,a β⊂,c αβ=,所以//a c .又因为//a b ,所以//b c .因为c α⊂,b α⊄,所以//b α.引导学生分析问题的条件与结论,并结合图形写出己知和求证.通过分析寻找解题途径.本题的解题关键是实现线线平行与线面平行的转化.通过教师的板书,规范解题步骤与格式. 【课堂练习】1.如图,α∩β=CD ,α∩γ=EF ,β∩γ=AB ,AB ∥α 求证:CD ∥EF .学生独立完成练习l ,检查学习效果,使学生掌握证明线面平行问题的方法、步骤与格式,提高综合运用所学知识的能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、重点: 理解和简单应用本节课中的平行线的性质定理。
二、难点: 通过观察、分析、比较、思考、归纳、探索平行线的性质定理,进一步学习和掌握证明的
方法和步骤。
【教学过程】
教师活动
学生活动
设计意图
一、复习提问。
提出问题:
培养学生善于归纳证明的
(一)要证明两直线平行,
思路和方法,让学生体会几何
字叙述,你能做出相关图形吗? 示。
定理的理解,为准备应用定理
(二)你能根据所作图形
讨论问题,回答问题, 坐好准备。
写出已知求证吗?
互相补充。
训练学生的归纳能力、表
(三)你能说说证明的思
每四人一组,小组讨论, 达能力。
路吗?组织学生思考交流投影。发表每个人的看法,然后小
演示问题。
组派代表向全班汇报。
显示“做一做”:证明定
理:两直线平行,同旁内角互
补。启发思路,组织理,
组织学生讨论它们和上节的定
理的区别和联系。
三、课堂小结。
提出问题:你能说说证明
的一般步骤吗?组织并参与讨
论,进行小结。
作业布置
1.“随堂练习”。 2.习题。
复习课堂所学,知识提
巩固所学知识,加强训练
炼,独立完成作业。
推理证明的正确书写格式。
【板书设计】
一、复习提问。
2/3
二、课堂小结。 三、作业布置。 四、新知探究。
3/3
平行线的性质定理
【教学目标】
一、知识与技能: 会根据“两直线平行,同位角相等”证明“两直线平行,内错角相等”和“两直线平行,
同旁内角互补”,并能简单地应用这些结论。 二、过程与方法:
把握几何分析的方法,结合互逆思维和综合分析进行思考,有条理地想象和探索。 三、情感、态度与价值观:
培养合作探究的学习态度,体会互逆的思维过程和其在几何中的应用价值。
学生讨论,交流想法。
培养学生的逆向思维,掌
1/3
让学生说出定理的题设和
先独立思考,再在小组 握反证法证明的思路和过程。
结论,并画出图写出已知求证。 交流,然后回答问题,最后
训练学生独立思考、团队
提出问题:如果∠1≠∠2,AB 在联系本上动手画图,写出 合作、分析和推理表达的能力。
与 CD 的位置关系会怎样呢? 已知、求证及证明过程并一
有哪些方法?
复习所学知识,总结证
思维的灵活性和发散性;渗透
(二)你能将上一节的定 明的思路和方法,回答问题。
逆向思维,为学习本节课内容
理的条件和结合互换吗?组织
埋下伏笔。
复习交流引出新课。(板书课
题)
二、新知探究。
小组合作交流,画图操
培养学生对问题的探究能
显示定理:两直线平行, 作。
力。
同位角相等。
通过上台演示,充分挖掘
组织学生讨论证明过程。
一投影演示。
证明思路和方法,培养发散思
显示定理:两直线平行,
先独立思考,动手画图, 维。通过一提多证法,引导学
内错角相等。然后提示问题: 写出已知、求证及证明过程, 生形成几何的思想方法。
(一)根据上述定理的文 再与小组同伴交流并上台演
通过问题的讨论,加深对