高三文科数学期末试卷及答案
高三期末文科数学试题及答案

高三期末文科数学试题及答案数学试卷(文史类) 202X.1(考试时间120分钟满分150分)本试卷分为挑选题(共40分)和非挑选题(共110分)两部分第一部分(挑选题共40分)一、挑选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合A{1,0,1},B{x1x1},则AIB=A.{0,1}B.{1,0} C.{0} D.{1,0,1}2. 下列函数中,既是奇函数又存在零点的是A.f(x) 3. 实行如图所示的程序框图,则输出的i值为A.3 B.4 C.5 D.6第3题图4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果以下面的频率散布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有 B.f(x) 1 C.f(x)ex D.f(x)sinx x1A.30辆B.300辆C.170辆 D.1700辆频率 km/h)第 4题图5. 已知m,n表示两条不同的直线,,表示两个不同的平面,且m,n,则下列说法正确的是A.若//,则m//n B.若m,则C.若m//,则// D.若,则m n6.设斜率为2的直线l过抛物线y ax(a0)的焦点F,且与y轴交于点A,若OAF(O为坐标原点)的面积为4,则抛物线方程为A.y24x B. y24x C. y28x D.y28x7. 已知A,B为圆C:(x m)(y n)9(m,n R)上两个不同的点(C为圆心),且满足|CA CB|,则AB 222A. 23 B. C. 2 D. 48. 设函数f(x)的定义域为D,如果存在正实数m,使得对任意x D,当x m D时,都有f(x m)f(x),则称f(x)为D上的“m型增函数”.已知函数f(x)是定义在R上的奇函数,且当x0时,f(x)x a a(a R),若f(x)为R上的“20型增函数”,则实数a的取值范畴是A. a0 B.a20 C. a10 D. a5第二部分(非挑选题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.9.运算:i(1i) (i为虚数单位).y210. 双曲线x1的渐近线方程为3111. 在ABC中,若BC1,AC2,cosC,则AB sinA. 422xy0112.已知正数x,y满足束缚条件,则z()2x y的最小值为. 2x3y5013.某四棱锥的三视图如图所示,则该四棱锥的体积是.俯视图侧视图第13题图14. 在ABC中,AB AC,D为线段AC的中点,若BD的长为定值l,则ABC 面积的值为(用l表示).三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明进程.15. (本小题满分13分)已知数列{an}是等差数列,数列{bn}是各项均为正数的等比数列,且a1b13,a2b214,a3a4a5b3.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)设cn an bn,n N*,求数列{cn}的前n项和.16. (本小题满分13分)已知函数f(x)cos2xxcosx a的图象过点(,1).(Ⅰ)求实数a的值及函数f(x)的最小正周期;(Ⅱ)求函数f(x)在[0,]上的最小值. 617. (本小题满分13分)某中学从高一年级、高二年级、高三年级各选1名男同学和1名女同学,组成社区服务小组.现从这个社区服务小组的6名同学中随机选取2名同学,到社区老年中心参加“尊老爱老”活动(每位同学被选到的可能性相同).(Ⅰ)求选出的2人都是女同学的概率;(Ⅱ)设“选出的2人来自不同年级且是1名男同学和1名女同学”为事件N,求事件N产生的概率.18. (本小题满分14分)如图,在四棱锥P ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE与棱PD交于点F.(Ⅰ)求证:AB∥EF;(Ⅱ)若PA AD,且平面PAD平面ABCD,试证明AF平面PCD;(Ⅲ)在(Ⅱ)的条件下,线段PB上是否存在点 AM,使得EM平面PCD?(直接给出结论,不需要说明理由)19. (本小题满分13分)k2x,k R. x(Ⅰ)当k1时,求曲线y f(x)在点(1,f(1))处的切线方程;(Ⅱ)当k e时,试判定函数f(x)是否存在零点,并说明理由;(Ⅲ)求函数f(x)的单调区间. 已知函数f(x)(2k1)lnx20. (本小题满分14分)已知圆O:x y1的切线l与椭圆C:x3y4相交于A,B两点.(Ⅰ)求椭圆C的离心率;(Ⅱ)求证:OA OB;(Ⅲ)求OAB面积的值.2222北京市朝阳区2015-202X学年度第一学期期末高三年级统一考试数学答案(文史类) 202X.1一、挑选题:(满分40分)4二、填空题:(满分30分)(注:两空的填空,第一空3分,第二空2分)三、解答题:(满分80分)15. (本小题满分13分)解:(Ⅰ)设等差数列an的公差为d,等比数列bn的公比为q,且q0.依题意有,a1d b1q14, 23(a3d)bq.11由a1b13,又q0,解得q3, d 2.所以an a1(n1)d32(n1)2n1,即an2n1,n N.bn b1qn133n13n,n N. ………………………………………7分(Ⅱ)由于cn an bn2n13n,所以前n项和Sn(a1a2an)(b1b2bn)(352n1)(31323n)n(32n1)3(13n) 2133 n(n2)(3n1). 2所以前n项和Sn n(n2)16. (本小题满分13分)解:(Ⅰ)由f(x)cos2xxcosx a3n(31),n N*.………………………………13分 21cos2x a25sin(2x)61 a. 2611所以f()sin(2)a 1.解得a.66622函数f(x)的最小正周期为. …………………………………………………………7分由于函数f(x)的图象过点(,1),(Ⅱ)由于0x,所以2x. 2则sin(2x).1所以当2x,即x时,函数f(x)在[0,]上的最小值为. ……………13分2217.(本小题满分13分)解:从高一年级、高二年级、高三年级选出的男同学分别记为A,B,C,女同学分别记为X,Y,Z.从6名同学中随机选出2人参加活动的所有基本事件为:{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z}, {C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15个.……………4分(Ⅰ)设“选出的2人都是女同学”为事件M,则事件M包含的基本事件有{X,Y},{X,Z},{Y,Z},共3个,所以,事件M产生的概率 P(M)(Ⅱ)事件N包含的基本事件有{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6个,所以,事件N产生的概率P(N)31.……………………………………8分15562.……………………………………13分 15518. (本小题满分14分)(Ⅰ)证明:由于底面ABCD是正方形,所以AB∥CD.又由于AB平面PCD,CD平面PCD,所以AB∥平面PCD.又由于A,B,E,F四点共面,且平面ABEF平面PCD EF,所以AB∥EF.……………………5分(Ⅱ)在正方形ABCD中,CD AD.6第6 / 10页又由于平面PAD平面ABCD,且平面PAD平面ABCD AD,所以CD平面PAD.又AF平面PAD 所以CD AF.由(Ⅰ)可知AB∥EF,又由于AB∥CD,所以CD∥EF.由点E是棱PC中点,所以点F是棱PD中点.在△PAD中,由于PA AD,所以AF PD.又由于PD CD D,所以AF平面PCD........................................11分(Ⅲ)不存在. (14)分19. (本小题满分13分)解:函数f(x)的定义域:x(0,).2k1k2x2(2k1)x k(x k)(2x1)f(x)22 . 22xxxx12x. x(x1)(2x1)f(x). 2x(Ⅰ)当k1时,f(x)lnx有f(1)ln1123,即切点(1,3),k f(1)(11)(21) 2. 21所以曲线y f(x)在点(1,f(1))处切线方程是y32(x1),即y2x 1.………………………………………………………………………4分(Ⅱ)若k e,f(x)(2e1)lnx f(x)e2x.x(x e)(2x1).x2令f(x)0,得x1e(舍),x2 1. 7第7 / 10页11e1则f(x)min f()(2e1)ln22(1ln2)e ln210.22122所以函数f(x)不存在零点. ………………………………………………………8分(x k)(2x1).x2当k0,即k0时,(Ⅲ) f(x)当0k11,即k0时,当k,即k时, 22 当k11,即k时,228第8 / 10页综上,当k0时,f(x)的单调增区间是(,);减区间是(0,).1212111k0时,f(x)的单调增区间是(0,k),(,);减区间是(k,). 2221当k时,f(x)的单调增区间是(0,);211当k时,f(x)的单调增区间是(0,),(k,);221减区间是(,k). ……………………………13分2当20. (本小题满分14分)2解:(Ⅰ)由题意可知a4,b248222,所以c a b. 33所以e c.所以椭圆C的离心率为…………………………3分a33(Ⅱ)若切线l的斜率不存在,则l:x1.x23y21中令x1得y1.在44不妨设A(1,1),B(1,1),则OA OB110.所以OA OB.同理,当l:x1时,也有OA OB.若切线l的斜率存在,设l:y kx m1,即k21m2.由y kx m222,得(3k1)x6kmx3m40.明显0. 22x3y46km3m24设A(x1,y1),B(x2,y2),则x1x22,x1x2.3k13k21所以y1y2(kx1m)(kx2m)kx1x2km(x1x2)m.2222所以OA OB x1x2y1y2(k1)x1x2km(x1x2)m9第9 / 10页3m246km(k1)2km2m23k13k12(k21)(3m24)6k2m2(3k21)m223k14m24k244(k21)4k240. 223k13k1所以OA OB.综上所述,总有OA OB成立.………………………………………………9分(Ⅲ)由于直线AB与圆O相切,则圆O半径即为OAB的高. 当l的斜率不存在时,由(Ⅱ)可知AB2.则S OAB 1. 当l的斜率存在时,由(Ⅱ)可知,AB23k14(1k2)(9k21)4(9k410k21)4k2所以AB4(14)(3k21)29k46k219k6k212k21641644416419k6k213329k26k(当且仅当k时,等号成立).所以ABmax, (S OAB)max.时,OAB面积的值为.…………14分 33综上所述,当且仅当k。
2021年高三上学期期末考试数学(文)试题(普通班) 含答案

2021年高三上学期期末考试数学(文)试题(普通班)含答案本试卷分第I卷(选择题)和第II卷(非选择题)两部分.满分150分,考试时间120分钟.第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}=--==∈,则()A B y y x x A2,1,0,2,3,|,A. B. C. D.2. 设命题 ,则为()A. B.C. D.3. 已知是虚数单位,复数满足,则()A. B.或 C.或 D.4. 双曲线的顶点到渐近线的距离为()A. B. C. D.5. 已知,则()A. B. C. D.6.一个简单几何体的正视图、侧视图如图所示,则其俯视图可能为:①长、宽不相等的长方形;②正方形;③圆;④椭圆.其中正确的是()A.①② B.②③ C. ①④ D.③④7.设函数,则下列结论正确的是()A.的图像关于直线对称B.的图像关于点对称C.的最小正周期为,且在上为增函数D.把的图像向右平移个单位,得到一个奇函数的图像8.函数的图象大致是()9. 执行右面的程序框图,如果输入的n =1,则输出的值满足()结束A. B. C. D.110. 已知满足,若不等式恒成立,则实数的取值范围是( ).A. B. C. D.11.已知点P为函数f(x)=lnx的图象上任意一点,点Q为圆2+y2=1任意一点,则线段PQ 的长度的最小值为()A. B. C. D.e+﹣112.已知f(x)=x(1+lnx),若k∈Z,且k(x﹣2)<f(x)对任意x>2恒成立,则k的最大值为()A. 3 B. 4 C. 5 D. 6第II卷二、填空题:本大题共4小题,每小题5分.13.已知向量,,若,则 .14.已知实数满足条件,则的最小值为 .15. 抛物线 与椭圆 有相同的焦点, 抛物线与 椭圆交于,若共线,则椭圆的离心率等于 .16. 已知数列的前项和,则数列 的前项和等于 . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)如图,在中,点在边上,且.记∠ ,∠. (1)求证: ; (2)若,求的长。
2019-2020学年上学期高三期末考试文科数学(含答案)教师版

2019-2020学年上学期高三期末考试文科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{|6}A x x =∈<N ,{}2|8150B x x x =-+<,则A B I 等于( ) A .{}35x x << B .{}4 C .{}3,4 D .{}3,4,5【答案】B【解析】由题意,集合{|6}{0,1,2,3,4,5}A x x =∈<=N ,{}2|8150{|35}B x x x x x =-+<=<<,{}4A B =I .2.设i 为虚数单位,如果复数i(1i)3a -的实部和虚部互为相反数,那么实数a 等于( ) A .13-B .1-C .13D .1【答案】B【解析】i 1(1i)i 333a a -=+,复数的实部和虚部互为相反数,则1033a +=,解得1a =-. 此卷只装订不密封班级 姓名 准考证号 考场号 座位号3.从1,2,3,4这四个数字中随机选择两个不同的数字,则它们之和为偶数的概率为( ) A .14B .13C .12D .23【答案】B【解析】从1,2,3,4这4个数字中,随机抽取两个不同的数字,基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),这两个数字的和为偶数包含的基本事件为(1,3),(2,4), ∴这两个数字的和为偶数的概率为2163P ==. 4.已知向量(2,1)=-a ,(1,)λ=b ,若()()22+-∥a b a b ,则实数λ=( ) A .2 B .2- C .12D .12-【答案】D【解析】向量(2,1)=-a ,(1,)λ=b ,则2(4,21)λ+=-a b ,2(3,2)λ-=--a b ,又()()22+-∥a b a b ,所以4(2)3(21)0λλ----=,解得12λ=-.5.若函数()y f x =的大致图像如图所示,则()f x 的解析式可以是( )A .()x x x f x e e -=+B .()x x xf x e e -=- C .()x x e e f x x -+= D .()x x e e f x x --=【答案】C【解析】当0x →时,()f x →±∞,排除A (A 中的()0f x →); 当0x <时,()0f x <,而选项B 中,0x <时,()0x xxf x e e -=>-,选项D 中()0x xe ef x x--=>,排除B ,D ,所以C 正确.6.函数π()sin()3f x x ω=-在区间[0,2π]上至少存在5个不同的零点,则正整数ω的最小值为( ) A .2 B .3C .4D .5【答案】B【解析】函数π()sin()3f x x ω=-在区间[0,2π]上至少存在5个不同的零点,πππ[,2π]333x ωω-∈--,根据题意得到只需要π132π4π36ωω-≥⇒≥,最小整数为3. 7.已知抛物线22(0)y px p =>的焦点为F ,点P 为抛物线上一点,过点P 作抛物线的准线的垂线,垂足为E ,若60EPF ∠=︒,PEF △的面积为163,则p =( ) A .2 B .22C .4D .8【答案】C【解析】抛物线22y px =焦点为F ,点P 为抛物线上一点, 过P 作抛物线的准线的垂线,垂足是E ,若60EPF ∠=︒,由抛物线的定义可得||||||PF PE EF ==,PEF △是正三角形,PEF △的面积为163,∴122sin 601632p p ⨯⨯⨯︒=,得4p =.8.设实数x,y满足32603260x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩,则731x y+-的最小值为()A.15-B.13-C.11-D.9-【答案】A【解析】先根据实数x,y满足32603260x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩,画出可行域,如图所示,(2,0)A-,(0,3)B,(2,0)C,当直线731z x y=+-过点A时,目标函数取得最小值,731x y+-最小值是15-.9.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”(已知1丈为10尺)该锲体的三视图如图所示,则该锲体的体积为()A.12000立方尺B.11000立方尺C.10000立方尺D.9000立方尺【答案】C【解析】由题意,将楔体分割为三棱柱与两个四棱锥的组合体,作出几何体的直观图如图所示,沿上棱两端向底面作垂面,且使垂面与上棱垂直, 则将几何体分成两个四棱锥和1个直三棱柱,则三棱柱的体积1132262V =⨯⨯⨯=,四棱锥的体积2113223V =⨯⨯⨯=,由三视图可知两个四棱锥大小相等, ∴12210V V V =+=立方丈10000=立方尺.10.点A ,B ,C ,D 在同一球面上,2AB BC ==2AC =,若球的表面积为25π4,则四面体ABCD 体积的最大值为( )A .12B .34C .23D .1【答案】C【解析】因为球的表面积为25π4,所以225π4π4R =,∴54R =,因为222224AB BC AC +=+==,所以三角形ABC 为直角三角形,从而球心到平面ABC 222531144()R -=-=,因此四面体ABCD 体积的最大值为()(13512223442)3⨯+⨯=.11.已知函数sin(),0()cos(),0x x f x x x αβ+≤⎧=⎨->⎩是偶函数,则下列结论可能成立的是( )A .π4α=,π8β=B .π3α=,π6β=C .5π6α=,2π3β= D .2π3α=,π6β=【答案】D【解析】根据题意,设0x <,则0x ->, 则由()sin()f x x α=+,()cos()f x x β-=--, 又由函数()f x 是偶函数,则sin()cos()x x αβ+=--, 变形可得sin()cos()x x αβ+=+,即sin cos cos sin cos cos sin sin x x x x ααββ+=-, 必有sin cos αβ=,cos sin αβ=-,分析可得π2αβ=+,可得2π3α=,π6β=满足题意.12.若函数32()ln f x x x x x ax =-+-有两个不同的零点,则实数a 的取值范围是( ) A .()0,+∞ B .(0,1]C .[1,0)-D .(),0-∞【答案】D【解析】由()0f x =,得2ln a x x x =-+, 令2()ln g x x x x =-+,则1(21)(1)()21x x g x x x x-+-'=-+=, 因此当1x >时,()0g x '<,()(,0)g x ∈-∞; 当01x <<时,()0g x '>,()(,0)g x ∈-∞, 从而要有两个不同的零点,需0a <.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.甲、乙两名同学八次化学测试成绩得分茎叶图如下图所示,若乙同学成绩的平均分为90,则甲同学成绩的平均分为 .【答案】89【解析】由题乙同学的平均分为8283878992939098908a ++++++++=,解得6a =,故甲同学成绩的平均分为8182868892939496898+++++++=.14.在平面直角坐标系中,设角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边与单位圆的交点的横坐标为13,则cos2α的值等于 .【答案】79-【解析】∵角α的顶点与原点重合,始边与x 轴非负半轴重合,终边与单位圆的交点的横坐标为13,∴13x =,1r =,∴1cos 3α=,∴2217cos 22cos 12()139αα=-=⨯-=-.15.已知()f x 是定义在R 上的奇函数,若()f x 的图象向左平移2个单位后关于y 轴对称,且(1)1f =,则(4)(5)f f += . 【答案】1-【解析】∵()f x 是定义在R 上的奇函数,∴(0)0f =,将()f x 的图象向左平移2个单位后,得到()(2)g x f x =+为偶函数, 则()()g x g x -=,即(2)(2)f x f x -+=+,又()f x 是定义在R 上的奇函数,∴(2)(2)f x f x --=+,即()(4)f x f x =-+,(4)(5)(04)(14)(0)(1)011f f f f f f +=+++=--=-=-.16.已知F 是抛物线24x y =的焦点,P 为抛物线上的动点,且A 的坐标为3(,1)2-,则||||PF PA 的最小值是 .【答案】5【解析】抛物线24x y =的焦点(0,1)F ,准线方程为1y =-,过点P 作PM 垂直于准线,M 为垂足,则由抛物线定义可得||||PF PM =, 当M 与A 重合时,||||1||||PF PM PA PM ==; 当M 与A 不重合时,所以||||sin ||||PF PM PAM PA PA ==∠,PAM ∠为锐角, 故当PAM ∠最小时,||||PF PA 最小,故当PA 和抛物线相切时,||||PF PA 最小,设切点21(,)4P a a ,由214y x =得导数为12y x '=,则PA 的斜率为21114322a a a +=-,求得4a =或1-,可得(4,4)P 或1(1,)4P -, 当(4,4)P 时,||5PM =,||2PA =,||||||||PF PM PA PA ===; 当1(1,)4P -时,5||4PM =,||PA =,5||||||||5PF PM PA PA ===, 综上所述,故||||PF PA的最小值是5.三、解答题:本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)已知数列{}n a 的前n 项和为n S ,11a =,11n n a S +=+.(1)求{}n a 的通项公式;(2)记()21logn n n b a a +=⋅,数列{}n b 的前n 项和为n T ,求证:121112nT T T ++⋯+<. 【答案】(1)12n n a -=;(2)证明见解析.【解析】(1)因为11n n a S +=+,所以2n ≥,11n n a S -=+, 两式相减化简得:12(2)n n a a n +=≥, 又11a =,所以22a =,212a a =符合上式,所以{}n a 是以1为首项,以2为公比的等比数列,所以12n n a -=.(2)由(1)知()()1212log log 2221n n n n n b a a n -+=⋅=⨯=-,所以21(21)2n n T n n +-==,所以222121111111111121223(1)n T T T n n n++⋯+=++⋯+<+++⋯+⋅⋅- 11111111222231n n n=+-+-+⋯+-=-<-.18.(12分)画糖是一种以糖为材料在石板上进行造型的民间艺术,常见于公园与旅游景点.某师傅制作了一种新造型糖画,为了进行合理定价先进性试销售,其单价x (元)与销量y (个)相关数据如下表:(1)已知销量y 与单价x 具有线性相关关系,求y 关于x 的线性相关方程; (2)若该新造型糖画每个的成本为7.7元,要使得进入售卖时利润最大,请利用所求的线性相关关系确定单价应该定为多少元?(结果保留到整数)参考公式:线性回归方程$y abx =+$中斜率和截距最小二乘法估计计算公式:1221ni ii nii x y nx ybx nx==-=-∑∑$,$a y bx =-$,参考数据:51419.5i ii x y ==∑,521453.75i i x ==∑. 【答案】(1) 3.239.4y x =-+;(2)10元.【解析】(1)由表中数据,计算1(8.599.51010.5)9.55x =⨯++++=,1(1211976)95y =⨯++++=,则12221419.559.59 3.2453.7559.5ni ii ni i x y nx ybx nx ==--⨯⨯===--⨯-∑∑$,$9(3.2)9.539.4a y bx =-=--⨯=$, 所以y 关于x 的线性相关方程为 3.239.4y x =-+.(2)设定价为x 元,则利润函数为( 3.239.4)(7.7)y x x =-+-, 其中7.7x ≥,则23.264.04303.38y x x =-+-,所以64.04102( 3.2)x =-≈⨯-(元),为使得进入售卖时利润最大,确定单价应该定为10元.19.(12分)如图,平面ABCD ⊥平面ADEF ,其中ABCD 为矩形,ADEF 为直角梯形,AF DE ∥,AF FE ⊥,222AF EF DE ===.(1)求证:平面BFD ⊥平面ABCD ;(2)若三棱锥B ADF -体积为13,求BD 与面BAF 所成角的正弦值.【答案】(1)证明见解析;(2)33. 【解析】证明:作DH AF ⊥于H ,∵AF FE ⊥,222AF EF DE ===,∴1HF DH ==,∴45HDF ∠=︒, ∵2AF =,∴1AH =,∴45ADH ∠=︒,∴90ADF ∠=︒,即DF AD ⊥, ∵面ABCD ⊥面ADEF ,AD 为两个面的交线,∴FD ⊥面ABCD ,又FD ⊂平面BFD ,∴平面BFD ⊥平面ABCD .(2)因为平面ABCD ⊥平面ADEF ,AB AD ⊥,所以AB ⊥平面ADEF ,111||1||333B ADF ADF V S AB AB -∆=⨯⨯=⨯⨯=,所以1AB =,∴3BD =, 连接BH ,易知DBH ∠为线BD 与面BAF 所成的角, 在直角BDH △中,3BD =,1DH =,∴3sin 33DBH ∠==, 所以BD 与面BAF 所成角的正弦值为3.20.(12分)已知椭圆22221(0):x y a b a E b +=>>33. (1)求E 的方程;(2)是否存在直线:l y kx m =+与E 相交于P ,Q 两点,且满足:①OP 与OQ (O 为坐标原点)的斜率之和为2;②直线l 与圆221x y +=相切,若存在,求l 的方程;若不存在,请说明理由.【答案】(1)2214x y +=;(2)存在,2y x =-±. 【解析】(1)由已知得3c a =,221314a b +=,解得24a =,21b =, ∴椭圆E 的方程为2214x y +=.(2)把y kx m =+代入E 的方程得()()222148410k x kmx m +++-=,设()11,P x y ,()22,Q x y ,则122814km x x k -+=+,()21224114m x x k-=+①, 由已知得()()12211212211212122OP OQ kx m x kx m x y y y x y x k k x x x x x x +++++=+===, ∴()12122(1)0k x x m x x -++=②,把①代入②得()22228(1)1801414k m km k k ---=++,即21m k +=③, 又()()2221641164Δk m k k =-+=+,由224010k k m k ⎧+>⎨=-≥⎩,得14k <-或01k <≤, 由直线l 与圆221x y +=1=④,③④联立得0k =(舍去)或1k =-,∴22m =,∴直线l 的方程为y x =-±.21.(12分)已知函数1()ln f x a x x x=-+(0a ≠,0a >). (1)当2a =时,比较()f x 与0的大小,并证明;(2)若()f x 存在两个极值点1x ,2x ,证明:12()()0f x f x ⋅<.【答案】(1)见解析;(2)证明见解析.【解析】(1)当2a =时,1()2ln f x x x x=-+, 则222222121(1)()10x x x f x x x x x-+--'=--==-≤, 所以函数1()2ln f x x x x=-+在(0,)+∞上单调递减,且(1)0f =, 所以当01x <<时,()0f x >;当1x >时,()0f x <;当1x =时,()0f x =.(2)函数1()ln f x a x x x=-+,则22211()1a x ax f x x x x -+'=--=-,当02a <≤时,221()0x ax f x x -+'=-≤在(0,)+∞上恒成立, 即()f x 在(0,)+∞不存在极值,与题意不符,所以2a >,又1x ,2x 是方程210x ax -+-=的两根,不妨设21x x >,由韦达定理得1212a x x +=>,121x x =, 又()f x 在区间12(,)x x 上递增,且(1)0f =,121x x <<,所以1()0f x <,2()0f x >,即12()()0f x f x ⋅<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,已知点M 的直角坐标为(1,0),直线l的参数方程为122x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2sin 4cos ρθθ=.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)直线l 和曲线C 交于A 、B 两点,求11||||MA MB +的值. 【答案】(1)10x y --=和24y x =;(2)1.【解析】(1)将122x y ⎧=+⎪⎪⎨⎪=⎪⎩中参数t 消去得10x y --=,将cos sin x y ρθρθ=⎧⎨=⎩代入2sin 4cos ρθθ=,得24y x =, ∴直线l 和曲线C 的直角坐标方程分别为10x y --=和24y x =.(2)将直线l 的参数方程代入曲线C的普通方程,得280t --=,设A 、B 两点对应的参数为1t 、2t ,则1||||MA t =,2||||MB t =,且12t t +=128t t =-,∴1212||||||8t t t t +=-==, ∴1212121212||||||11111||||||||||||t t t t MA MB t t t t t t +-+=+===. 23.(10分)【选修4-5:不等式选讲】已知函数()|2|1()f x x λλ=-+-∈R ,(2)0f x +≥的解集为(,1][1,)-∞-+∞U . (1)求实数λ的值;(2)若关于x 的不等式()||0f x x a +-≥对x ∈R 恒成立,求实数a 的取值范围.【答案】(1)2λ=;(2)(,1][3,)-∞+∞U .【解析】(1)由题意,可得(2)||10f x x λ+=+-≥, 即10111x x x λλλλ-≥⎧≥-⇒⎨≤-≥-⎩或, 又因为解集为(,1][1,)-∞-+∞U ,所以112λλ-=⇒=.(2)不等式()||0|2|||1f x x a x x a +-≥⇔-+-≥,|2|||x x a -+-表示数轴上到点2x =和x a =的距离之和,则1a ≤或3a ≥,于是,当关于x 的不等式()||0f x x a +-≥对x ∈R 恒成立时,实数a 的取值范围是(,1][3,)-∞+∞U .。
2021-2022学年河南省南阳市高三(上)期末数学试卷(文科)(附详解)

2021-2022学年河南省南阳市高三(上)期末数学试卷(文科)一、单选题(本大题共12小题,共60.0分)1.复数z=2i,则z的模为()1+iA. 1−iB. 1+iC. √2D. 22.已知集合A={(x,y)|x2+y2=1},B={y|y=x},则A∩B中元素的个数为()A. 3B. 2C. 1D. 03.设有下面四个命题:>3;p1:∃x0∈(0,+∞),x0+1x0p2:x∈R,“x>1是“x>2”的充分不必要条件;p3:命题“若x−312是有理数,则x是无理数”的逆否命题;p4:若“p∨q”是真命题,则p一定是真命题.其中为真命题的是()A. p1,p2B. p2,p3C. p2,p4D. p1,p34.向量|a⃗|=2,|b⃗ |=1,a⃗,b⃗ 的夹角为120°,则a⃗⋅(a⃗−b⃗ )=()A. 5B. 6C. 7D. 8)的图象是()5.函数f(x)=ln(x−1xA. B.C. D.6.正项数列{a n}的前n项和为S n,∀n∈N∗,都有4S n=a n2+2a n,则数列{(−1)n a n}的前2022项的和等于()A. −2021B. 2021C. −2022D. 20227.如图,某三棱锥的三视图均为直角三角形.若该三棱锥的顶点都在同一个球面上,则该球的表面积为()A. 25πB. 50πC. 1253π D. 252π8.战国时期,齐王与臣子田忌各有上、中、下三匹马.有一天,齐王要与田忌赛马,双方约定:(1)从各自上、中、下三等级马中各出一匹马;(2)每匹马参加且只参加一次比赛;(3)三场比赛后,以获胜场次多者为最终胜者.已知高等级马一定强于低等级马,而在同等级马中,都是齐王的马强,则田忌赢得比赛的概率为()A. 12B. 13C. 14D. 169.设F为双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为()A. √2B. √3C. 2D. √510.{b n}为正项等比数列,b1=1.等差数列{a n}的首项a1=2,且有a2=b3,a4=b4.记c n=a nb n,数列{c n}的前n项和为S n.∀n∈N∗,k≤S n恒成立,则整数k的最大值为()A. 4B. 3C. 2D. 111.已知f(x)=2sin x2cos x2+2√3cos2x2−√3,若|f(x)−m|≤3对任意x∈[−5π6,π6]恒成立,则实数m的取值范围为()A. [−1,1]B. [−12,12] C. [0,12] D. [0,1]12.如果直线l与两条曲线都相切,则称l为这两条曲线的公切线.如果曲线C1:y=lnx和曲线C2:y=x−ax(x>0)有且仅有两条公切线,那么常数a的取值范围是()A. (−∞,0)B. (0,1)C. (1,e)D. (e,+∞)二、单空题(本大题共4小题,共20.0分)13.已知实数x,y满足x2+y2=4,则y+4的最小值为______.x+214.给出下列四种说法:①将一组数据中的每个数都加上或减去同一个常数后,均值与方差都不变;②在一组样本数据(x1,y1),(x2,y2),⋯,(x n,y n)(n≥2,x1,x2,⋯,x n不全相等)的x+1上,则这组样散点图中,若所有样本点(x i,y i)(i=1,2,⋯,n)都在直线y=−12;本数据的线性相关系数为−12③回归直线y=bx+a必经过点(x−,y−);④在吸烟与患肺病这两个分类变量的计算中,由独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说若有100人吸烟,那么其中有99人患肺病.其中错误结论的编号是______.mx2有两个极值点,则实数m的取值范围为.15.已知函数f(x)=xlnx+1216.如图所示,三棱锥A−BCD中,∠BAC=∠BCA,BD=5AC=10√2,∠DCA=∠DAC,AB+AD=54则三棱锥A−BCD体积的最大值为______.三、解答题(本大题共7小题,共82.0分)17.某种治疗新型冠状病毒感染肺炎的复方中药产品的质量以其质量指标值衡量,质量指标越大表明质量越好,为了提高产品质量,我国医疗科研专家攻坚克难,新研发出A、B两种新配方,在两种新配方生产的产品中随机抽取数量相同的样本,测量这些产品的质量指标值,规定指标值小于85时为废品,指标值在[85,115)为一等品,大于115为特等品.现把测量数据整理如下,其中B配方废品有6件.A配方的频数分布表质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数8a36248(1)求a,b的值;(2)试确定A配方和B配方哪一种好?(说明:在统计方法中,同一组数据常用该组区间的中点值作为代表)18.如图①,在平面五边形SBCDA中,AD//BC,AD⊥AB,AD=2BC=2AB,将△SAB沿AB折起到P的位置,使得平面PAB⊥底面ABCD,如图②,且E为PD的中点.(Ⅰ)求证:CE//平面PAB;(Ⅱ)若PA=PB=6,AB=4,求三棱锥A−BCE的体积.19.△ABC中,角A,B,C的对边分别为a,b,c,已知点(a,b)在直线x(sinA−sinB)+ysinB=csinC上(1)求角C的大小;(2)若△ABC为锐角三角形且满足mtanC =1tanA+1tanB,求实数m的最小值.20.已知O为坐标原点,椭圆Γ:x2a2+y2b2=1(a>b>0)的右顶点为A,离心率为√32.动直线l:y=1m(x−1)与Γ相交于B,C两点,点B关于x轴的对称点为B′,点B′到Γ的两焦点的距离之和为4.(1)求Γ的标准方程;(2)若直线B′C与x轴交于点M,△OAC,△AMC的面积分别为S1,S2,问S1S2是否为定值?若是,求出该定值;若不是,请说明理由.21.已知函数f(x)=xlnx+e x(lnx−x)+1.(1)求曲线y=f(x)在点(1,f(1))处的切线方程.(2)若对∀x∈(0,+∞),f(x)≤ae x恒成立,求实数a的取值范围.22.心形线是由一个圆上的一个定点当该圆绕着与其相切且半径相同的另外一个圆周上滚动时,这个定点的轨迹,因其形状像心形而得名在极坐标系Ox中,方程ρ=a(1−sinθ)(a>0)表示的曲线C1就是一条心形线.如图,以极轴Ox所在直线为x轴,极点O为坐标原点的直角坐标系xOy中,已知曲线C2的参数方程为{x=1+√33ty=√3+t(t为参数).(1)求曲线C2的极坐标方程;(2)若曲线C1与C2相交于A,O,B三点,求线段AB的长.23.设函数f(x)=|2x−1|−|x+4|.(Ⅰ)解不等式:f(x)>0;(Ⅱ)若f(x)+3|x+4|≥|a−1|对一切实数x均成立,求a的取值范围.答案和解析1.【答案】C【解析】解:因为z=2i1+i =2i(1−i)(1+i)(1−i)=1+i,则|z|=√2.故选:C.根据复数的运算法则进行化简,然后结合复数的模长公式可求.本题主要考查复数模长的计算,属于基础题.2.【答案】B【解析】解:根据题意,画出图象,如图所示,A∩B中元素的个数为圆x2+y2=1与直线y=x的交点个数,由图象可得,交点个数为2个.故选:B.根据已知条件,画出图象,结合图象,即可求解.本题主要考查直线与圆的位置关系,考查数形结合思想,属于基础题.3.【答案】D【解析】解:p1:∃x0=4∈(0,+∞),x0+1x0=4+14>3,故p1正确;p2:x∈R,x>1不能⇒x>2,即充分性不成立,即“x>1不是“x>2”的充分不必要条,故p2错误;p3:命题“若x−312是有理数,则x是无理数”为真命题,故其逆否命题也为真命题,故p3正确;p4:若“p∨q”是真命题,则p、q至少有一个是真命题,即p不一定为真命题,故p4错误;故以上命题中正确的是p1、p3;故选:D.对于p1,举例说明即可判断其正误;对于p2,利用充分条件的定义可判断其正误;对于p3,先判断命题“若x−312是有理数,则x是无理数”的真假,再利用互为“逆否命题”的两命题真假性一致,可判断p3的正误;对于p4,“p∨q”是真命题⇒p、q至少有一个是真命题,可判断p4的正误.本题考查命题的真假判断与应用,考查四种命题,充分、必要条件的概念及应用,熟练掌握互为逆否的两个命题真假性相同,及四种命题的定义是解答的关键,属于中档题.4.【答案】A【解析】解:∵|a⃗|=2,|b⃗ |=1,a⃗,b⃗ 的夹角为120°,∴a⃗⋅(a⃗−b⃗ )=a⃗2−a⃗⋅b⃗ =4−2×1×(−12)=5,故选:A.利用向量数量积的坐标运算求解即可.本题考查了向量数量积的坐标运算,属于基础题.5.【答案】B【解析】【分析】本题主要考查了对数函数的定义域和复合函数的单调性,属于基础题.首先根据对数函数的性质,求出函数的定义域,再很据复合函数的单调性求出f(x)的单调性,问题得以解决.【解答】解:因为x−1x 1x>0,解得x>1或−1<x<0,所以函数f(x)=ln(x−1x 1x)的定义域为:(−1,0)∪(1,+∞).所以选项A、D不正确.当x∈(−1,0)时,g(x)=x−1x 1x是增函数,因为y=lnx是增函数,所以函数f(x)=ln(x−1x 1x)是增函数.故选B.6.【答案】D【解析】解:∵正项数列{a n}的前n项和为S n,∀n∈N∗,都有4S n=a n2+2a n,①∴4S1=a12+2a1⇒a1=2,(a1=0不成立,舍去),4S n−1=a n−12+2a n−1,②①−②得:4a n=a n2+2a n−(a n−12+2a n−1)⇒(a n+a n−1)(a n−a n−1−2)=0,∵a n>0,∴a n−a n−1−2=0⇒a n−a n−1=2,∴数列{a n}的通项公式为:a n=2n,∴数列{(−1)n a n}的前2022项的和等于:−2+4−6+8−10+....−4042+4044=2×1011=2022,故选:D.根据数列的递推关系,求出数列的通项公式,进而求解结论即可.本题主要考查数列通项公式和前n项和的求解,属于中档题目.7.【答案】B【解析】解:由题意可知,题中三视图对应的三棱锥各个顶点均在一个长宽高分别为3,4,5的长方体上,则原问题转化为长方体的外接球,设球的半径为R,由题意可得(2R)2=32+42+52=50,即4R2=50,故球的表面积S=4πR2=50π.故选:B.将原问题转化为长方体外接球的问题,然后确定其表面积即可.本题主要考查结合体的外接球问题,三视图与原几何体的关系,球的表面积公式等知识,属于基础题.8.【答案】D【解析】解:三场比赛基本事件总数n=3×2×1=6,田忌赢得比赛包含的基本事件有1种,即田忌下等马对阵刘王上等马,田忌上等马对阵刘王中等马,田忌中等马对阵刘王下等马,∴田忌赢得比赛的概率为P=1.6故选:D.三场比赛基本事件总数n=3×2×1=6,利用列举法求出田忌赢得比赛包含的基本事件有1种,由此能求出田忌赢得比赛的概率.本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.9.【答案】A【解析】【分析】本题考查双曲线的简单性质,考查数形结合的解题思想方法,属于中档题.方法一:根据题意画图,由图形的对称性得出P点坐标,代入圆的方程得到c与a的关系,可求双曲线的离心率.方法二:由题意画出图形,先求出|PQ|,再由|PQ|=|OF|列式求C的离心率.【解答】解:方法一:设PQ与x轴交于点A,由对称性可知PQ⊥x轴,又∵|PQ|=|OF|=c,∴|PA|=c,2∴PA为以OF为直径的圆的半径,∴A为圆心,|OA|=c,2∴P (c 2,c2),又P 点在圆x 2+y 2=a 2上,∴c 24+c 24=a2,即c 22=a 2,∴e 2=c 2a2=2∴e =√2, 故选A .方法二:如图,以OF 为直径的圆的方程为x 2+y 2−cx =0,又圆O 的方程为x 2+y 2=a 2, ∴PQ 所在直线方程为x =a 2c.把x =a 2c代入x 2+y 2=a 2,得|PQ |=2ab c,再由|PQ|=|OF|,得2ab c=c ,即4a 2(c 2−a 2)=c 4, ∴e 2=2,解得e =√2. 故选A .10.【答案】C【解析】解:设正项等比数列{b n }的公比为q ,q >0,等差数列{a n }的公差为d , 由a 1=2,b 1=1,a 2=b 3,a 4=b 4,可得2+d =q 2,2+3d =q 3, 化为q 3−3q 2+4=0,即为(q +1)(q −2)2=0, 解得q =2(−1舍去), 则d =2,所以a n =2+2(n −1)=2n ,b n =2n−1, c n =a n b n=n ⋅(12)n−2,数列{c n }的前n 项和S n =1⋅(12)−1+2⋅(12)0+...+(n −1)⋅(12)n−3+n ⋅(12)n−2,12S n =1⋅(12)0+2⋅(12)1+...+(n −1)⋅(12)n−2+n ⋅(12)n−1, 上面两式相减可得12S n =2+1+12+...+(12)n−3+(12)n−2−n ⋅(12)n−1 =2+1−(12)n−11−12−n ⋅(12)n−1,化为S n =8−(n +2)⋅(12)n−2, 由S n ≥S 1=2,又S n <8, 可得2≤S n <8. ∀n ∈N ∗,k ≤S n 恒成立, 可得k ≤2, 即k 的最大值为2. 故选:C .运用等差数列和等比数列的通项公式,解方程可得公差和公比,进而得到a n ,b n ,再由数列的错位相减法求和,可得S n ,求得S n 的最小值,结合不等式恒成立思想可得所求k 的最大值.本题考查等差数列和等比数列的通项公式和求和公式的运用,以及数列的错位相减法求和、数列不等式恒成立问题解法,考查转化思想、方程思想和运算能力,属于中档题.11.【答案】A【解析】解:因为f(x)=2sin x2cos x2+2√3cos 2x2−√3=sinx +√3cosx =2sin(x +π3), 因为x ∈[−5π6,π6],所以x +π3∈[−π2,π2],sin(x +π3)∈[−1,1], 所以−2−m ≤f(x)−m ≤2−m , 若|f(x)−m|≤3对任意x ∈[−5π6,π6]恒成立,则{|−2−m|≤3|2−m|≤3,解得,−1≤m ≤1. 故选:A .先结合二倍角及辅助角公式进行化简,然后结合正弦函数的性质先求出f(x)的范围,进而可求.本题主要考查了二倍角及辅助角公式在三角化简中的应用,还考查了正弦函数的性质的应用,属于基础题.12.【答案】B【解析】解:设曲线C1:y=lnx上一点A(x1,lnx1),由y=lnx,得y′=1x ,∴y′|x=x1=1x1,可得曲线C1:y=lnx在A处的切线方程为y−lnx1=1x1(x−x1);设曲线C2:y=x−ax (x>0)上一点B(x2,1−ax2),由y=1−ax ,得y′=ax2,则y′|x=x2=a x22,可得曲线C2:y=x−ax (x>0)在B处的切线方程为y−1+ax2=ax22(x−x2).则{1x1=ax22lnx1−1=1−2ax2,可得√x1(lnx1−2)=−2√a.令f(x)=√x(lnx−2),f′(x)=2√x −2)+√x⋅1x=2√x.当x∈(0,1)时,f′(x)<0,f(x)单调递减,当x∈(1,+∞)时,f′(x)>0,f(x)单调递增,∴f(x)min=f(1)=−2,∴要使曲线C1和曲线C2有且仅有两条公切线,则关于x的方程√x(lnx−2)=−2√a有两不同解,又当x→0时,f(x)→0,∴−2<−2√a<0,得0<√a<1,即0<a<1则常数a的取值范围是(0,1).故选:B.设曲线C1:y=lnx上一点A(x1,lnx1),曲线C2:y=x−ax (x>0)上一点B(x2,1−ax2),利用导数求得两曲线在切点处的切线方程,再由两切线的斜率相等,切线在y轴上的截距相等,可得√x1(lnx1−2)=−2√a,令f(x)=√x(lnx−2),利用导数求其最小值,得到−2√a的范围,进一步求得a的范围.本题考查利用导数研究过曲线上某点处的切线方程,考查化归与转化思想,训练了利用导数求最值,是中档题.13.【答案】34【解析】解:x 2+y 2=4表示以原点为圆心,以2为半径的圆,y+4x+2的几何意义为圆上的动点与定点P(−2,−4)连线的斜率,如图:设过P 斜率为k 的直线方程为y +4=k(x +2),即kx −y +2k −4=0. 由√k 2+1=2,解得k =34. ∴y+4x+2的最小值为34. 故答案为:34.x 2+y 2=4表示以原点为圆心,以2为半径的圆,y+4x+2的几何意义为圆上的动点与定点P(−2,−4)连线的斜率,再由圆心到直线的距离等于半径列式求解.本题考查简单的线性规划,考查数形结合思想,考查直线与圆位置关系的应用,是中档题.14.【答案】①②④【解析】解:对于①,将一组数据中的每个数都加上或减去同一个常数后,均值改变,方差不变,所以①错误;对于②,在散点图中,若所有样本点都在直线y =−12x +1上,则这组样本数据的线性相关系数为−1,所以②错误;对于③,回归直线y =bx +a 必经过样本中心点(x −,y −),所以③正确;对于④,由独立性检验知,有99%的把握认为吸烟与患肺病有关系时,是指有1%的可能性使推断出现错误,所以④错误. 综上,错误的命题序号是①②②④.故答案为:①②④.利用均值和方差的定义,线性相关性,独立性检验原理和回归直线方程,判断命题的真假性即可.本题考查了均值和方差的定义的应用,线性相关性和独立性检验,回归直线方程的应用问题,是基础题.15.【答案】(−1,0)【解析】【分析】本题考查了利用导数求函数最大值问题,属于中档题.求导数,判断函数单调性,再确定函数最大值,最后用数形结合法求解.【解答】解:f(x)=xlnx+12mx2有两个极值点,则f′(x)=1+lnx+mx=0有两个根,则g(x)=lnx+1x=−m有两个根,g′(x)=1x⋅x−(lnx+1)⋅1x2=−lnxx2,当x∈(0,1)时,g′(x)>0,g(x)单调递增,当x∈(1,+∞)时,g′(x)<0,g(x)单调递减,g(x)max=g(1)=1>0,x→0(x>0),g(x)→−∞,x→+∞,g(x)→0,所以f(x)=xlnx+12mx2有两个极值点⇔−m∈(0,1),即m∈(−1,0).故答案为:(−1,0).16.【答案】643【解析】解:取AC中点M,连接MB、MD,因为∠BAC=∠BCA,∠DCA=∠DAC,所以AB=AB,AD=CD,所以AC⊥AM,AC⊥MD,所以AC⊥平面BDM,因为AB+AD=54BD=5AC=10√2,所以AC=2√2,BD=8√2,设AB=x,AD=y,∠BMD=θ,则x+y=10√2,MB=√x2−2,MD=√y2−2,所以BD2=MB2+MD2−2MB⋅MD⋅cosθ,所以64⋅2=x2−2+y2−2−2√(x2−2)(y2−2)cosθ,√(x2−2)(y2−2)cosθ=x2+y22−66,设三棱锥A−BCD体积为V,则V=13⋅12⋅√(x2−2)(y2−2)⋅sinθ⋅2√2,√(x2−2)(y2−2)⋅sinθ=√2,x2y2−2(x2+y2)+4=9V22+(x2+y22−66)2,9V2 2=x2y2−2(x2+y2)+4−(x2+y22−66)2=x2y2−2[(x+y)2−2xy]+4−((x+y)2−2xy2−66)2=x2y2−2(200−2xy)+4−(34−xy)2=34(2xy−34)−400+4xy+4=72xy−1552≤72⋅(x+y2)2−1552=2048,当x=y时,等号成立,即V≤643,当x=y时,等号成立,所以三棱锥A−BCD体积的最大值为643.故答案为:643.根据三棱锥体积公式及不等式求最大值即可.本题考查了三棱锥体积计算问题,属于中档题.17.【答案】解:(1)依题意,A、B配方样本容量相同,设为n,又B配方废品有6件.由B配方的频频率分布直方图,得废品的频率为6n=0.006×10,解得n=100,∴a=100−(8+36+24+8)=24,由(0.006+b+0.038+0.022+0.008)×10=1,解得b=0.026.∴a,b的值分别为24,0.026.(2)由(1)及A配方的频数分布表得,A配方质量指标值的样本平均数为:x A−=80×8+90×24+100×36+110×24+120×8100=200×8+200×24+100×36100=100,质量指标值的样本方差为S A2=1100[(−20)2×8+(−10)2×24+0×36+102×24+ 202×8]=112,由B配方的频频率分布直方图得,B配方质量指标值的样本平均数为x B−=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100,质量指标值的样本方差为:S B 2=∑(5i=1x i −x −)2p i =(−20)2×0.06+(−10)2×0.26+0×0.38+102×0.22+202×0.08=104,综上,x A −=x B −,S A 2>S B2, 即两种配方质量指标值的样本平均数相等,但A 配方质量指标值不够稳定, 所以选择B 配方比较好.【解析】(1)A 、B 配方样本容量相同,设为n ,B 配方废品有6件.由B 配方的频频率分布直方图,能求出n =100,从而求出a 和b .(2)由A 配方的频数分布表能求出A 配方质量指标值的样本平均数和质量指标值的样本方差;由B 配方的频频率分布直方图能求出B 配方质量指标值的样本平均数和质量指标值的样本方差,由两种配方质量指标值的样本平均数相等,但A 配方质量指标值不够稳定,得到选择B 配方比较好.本题考查频数和频率的求法,考查平均数、方差的求法及应用,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.18.【答案】(Ⅰ)证明:设F 为PA 的中点,连接EF ,FB ,因为E 为PD 的中点,所以EF//AD 且EF =12AD , 又因AD//BC 且AD =2BC , 所以EF//BC 且EF =BC , 所以四边形BCEF 为平行四边形, 所以CE//BF ,又因BF ⊂平面PAB ,CE ⊄平面PAB , 所以CE//平面PAB ;(Ⅱ)解:如图,设O 为AB 中点,连接PO 、OD ,过E 作EH//PO 交OD 于点H , 因为PA =PB =6,AB =4,所以PO ⊥AB ,PO =√PA 2−AO 2=4√2,又因平面PAB ⊥底面ABCD ,平面PAB ∩底面ABCD =AB , 所以PO ⊥底面ABCD ,而EH//PO , 所以EH ⊥底面ABCD ,所以EH 是三棱锥E −ABC 的底面ABC 上的高,且EH =12PO =2√2,又AD//BC,AD⊥AB,BC=AB,所以AB⊥BC,S△ABC=12AB⋅BC=12×4×4=8,所以V A−BCE=V E−ABC=13⋅S△ABC⋅EH=13×8×2√2=16√23.【解析】(Ⅰ)设F为PA的中点,连接EF,FB,证明四边形BCEF为平行四边形,然后根据线面平行的判定定理进行证明即可;(Ⅱ)设O为AB中点,连接PO、OD,过E作EH//PO交OD于点H,然后根据V A−BCE=V E−ABC=13⋅S△ABC⋅EH进行求解即可.本题主要考查了线面平行的判定,以及三棱锥的体积计算,同时考查了转化思想,以及推理能力和运算求解的能力,属于中档题.19.【答案】解:(1)由题得a(sinA−sinB)+bsinB=csinC,由正弦定理得a(a−b)+b2=c2,即a2+b2−c2=ab.∴余弦定理得cosC=a2+b2−c22ab =12,∵C∈(0,π),∴C=π3.…(6分)(2)∵mtanC =1tanA+1tanB,∴mcosCsinC =cosAsinA+cosBsinB=cosAsinB+sinAcosBsinAsinB=sin(A+B)sinAsinB=sinCsinAsinB,即mcosC=sin2CsinAsinB ,有m=2sin2CsinAsin(2π3−A)=32sinA(√32cosA+12sinA)=3212sin(2A−π6)+14,∵C=π3,A,B为锐角,可得:π6<A<π2,π6<2A−π6<5π6,∴12<sin(2A−π6)≤1,∴12sin(2A−π6)+14≤34,∴m min=3212+14=2.…(12分)【解析】(1)由正弦定理,将已知等式的正弦转化成边,可得a(a−b)+b2=c2,即a2+ b2−c2=ab.再用余弦定理可以算出C的余弦值,从而得到角C的值;(2)化简mtanC =1tanA+1tanB,可得m=3212sin(2A−π6)+14,从而由正弦函数的性质即可求得实数m的最小值.此题考查了同角三角函数基本关系的运用,考查了余弦定理,三角函数的恒等变换,正弦函数的最值的应用,熟练掌握基本关系是解本题的关键,属于基本知识的考查.20.【答案】解:(1)因为B 点在椭圆上,由椭圆的对称性,点B 关于x 轴的对称点为B′也在椭圆上,再由点B′到Γ的两焦点的距离之和为4可得2a =4,即a =2, 又椭圆的离心率e =c a=√32,所以c =√3,可得b 2=a 2−c 2=4−3=1, 所以椭圆的方程为:x 24+y 2=1;(2)S1S2为定值,且定值为1,证明如下:设B(x 1,y 1),C(x 2,y 2),则B′(x 1,−y 1),联立{y =1m (x −1)x 24+y 2=1,整理可得:(4+m 2)y 2+2my −3=0,则y 1+y 2=−2m 4+m 2,y 1y 2=−34+m 2, 直线B′C 的方程为:y+y 1y2+y 1=x−x 1x2−x 1,令y =0,可得x =x 2−x1y 2+y 1y 1+x 1=my 1(y 2−y 1)y 2+y 1+my 1+1=my 1y 2−my 12+my 12+my 1y 2y 2+y 1+1=2my 1y 2y 2+y 1+1=2m⋅−3m 2+4−2m m 2+4+1=4;所以当m 变化时直线B′C 与x 轴交于定点M(4,0), 所以S 1S 2=12×|OA|×|y C |12×|AM|×|y C |=|OA||AM|=24−2=1,即S 1S 2为定值,且定值为1.【解析】(1)由椭圆的对称性可得B′在椭圆上,再由椭圆的定义可得B′到两个焦点的距离之和为2a 可得a 的值,再由离心率可得c 的值,进而求出b 的值,求出椭圆的方程; (2)设B ,C 的坐标,进而可得B′的坐标,联立直线BC 与椭圆的方程可得两根之和及两根之积,求出直线B′C 的方程,令y =0可得横坐标x 的表达式,将两根之和及两根之积代入可得直线B′C 恒过定点(4,0),求出两个三角形△OAC ,△AMC 的面积之比,可得为定值.本题考查求椭圆的标准方程及直线与椭圆的综合应用,属于中档题.21.【答案】解:(1)函数f(x)=xlnx +e x (lnx −x)+1,则f′(x)=lnx +1+e x (lnx −x +1x −1),所以f′(1)=1−e ,又f(1)=1−e ,故切点为(1,1−e),切线的斜率为1−e , 所以曲线y =f(x)在点(1,f(1))处的切线方程为y −(1−e)=(1−e)(x −1),即(e −1)x +y =0;(2)对∀x ∈(0,+∞),f(x)≤ae x 恒成立,即a ≥xlnx+1e x+lnx −x 对∀x ∈(0,+∞)恒成立,令g(x)=xlnx+1e x+lnx −x ,函数g(x)的定义域为(0,+∞),则g′(x)=(lnx+1)−(xlnx+1)e x+1x −1=(1−x)(e x +lnx)xe x,令ℎ(x)=xlnx ,则ℎ′(x)=lnx +1,令ℎ′(x)=0,解得x =1e , 当0<x <1e 时,ℎ′(x)<0,则ℎ(x)单调递减, 当x >1e 时,ℎ′(x)>0,则ℎ(x)单调递增, 所以当x =1e 时,ℎ(x)取得最小值,故ℎ(x)≥ℎ(1e )=1e ln 1e =−1e ,又当x >0时,e x >1,所以e x +xlnx >1−1e >0, 则当g′(x)>0时,可得0<x <1,当g′(x)<0时,可得x >1, 所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 则当x =1时,g(x)取得最大值g(1)=1e −1, 所以a ≥1e −1,故实数a 的取值范围为[1e −1,+∞).【解析】(1)求出切点的坐标,求出f′(1),从而得到f′(1),得到切线的斜率,由点斜式求出切线的方程即可;(2)将不等式恒成立问题转化为a ≥xlnx+1e x+lnx −x 对∀x ∈(0,+∞)恒成立,令g(x)=xlnx+1e x+lnx −x ,利用导数研究函数g(x)的单调性,确定函数g(x)的最大值,即可得到答案.本题考查了导数几何意义的应用,利用导数研究不等式恒成立问题的策略为:通常构造新函数或参变量分离,利用导数研究函数的单调性,求出最值从而求得参数的取值范围,属于中档题.22.【答案】解:(1)已知曲线C 2的参数方程为{x =1+√33t y =√3+t (t 为参数),转换为直角坐标方程为√3x −y =0.转换为极坐标方程为θ=π3(ρ∈R).(2)曲线C 1与C 2相交于A ,O ,B 三点,所以设A(ρA ,π3),B(ρB ,4π3), 所以{ρ=a(1−sinθ)θ=π3,解得ρA =a(1−√32). {ρ=a(1−sinθ)θ=4π3,解得ρB =a(1+√32), 则:|AB|=|ρA −ρB |=2a .【解析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间转换求出结果.(2)利用一元二次方程根和系数关系式的应用求出结果.本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,极径的方程组的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.23.【答案】选修4−5:不等式选讲解:(1)f(x)={−x +5,x ≤−4−3x −3,−4<x <12x −5,x ≥12.当x ≤−4时,由f(x)>0得−x +5>0,解得x ≤−4,当−4<x <12时,由f(x)>0得−3x −3>,解得−4<x <−1,当x ≥12时,由f(x)>0得x −5>0,解得x >5,综上,得f(x)>0的解集为{x|x <−1,或x >5}.( 2)因为f(x)+3|x +4|=|2x −1|+2|x +4|=|1−2x|+|2x +8|≥|(1−2x)+(2x +8)|=9.所以由题意可知|a −1|≤9,解得−8≤a ≤10,故所求a的取值范围是{a|−8≤a≤10}.【解析】(1)通过对自变量x取值范围的分类讨论,去掉原函数式中的绝对值符号,再解相应的不等式即可;(2)利用绝对值不等式f(x)+3|x+4|=|2x−1|+2|x+4|=|1−2x|+|2x+8|≥|(1−2x)+(2x+8)|=9可得|a−1|≤9,解之即可.本题考查绝对值不等式的解法,着重考查等价转化思想与分类讨论思想的综合运用,考查运算求解能力,属于中档题.。
高三数学文科期末统测试卷及答案

第一学期徐汇区高三年级数学学科 学习能力诊断卷 (文科试卷)(考试时间:120分钟,满分150分) .1一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1、函数12log (1)y x =-的定义域为 。
2、抛物线24y x =的准线方程是 。
3、方程4220x x +-=的解是 。
4、若3sin 5θ=-,则行列式cos sin sin cos θθθθ= 。
5、已知向量(2,3),(4,7)a b ==-,则向量b 在向量a 的方向上的投影为 。
6、若1nx x ⎛⎫- ⎪⎝⎭展开式的第4项含3x ,则n 的值为 。
7、已知无穷等比数列{}n a 的各项和为4,则首项1a 的取值范围是 。
8、若函数()()(2)f x x a bx a =++(常数,a b R ∈)是偶函数,且它的值域为(,4]-∞,则该函数的解析式()f x = 。
9、一颗骰子投两次, 记第一次得到的数值为a , 第二次得到的数值为b , 将它们作为关于x y 、的二元一次方程组322ax by x y +=⎧⎨+=⎩,的系数, 则方程组有唯一解的概率为 。
(用数字作答)10、已知函数()y f x =存在反函数1()y fx -=,若函数(1)y f x =+的图象经过点(3,1),则函数1()y f x -=的图象必经过点 。
11、若函数)1lg()(2--=ax x x f 在区间),1(+∞上是增函数,则a 的取值范围是 。
12、在数列{}n a 中,13a =,点*(1,)n n N >∈在直线0x y --=上,则2lim(1)nn a n →∞+= 。
13、已知x 是1,2,3,x ,5,6,7这七个数据的中位数,且1,3,2,x y -这四个数据的平均数为1,则1y x-的最小值为 。
14、定义平面向量之间的一种运算“*”如下:对任意的(,),(,)a m n b p q ==,令*a b mq np =-。
2021年高三上学期期末数学试卷(文科) 含解析

2021年高三上学期期末数学试卷(文科)含解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i是虚数单位,若复数z满足(1+i)z=2i,则z的虚部是()A.1 B.﹣1 C.﹣i D.i2.若集合,B={x||x|<3},则集合 A∪B为()A.{x|﹣5<x<3} B.{x|﹣3<x<2} C.{x|﹣5≤x<3} D.{x|﹣3<x≤2}3.命题p:若λ=0,则=0;命题q:∃x0>0,使得x﹣1﹣lnx=0,则下列命题为真命题的是()A.p∧q B.p∨(¬q) C.(¬p)∧(¬q)D.(¬p)∧q 4.已知某程序框图如图所示,则执行该程序后输出的结果是()A.2 B.C.﹣1 D.﹣25.函数的一条对称轴为()A.B.C.D.6.已知实数x,y满足,则z=3x﹣y的最大值为()A.﹣5 B.1 C.3 D.47.设m,n是不同的直线,α,β是不同的平面,下列四个命题为真命题的是()①若m⊥α,n⊥m,则n∥α;②若α∥β,n⊥α,m∥β,则n⊥m;③若m∥α,n⊥β,m⊥n,则α⊥β;④若m∥α,n⊥β,m∥n,则α⊥β.A.②③B.③④C.②④D.①④8.已知双曲线与抛物线y2=8x的准线交于点P,Q,抛物线的焦点为F,若△PQF 是等边三角形,则双曲线的离心率为()A. B. C. D.9.偶函数f(x)满足f(x﹣1)=f(x+1),且当x∈[﹣1,0]时,f(x)=﹣x,则函数g(x)=f(x)﹣lgx在x∈(0,10)上的零点个数是()A.10 B.9 C.8 D.710.已知Rt△ABC,两直角边AB=1,AC=2,D是△ABC内一点,且∠DAB=60°,设(λ,μ∈R),则=()A. B. C.3 D.二、填空题:本大题共5小题,每小题5分,共25分.11.函数y=的定义域是.12.已知=(2,m),=(1,1),•=|+|则实数m的值为.13.直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相交,则b的取值范围为.14.某几何体的三视图如图所示,则该几何体的表面积为.15.观察下列等式,按此规律,第n个等式的右边等于.三、解答题:本大题6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.在△ABC中,角A,B,C的对边分别为a,b,c,且满足.(Ⅰ)求角C的值;(Ⅱ)若a=5,△ABC的面积为,求sinB的值.17.为监测全市小学生身体形态生理机能的指标情况,体检中心从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据分成如下5个组:[100,110),[110,120),…,[140,150),并绘制成频率分布直方图(如图所示).(Ⅰ)若该校共有学生1000名,试估计身高在[100,130)之间的人数;(Ⅱ)在抽取的100名学生中,按分层抽样的方法从身高为:[100,110),[130,140),[140,150)3个组的学生中选取7人参加一项身体机能测试活动,并从这7人中任意抽取2人进行定期跟踪测试,求这2人取自不同组的概率.18.已知各项均为正数的数列{a n}满足a1=1,.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列,求数列{b n}前n项和T n.19.空间几何体ABCDEF如图所示.已知面ABCD⊥面ADEF,ABCD为梯形,ADEF 为正方形,且AB∥CD,AB⊥AD,CD=4,AB=AD=2,G为CE的中点.(Ⅰ)求证:BG∥面ADEF;(Ⅱ)求证:CB⊥面BDE;(Ⅲ)求三棱锥E﹣BDG的体积.20.已知椭圆C的离心率为,F1,F2分别为椭圆的左右焦点,P为椭圆上任意一点,△PF1F2的周长为,直线l:y=kx+m(k≠0)与椭圆C相交于A,B两点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l与圆x2+y2=1相切,过椭圆C的右焦点F2作垂直于x轴的直线,与椭圆相交于M,N两点,与线段AB相交于一点(与A,B不重合).求四边形MANB面积的最大值及取得最大值时直线l的方程.21.已知函数f(x)=x2+alnx﹣x(a≠0),g(x)=x2.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若对于任意的a∈(1,+∞),总存在x1,x2∈[1,a],使得f(x1)﹣f (x2)>g(x1)﹣g(x2)+m成立,求实数m的取值范围.xx学年山东省威海市高三(上)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i是虚数单位,若复数z满足(1+i)z=2i,则z的虚部是()A.1 B.﹣1 C.﹣i D.i【考点】复数代数形式的乘除运算.【分析】由(1+i)z=2i,得,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2i,得=,则z的虚部是:1.故选:A.2.若集合,B={x||x|<3},则集合A∪B为()A.{x|﹣5<x<3}B.{x|﹣3<x<2}C.{x|﹣5≤x<3}D.{x|﹣3<x≤2}【考点】并集及其运算.【分析】分别化简集合A,B,再由并集的含义即可得到.【解答】解:集合={x|﹣5≤x<2},B={x||x|<3}={x|﹣3<x<3},则A∪B={x|﹣5≤x<3}.故选:C.3.命题p:若λ=0,则=0;命题q:∃x0>0,使得x0﹣1﹣lnx0=0,则下列命题为真命题的是()A.p∧q B.p∨(¬q)C.(¬p)∧(¬q)D.(¬p)∧q【考点】命题的真假判断与应用;复合命题的真假.【分析】先判断命题p,q的真假,进而根据复合命题真假判断的真值表,可得答案.【解答】解:若λ=0,则=,故命题p为假命题;当x0=1时,x0﹣1﹣lnx0=0,故命题q为真命题,故p∧q,p∨(¬q),(¬p)∧(¬q)均为假命题;(¬p)∧q为真命题,故选:D4.已知某程序框图如图所示,则执行该程序后输出的结果是()A.2 B. C.﹣1 D.﹣2【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知该程序的作用是利用循环计算变量a的值并输出,依次写出每次循环得到的a,i的值,当i=11时,满足条件,计算即可得解.【解答】解:程序运行过程中,各变量的值如下表示:a i 是否继续循环循环前 2 1第一圈 2 是第二圈﹣1 3 是第三圈 2 4 是…第9圈 2 10 是第10圈11 是故最后输出的a值为.故选:B.5.函数的一条对称轴为()A. B. C. D.【考点】弧长公式;二倍角的余弦.【分析】利用倍角公式可得函数y=cos(2x﹣)+,由2x﹣=kπ,k∈Z,解得对称轴方程,k取值为﹣1即可得出.【解答】解:∵==cos(2x﹣)+,∴令2x﹣=kπ,k∈Z,解得对称轴方程为:x=+,k∈Z,∴当k=﹣1时,一条对称轴为x=﹣.故选:D.6.已知实数x,y满足,则z=3x﹣y的最大值为()A.﹣5 B.1 C.3 D.4【考点】简单线性规划.【分析】作出不等式组对应的平面区域,根据z的几何意义,利用数形结合即可得到z的最大值.【解答】解:不等式组,对应的平面区域如图:由z=3x﹣y得y=3x﹣z,平移直线y=3x﹣z,则由图象可知当直线y=3x﹣z经过点A时直线y=3x﹣z的截距最小,此时z最大,为3x﹣y=3.,解得,即A(1,0),此时点A在z=3x﹣y,解得z=3,故选:C.7.设m,n是不同的直线,α,β是不同的平面,下列四个命题为真命题的是()①若m⊥α,n⊥m,则n∥α;②若α∥β,n⊥α,m∥β,则n⊥m;③若m∥α,n⊥β,m⊥n,则α⊥β;④若m∥α,n⊥β,m∥n,则α⊥β.A.②③B.③④C.②④D.①④【考点】空间中直线与平面之间的位置关系.【分析】①,若m⊥α,n⊥m,则n∥α或n⊂α;②,若α∥β,n⊥α⇒n⊥β,又∵m∥β,则n⊥m;③,若m∥α,n⊥β,m⊥n,则α、β不一定垂直;④,若n⊥β,m∥n⇒m⊥β,又∵m∥α,则α⊥β.【解答】解:对于①,若m⊥α,n⊥m,则n∥α或n⊂α,故错;对于②,若α∥β,n⊥α⇒n⊥β,又∵m∥β,则n⊥m,故正确;对于③,若m∥α,n⊥β,m⊥n,则α、β不一定垂直,故错;对于④,若n⊥β,m∥n⇒m⊥β,又∵m∥α,则α⊥β,故正确.故选:C8.已知双曲线与抛物线y2=8x的准线交于点P,Q,抛物线的焦点为F,若△PQF是等边三角形,则双曲线的离心率为()A. B. C. D.【考点】双曲线的简单性质.【分析】由题意,x=﹣2,等边三角形的边长为,将(﹣2,)代入双曲线,可得方程,即可求出m的值.【解答】解:由题意,x=﹣2,等边三角形的边长为,将(﹣2,)代入双曲线,可得=1,∴,故选:B.9.偶函数f(x)满足f(x﹣1)=f(x+1),且当x∈[﹣1,0]时,f(x)=﹣x,则函数g(x)=f(x)﹣lgx在x∈(0,10)上的零点个数是()A.10 B.9 C.8 D.7【考点】根的存在性及根的个数判断;函数零点的判定定理.【分析】根据已知条件推导函数f(x)的周期,再利用函数与方程思想把问题转化,画出函数的图象,即可求解.【解答】解:∵f(x﹣1)=f(x+1)∴f(x)=f(x+2),∴原函数的周期T=2.又∵f(x)是偶函数,∴f(﹣x)=f(x).又当x∈[﹣1,0]时,f(x)=﹣x,∴x∈[0,1]时,f(x)=x,函数的周期为2,∴原函数的对称轴是x=1,且f(﹣x)=f(x+2).设y1=f(x),y2=lgx,x=10,y2=1函数g(x)=f(x)﹣lgx在(0,10)上的零点的个数如图:即为函数y1=f(x),y2=lgx的图象交点的个数为9个.函数g(x)=f(x)﹣lgx有9个零点故选:B.10.已知Rt△ABC,两直角边AB=1,AC=2,D是△ABC内一点,且∠DAB=60°,设(λ,μ∈R),则=()A. B. C.3 D.【考点】平面向量的基本定理及其意义.【分析】建立平面直角坐标系,分别写出B、C点坐标,由于∠DAB=60°,设D 点坐标为(m,),由平面向量坐标表示,可求出λ和μ.【解答】解:如图以A为原点,以AB所在的直线为x轴,以AC所在的直线为y轴建立平面直角坐标系,则B点坐标为(1,0),C点坐标为(0,2),∠DAB=60°,设D点坐标为(m,),=λ(1,0)+μ(0,2)=(λ,2μ)⇒λ=m,μ=,则=.故选:A二、填空题:本大题共5小题,每小题5分,共25分.11.函数y=的定义域是(﹣1,2).【考点】对数函数的定义域.【分析】无理式被开方数大于等于0,对数的真数大于0,分母不等于0,解答即可.【解答】解:要使函数有意义,须解得﹣1<x<2,即函数的定义域为(﹣1,2)故答案为:(﹣1,2)12.已知=(2,m),=(1,1),•=|+|则实数m的值为3.【考点】平面向量的坐标运算.【分析】根据向量的数量积公式和向量的模得到关于m的方程,解得即可.【解答】解:∵=(2,m),=(1,1),•=|+|,∴•=2+m,|+|=,∴2+m=,解得m=3,故答案为:3.13.直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相交,则b的取值范围为(2,12).【考点】直线与圆的位置关系.【分析】求出圆的标准方程,利用直线和圆相交的条件建立不等式关系进行求解即可.【解答】解:圆的标准方程为(x﹣1)2+(y﹣1)2=1,则圆心坐标为(1,1),半径r=1,则若直线3x+4y=b与圆x2+y2﹣2x﹣2y+1=0相交,则圆心到直线的距离d==<1,即|b﹣7|<5,则﹣5<b﹣7<5,即2<b<12,故答案为:(2,12)14.某几何体的三视图如图所示,则该几何体的表面积为.【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知中的三视图,可得该几何体是以俯视图为底面的棱柱,代入柱体体积公式,可得答案.【解答】解:由已知中的三视图,可得该几何体是以俯视图为底面的棱柱,底面面积为:S=2×2=4,底面周长为:C=2×(2+)=4+4,高h=4,故几何体的表面积为:2S+Ch=;故答案为:.15.观察下列等式,按此规律,第n个等式的右边等于3n2﹣2n.【考点】归纳推理.【分析】由图知,第n个等式左边是n个奇数的和,第一个奇数是2n﹣1,由等差数列的求和公式计算出第n个等式的和,即可得结果.【解答】解:由图知,第n个等式的等式左边第一个奇数是2n﹣1,故n个连续奇数的和故有n×=n×(3n﹣2)=3n2﹣2n.故答案为3n2﹣2n.三、解答题:本大题6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.在△ABC中,角A,B,C的对边分别为a,b,c,且满足.(Ⅰ)求角C的值;(Ⅱ)若a=5,△ABC的面积为,求sinB的值.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由正弦定理,三角函数恒等变换的应用化简已知等式可得,结合sinB≠0,可得:,进而可求C的值.(Ⅱ)由已知利用三角形面积公式可求b,由余弦定理得c,进而利用正弦定理可求sinB的值.【解答】(本小题满分12分)解:(Ⅰ)由正弦定理,,可整理变形为:,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由A=π﹣(B+C),可得:sinA=sin(B+C)所以:,整理得:,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣因为sinB≠0,所以,可得:,∴,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)由已知a=5,,得,﹣﹣﹣﹣﹣﹣由余弦定理得c2=a2+b2﹣2abcosC=21,故,…可得:.…17.为监测全市小学生身体形态生理机能的指标情况,体检中心从某小学随机抽取100名学生,将他们的身高(单位:厘米)数据分成如下5个组:[100,110),[110,120),…,[140,150),并绘制成频率分布直方图(如图所示).(Ⅰ)若该校共有学生1000名,试估计身高在[100,130)之间的人数;(Ⅱ)在抽取的100名学生中,按分层抽样的方法从身高为:[100,110),[130,140),[140,150)3个组的学生中选取7人参加一项身体机能测试活动,并从这7人中任意抽取2人进行定期跟踪测试,求这2人取自不同组的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)由频率分布图中小矩形面积之和为1的性质,先求出a=0.030,从而求出身高在[110,130)之间的频率,由此能求出身高在[110,130)之间的人数.(Ⅱ)该学校学生身高在[100,110),[130,140),[140,150)内的频率分别是0.05,0.2,0.1,这三个组的人数分别为5人,20人,10人,共35人,这三个组分别为A组,B组,C组.从A组抽取人数1人,B组抽取4人,C组抽取2人,利用列举法能求出任意抽取2人,这2人取自不同身高组的概率.【解答】(本小题满分12分)解:(Ⅰ)由(0.005+0.035+a+0.020+0.010)×10=1,解得a=0.030.所以身高在[110,130)之间的频率为:(0.035+0.030)×10=0.65,所以身高在[110,130)之间的人数为:0.65×100=65人.(Ⅱ)估计该学校学生身高在[100,110),[130,140),[140,150)内的频率分别是0.05,0.2,0.1,所以这三个组的人数分别为5人,20人,10人,共35人.记这三个组分别为A组,B组,C组.则A组抽取人数为;B组抽取人数为;C组抽取人数为,设“任意抽取2人,这2人取自不同身高组”为事件M,则所有的基本事件空间为:共21个元素,事件M包含的基本事件有:(A1,B1),(A1,B2),(A1,B3),(A1,B4),(A1,C1),(A1,C2),(B1,C1),(B1,C2),(B2,C1),(B2,C2),(B3,C1),(B3,C2),(B4,C1),(B4,C2),共14个,所以这2人取自不同组的概率.18.已知各项均为正数的数列{a n}满足a1=1,.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列,求数列{b n}前n项和T n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)由数列的递推公式,可得所以数列{a n}为等比数列,且公比,首项a1=1,(Ⅱ)根据错位相减法,即可求出数列的数列{b n}前n项和T n.【解答】解:(I),因为数列{a n}各项均为正数,所以a n+1≠0,所以a n=2a n+1,所以数列{a n}为等比数列,且公比,首项a1=1所以;(Ⅱ),,①②①﹣②得,所以.19.空间几何体ABCDEF如图所示.已知面ABCD⊥面ADEF,ABCD为梯形,ADEF 为正方形,且AB∥CD,AB⊥AD,CD=4,AB=AD=2,G为CE的中点.(Ⅰ)求证:BG∥面ADEF;(Ⅱ)求证:CB⊥面BDE;(Ⅲ)求三棱锥E﹣BDG的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定;直线与平面垂直的判定.【分析】(Ⅰ)取ED中点H,连接HG、AH,推导出AHGB为平行四边形,从而AH∥BG,由此能证明BG∥面ADEF.(Ⅱ)推导出BD⊥BC,ED⊥AD,ED⊥BC,由此能证明BC⊥面BDE.(Ⅲ)三棱锥E﹣BDG的体积V E﹣BDG =V E﹣BDC﹣V_G﹣BDC,由此能求出结果.【解答】(本小题满分12分)证明:(Ⅰ)取ED中点H,连接HG、AH,因为G、H分别为EC、ED的中点,所以HG∥CD且;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣因为AB∥CD且所以AB∥HG,且AB=HG,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以AHGB为平行四边形,所以AH∥BG;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣因为BG⊄面PBC,AH⊂面PBC,所以BG∥面ADEF;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)在直角梯形ABCD中,由题意得,在Rt△ABD中,由题意得所以△BDC中,由勾股定理可得BD⊥BC﹣﹣﹣﹣﹣﹣﹣﹣﹣由ADEF为正方形,可得ED⊥AD由面ABCD⊥面ADEF,得ED⊥面ABCDBC⊂面ABCD,所以ED⊥BC﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以BC⊥面BDE﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)因为DE⊥平面BDC,DE=2,G到到平面BDC的距离d==1,S△BDC===4,所以三棱锥E﹣BDG的体积﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣20.已知椭圆C的离心率为,F1,F2分别为椭圆的左右焦点,P为椭圆上任意一点,△PF1F2的周长为,直线l:y=kx+m(k≠0)与椭圆C相交于A,B两点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l与圆x2+y2=1相切,过椭圆C的右焦点F2作垂直于x轴的直线,与椭圆相交于M,N两点,与线段AB相交于一点(与A,B不重合).求四边形MANB面积的最大值及取得最大值时直线l的方程.【考点】椭圆的简单性质.【分析】(Ⅰ)根据椭圆的离心率及△PF1F2的周长求出a、b即可;(Ⅱ)由已知求出MN的长度,然后,由直线和圆相切得到m,k的关系,再联立直线方程和椭圆方程,求出A,B的横坐标,代入四边形面积公式,利用基本不等式求得最值,并得到使四边形ACBD的面积有最大值时的m,k的值,从而得到直线l的方程.【解答】解:(I)设椭圆的方程为,由题可知,﹣﹣解得,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以椭圆C的方程为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(II)令,解得,所以|MN|=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣直线l与圆x2+y2=1相切可得,即k2+1=m2,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣联立直线与椭圆的方程,整理得(1+4k2)x2+8kmx+4m2﹣4=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以﹣﹣﹣﹣将k2+1=m2代入可得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣当且仅当,即时,等号成立,此时.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以,当时,四边形MANB的面积具有最大值,直线l方程是或.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.已知函数f(x)=x2+alnx﹣x(a≠0),g(x)=x2.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若对于任意的a∈(1,+∞),总存在x1,x2∈[1,a],使得f(x1)﹣f(x2)>g(x1)﹣g(x2)+m成立,求实数m的取值范围.【考点】利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,通过讨论a的范围,得到函数的单调区间即可;(Ⅱ)令F(x)=f(x)﹣g(x)=x2+alnx﹣x﹣x2=alnx﹣x,x∈[1,a].原问题等价于:对任意的a∈(1,+∞),总存在x1,x2∈[1,a],使得F(x1)﹣F(x2)>m成立,即F(x)max﹣F(x)min>m,根据函数的单调性求出m的范围即可.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令2x2﹣x+a=0,△=1﹣8a(1)当△=1﹣8a≤0,即时,2x2﹣x+a≥0恒成立,即f′(x)≥0恒成立,故函数f(x)的单增区间为(0,+∞),无单减区间.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)当△>0,即时,由2x2﹣x+a=0解得或i)当时,0<x1<x2,所以当或时f′(x)>0当时f′(x)<0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3)当a≤0时,所以当时f′(x)>0,当时f′(x)<0;﹣﹣﹣﹣﹣﹣综上所述:当时,函数f(x)的单增区间为(0,+∞),无单减区间.当时,函数f(x)的单增区间为和,单减区间为.当a≤0时,函数f(x)的单增区间为,单减区间为.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)令F(x)=f(x)﹣g(x)=x2+alnx﹣x﹣x2=alnx﹣x,x∈[1,a].原问题等价于:对任意的a∈(1,+∞),总存在x1,x2∈[1,a],使得F(x1)﹣F(x2)>m成立,即F(x)max﹣F(x)min>m.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵,∵a∈(1,+∞),x∈[1,a],∴F′(x)>0,∴F(x)在x∈[1,a]上单调递增,∴F(x)≤F(x)max﹣F(x)min=F(a)﹣F(1)=alna﹣a+1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣即alna﹣a+1>m对任意的a∈(1,+∞)恒成立,令h(a)=alna﹣a+1,a∈(1,+∞),只需h(a)min>m,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣h′(a)=lna,∵a∈(1,+∞),∴h′(a)>0,∴h(a)在a∈(1,+∞)上单调递增,∴h(a)>h(1)=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣所以m≤0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣精品文档xx年2月10日z30816 7860 硠)29392 72D0 狐33411 8283 芃35281 89D1 觑+ 25820 64DC 擜Ov\实用文档。
高三上学期期末文科数学试卷及答案(共5套)

则 cosB =
.
16. 已知函数 f ( x)
sin x(0 x 1), 若 a, b, c 互不相等,且
log2014 x(x 1),
f ( a) f (b) f (c) ,则 a b c 的取值范围是
A D
B C
第15 题图
三、解答题: (本大题共 6小题,共 70 分 . 解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分 12 分)
sin x 1}; ③ M={( x, y )| y
log2 x };
x
④ M {( x, y) y ex 2} . 其中是“垂直对点集”的序号是
(
A.①②Biblioteka B.②③C.①④D.②④
第 II 卷 ( 非选择题共 90 分) 本卷包括必考题和选考题两部分,第 13 题 ? 第 21 题为必考题,每个试题考生都必须作答 第 23 题为选考题,考生根据要求作答 . 二、填空题: (本大题共 4 小题,每小题 5 分,共 20 分)
回,但每件商品亏损 10 元;若供不应求,则从外部调剂,此时每件调剂商品可获利
40 元 .
(1)若商品一天购进该商品 10 件,求当天的利润 y (单位:元)关于当天需求量 n (单位:件, n N )
的函数解析式;
(2)商店记录了 50 天该商品的日需求量 n (单位:件, n N ),整理得下表:
高三第一学期文科数学期末考试卷
第 I 卷(选择题共 60 分) 一、选择题: (本大题共 12 小题,每小题 5 分,共 60 分;在每小题给出的四个选项中,只有一项是符合题 目要求的)
1. 已知集合 M { 2,0,2,4} , N { x | x2 9} ,则 M N ( )
2020-2021学年四川省成都市石室中学高三(上)期末数学试卷(文科)(解析版)

2020-2021学年四川省成都市石室中学高三(上)期末数学试卷(文科)一、选择题(共12小题).1.设集合A={x|﹣2≤x≤3},B={x|2x﹣a≤0},且A∩B={x|﹣2≤x≤1},则a=()A.﹣4B.﹣2C.2D.42.抛物线y2=﹣8x的准线方程为()A.x=﹣2B.x=﹣1C.y=1D.x=23.已知等差数列{a n}的前n项和为S n,且S7=28,a2+a4=7,则a6=()A.3B.4C.5D.64.欧拉公式e iθ=cosθ+i sinθ把自然对数的底数e,虚数单位i,三角函数cosθ和sinθ联系在一起,充分体现了数学的和谐美,被誉为“数学的天桥”若复数z满足(e iπ+i)•z=i,则|z|=()A.1B.C.D.5.2020年初,新型冠状病毒(COVID﹣19)引起的肺炎疫情爆发以来,各地医疗机构采取了各种针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如表所示:周数(x)12345治愈人数(y)2791314由表格可得y关于x的线性回归方程为=3x+,则此回归模型第4周的残差(实际值与预报值之差)为()A.4B.1C.0D.﹣16.已知向量,的夹角为,,,则等于()A.B.C.D.7.已知直线l和两个不同的平面α,β,则下列结论正确的是()A.若l∥α,l⊥β,则α⊥βB.若α⊥β,l⊥α,则l⊥βC.若l∥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β8.已知函数的图象关于点成中心对称,且与直线y=a的两个相邻交点间的距离为,则下列叙述正确的是()A.函数f(x)的最小正周期为πB.函数f(x)图象的对称中心为C.函数f(x)的图象可由y=tan2x的图象向左平移得到D.函数f(x)的递增区间为9.若函数f(x),g(x)的图象都是一条连续不断的曲线,定义:d(f,g)=|f(x)﹣g (x)|min.若函数f(x)=x+a和g(x)=lnx的定义域是(0,+∞),则“a>2”是“d (f,g)>2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.圆C:x2+y2﹣10x+16=0上有且仅有两点到双曲线的一条渐近线的距离为1,则该双曲线离心率的取值范围是()A.B.C.D.11.已知数列{a n}的前n项和为S n,且满足a n+S n=1,则=()A.1013B.1035C.2037D.205912.已知x为实数,[x]表示不超过x的最大整数,若函数f(x)对定义域内任意x,有f(x)+f(2+x)=0,f(x)+f(2﹣x)=0,且x∈[﹣1,0]时,f(x)=x﹣[x],则函数在区间[﹣1,2021]的零点个数为()A.1009B.1010C.1011D.1012二、填空题(共4小题).13.在“一带一路”(英文:TheBel tan dRoad,缩写B&R)知识问答竞赛中,“江苏”代表队的七名选手的比赛成绩的茎叶统计图如图所示,去掉一个最高分和一个最低分,所剩数据的方差为.14.已知a,b∈R+,若直线(a﹣1)x+2y﹣1=0与直线x+by+7=0互相垂直,则ab的最大值等于.15.直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若△ABC是边长为的等边三角形,AA1=5,则V的最大值为.16.已知定义在R上的函数f(x)的图象连续不断,若存在常数t(t∈R),使得f(x+t)+tf(x)=0对任意的实数x成立,则称f(x)是回旋函数.给出下列四个命题中,正确的命题是.①若f(x)是的回旋函数,则函数f(x)至少有一个零点;②若y=a x(a>1)为回旋函数,则t>0;③函数f(x)=x2不是回旋函数:④函数y=tanω1x(ω1>0),函数y=sinω2x(ω2>0)是回旋函数,则ω1,ω2的取值的集合是相等的.三、解答题(一)必考题17.在①c sin=a sin C,②2cos A(b cos C+c cos B)=a,③(sin B﹣sin C)2=sin2A﹣sin B sin C 中任选一个,补充在横线上,并回答下面问题.在△ABC中,已知内角A,B,C所对的边分别为a,b,c.若c=(﹣1)b,_____.(1)求C的值;(2)若△ABC的面积为3﹣,求b的值.18.2020年4月,各行各业开始复工复产,生活逐步恢复常态,某物流公司承担从成都到重庆的蔬菜运输业务.已知该公司统计了往年同期100天内每天配送的蔬菜量X(40≤X <160,单位:件.注:蔬菜全部用统一规格的包装箱包装),并分组统计得到表格如表:蔬菜量X[40,80)[80,120)[120,160)天数204040试解答如下问题:(Ⅰ)该物流公司负责人决定用分层抽样的形式在[40,80)、[80,120)两组数据中抽6天来分析配送的蔬菜量的情况,再从这六天中随机抽2天调研,求这2天配送的蔬菜量中至少有1天小于80件的概率;(Ⅱ)该物流公司拟一次性租赁一批货车专门运营从成都到重庆的蔬菜运输.已知一辆货车每天只能运营一趟.每辆货车每趟最多可装载40件,满载才发车,否则不发车.若发车,则每辆货车每趟可获利2000元;若未发车,则每辆货车每天平均亏损400元.该物流公司负责人甲提出的方案是租赁2辆货车,负责人乙提出的方案是租赁3辆货车,为使该物流公司此项业务的平均营业利润最大,应该选用哪种方案?19.如图(1),在矩形ABCD中,E,F在边CD上,BC=CE=FF=FD.沿BE,AF,将△CBE和△DAF折起,使平面CBE和平面DAF都与平面ABEF垂直,如图(2).(Ⅰ)试判断图(2)中直线CD与AB的位置关系,并说明理由;(Ⅱ)若平面DFA∩平面CEB=l,证明:l⊥平面ABEF.20.已知函数f(x)=x2lnx﹣2x.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:存在唯一的x0∈(1,2),使得曲线y=f(x)在点(x0,f(x0))处的切线的斜率为f(2)﹣f(1);(Ⅲ)比较f(1.01)与﹣2.01的大小,并加以证明.21.设椭圆C:+=1(a>b>0),定义椭圆C的“相关圆”方程为x2+y2=.若抛物线y2=4x的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和两个焦点构成直角三角形.(Ⅰ)求椭圆C的方程和“相关圆”E的方程;(Ⅱ)过“相关圆”E上任意一点P作“相关圆”E的切线与椭圆C交于A,B两点,O 为坐标原点.(ⅰ)证明:∠AOB为定值;(ⅱ)连接PO并延长交“相关圆”E于点Q,求△ABQ面积的取值范围.(二)选考题[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1的参数方程为为参数),直线l2的参数方程为参数).若直线l1,l2的交点为P,当k变化时,点P的轨迹是曲线C.(1)求曲线C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴且取相同的单位长度建立极坐标系,直线l:,已知点P在曲线C上,点P到直线l和极轴的距离分别为d1,d2,求d1+d2的最大值.[选修4-3;不等式选讲]23.已知函数f(x)=|2x﹣1|﹣|x﹣3|.(Ⅰ)解不等式f(x)>0;(Ⅱ)若不等式m2﹣4|m|+|x﹣3|>f(x)对x∈R恒成立,求实数m的取值范围.参考答案一、选择题(共12小题).1.设集合A={x|﹣2≤x≤3},B={x|2x﹣a≤0},且A∩B={x|﹣2≤x≤1},则a=()A.﹣4B.﹣2C.2D.4解:∵集合A={x|﹣2≤x≤3},B={x|2x﹣a≤0}={x|x≤},且A∩B={x|﹣2≤x≤1},∴=1,解得a=2.故选:C.2.抛物线y2=﹣8x的准线方程为()A.x=﹣2B.x=﹣1C.y=1D.x=2解:抛物线y2=﹣8x的开口向左,2p=8,∴抛物线y2=﹣8x的准线方程为x==2故选:D.3.已知等差数列{a n}的前n项和为S n,且S7=28,a2+a4=7,则a6=()A.3B.4C.5D.6解:设等差数列{a n}的公差为d,∵S7=28,a2+a4=7,∴7a1+21d=28,2a1+4d=7.解得:a1=,d=.则a6=+5×=5.故选:C.4.欧拉公式e iθ=cosθ+i sinθ把自然对数的底数e,虚数单位i,三角函数cosθ和sinθ联系在一起,充分体现了数学的和谐美,被誉为“数学的天桥”若复数z满足(e iπ+i)•z=i,则|z|=()A.1B.C.D.解:由e iθ=cosθ+i sinθ,得e iπ=cosπ+i sinπ=﹣1,则由(e iπ+i)•z=i,得z=,∴|z|=.故选:B.5.2020年初,新型冠状病毒(COVID﹣19)引起的肺炎疫情爆发以来,各地医疗机构采取了各种针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如表所示:周数(x)12345治愈人数(y)2791314由表格可得y关于x的线性回归方程为=3x+,则此回归模型第4周的残差(实际值与预报值之差)为()A.4B.1C.0D.﹣1解:,,则样本点的中心坐标为(3,9),代入,得a=9﹣3×3=0,∴线性回归方程为,取x=4,可得,则此回归模型第4周的残差为13﹣12=1.故选:B.6.已知向量,的夹角为,,,则等于()A.B.C.D.解:∵向量,的夹角为,,,所以:||=;∴•(+2)=+2=5+2××||•cos=0⇒||=;故选:A.7.已知直线l和两个不同的平面α,β,则下列结论正确的是()A.若l∥α,l⊥β,则α⊥βB.若α⊥β,l⊥α,则l⊥βC.若l∥α,l∥β,则α∥βD.若α⊥β,l∥α,则l⊥β解:设m⊂α,且m∥l,由l⊥β,则m⊥β,由面面垂直的判定定理可得:α⊥β,即选项A正确,故选:A.8.已知函数的图象关于点成中心对称,且与直线y=a的两个相邻交点间的距离为,则下列叙述正确的是()A.函数f(x)的最小正周期为πB.函数f(x)图象的对称中心为C.函数f(x)的图象可由y=tan2x的图象向左平移得到D.函数f(x)的递增区间为解:∵直线y=a的两个相邻交点间的距离为,∴函数f(x)的最小正周期为,A错,∴,∵图象关于点成中心对称,∴2×+φ=,k∈Z,∵0<φ<,∴φ=.∴函数f(x)图象的对称中心为(,0),k∈Z,B错;∴f(x)=tan(2x+),∴函数f(x)的图象可由y=tan2x的图象向左平移得到,C错;∵﹣+kπ<2x+<+kπ,∴函数f(x)的递增区间为,D对.故选:D.9.若函数f(x),g(x)的图象都是一条连续不断的曲线,定义:d(f,g)=|f(x)﹣g (x)|min.若函数f(x)=x+a和g(x)=lnx的定义域是(0,+∞),则“a>2”是“d (f,g)>2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:根据题意,f(x)=x+a,g(x)=lnx,设F(x)=f(x)﹣g(x)=x﹣lnx+a,则F′(x)=1﹣=,在区间(0,1)上,F′(x)<0,F(x)为减函数,在区间(1,+∞)上,F′(x)>0,F(x)为增函数,则F(x)在(0,+∞)的最小值为F(1)=1﹣ln1+a=a+1,当a>﹣1时,F(x)>0恒成立,则f(x)的图象在g(x)的上方,此时d(f,g)=a+1>0,当a≤﹣1时,F(x)=0有解,f(x)与g(x)的图象有交点,此时d(f,g)=0,若“a>2”,则d(f,g)=a+1>3>2,则“a>2”是“d(f,g)>2”充分条件,反之,若d(f,g)>2,即a+1>2,解可得a>1,则“a>2”是“d(f,g)>2”的不必要条件,故“a>2”是“d(f,g)>2”的充分不必要条件,故选:A.10.圆C:x2+y2﹣10x+16=0上有且仅有两点到双曲线的一条渐近线的距离为1,则该双曲线离心率的取值范围是()A.B.C.D.解:圆C:x2+y2﹣10x+16=0可化为(x﹣5)2+y2=9,∵圆C:x2+y2﹣10x+16=0上有且仅有两点到双曲线的一条渐近线的距离为1,∴圆心到双曲线渐近线的距离大于2且小于4,由对称性不妨取双曲线的一条渐近线为y=x,即ax﹣by=0,∴2<<4,即2<<4,解得:.即双曲线离心率的取值范围是(,).故选:A.11.已知数列{a n}的前n项和为S n,且满足a n+S n=1,则=()A.1013B.1035C.2037D.2059解:n=1时,a1+S1=1,1=,n≥2时,a n+S n=1,a n﹣1+S n﹣1=1,∴a n=a n﹣1,则数列{a n}是首项为公比为的等比数列.∴,S n=.∴.则=2+22+…+29﹣9=1024﹣11=1013.故选:A.12.已知x为实数,[x]表示不超过x的最大整数,若函数f(x)对定义域内任意x,有f(x)+f(2+x)=0,f(x)+f(2﹣x)=0,且x∈[﹣1,0]时,f(x)=x﹣[x],则函数在区间[﹣1,2021]的零点个数为()A.1009B.1010C.1011D.1012解:x∈[﹣1,0)时,[x]=﹣1,所以f(x)=x+1,因为f(x)+f(2+x)=0,所以f(x+2)=﹣f(x),则有f(x+4)=﹣f(x+2)=f(x),故函数f(x)的周期为4,又f(x)+f(2﹣x)=0,则有f(x+2)=﹣f[2﹣(x+2)]=﹣f(﹣x),又f(x+2)=﹣f(x),所以f(﹣x)=f(x),故函数f(x)为偶函数,令,则,令h'(x)=0,解得x=2,当x<2时,h'(x)<0,h(x)在(﹣∞,2)上单调递减,当x>2时,h'(x)>0,h(x)在(2,+∞)上单调递增,所以,当x=2时,,函数的零点个数等价于y=f(x)与y=h(x)图象的交点个数,作出函数y=f(x)和y=h(x)的图象如图所示,在区间[﹣1,3)内有2个交点,在[3,7)上有2个交点,即每个周期都有2个交点,将区间[﹣1,2021]分为两部分[﹣1,3)和[3,2021],在[3,2021]上共有504个周期余前半个周期,而在[3,2021]上,每个周期的前半个周期都没有交点,后半个周期有2个交点,所以在区间[﹣1,2021]上的交点个数为2+504×2=1010,故函数在区间[﹣1,2021]的零点个数为1010个.故选:B.二、填空题13.在“一带一路”(英文:TheBel tan dRoad,缩写B&R)知识问答竞赛中,“江苏”代表队的七名选手的比赛成绩的茎叶统计图如图所示,去掉一个最高分和一个最低分,所剩数据的方差为.解:在“一带一路”(英文:The Belt and Road,缩写B&R)知识问答竞赛中,“江苏”代表队的七名选手的比赛成绩的茎叶统计图如图所示,去掉一个最高分和一个最低分,所剩数据为:84,84,84,86,87,∴所剩数据平均数为=(84+84+84+86+87)=85,∴所剩数据的方差为:S2=[(84﹣85)2+(84﹣85)2+(84﹣85)2+(86﹣85)2+(87﹣85)2]=.故答案为:.14.已知a,b∈R+,若直线(a﹣1)x+2y﹣1=0与直线x+by+7=0互相垂直,则ab的最大值等于.解:∵直线(a﹣1)x+2y﹣1=0与直线x+by+7=0互相垂直,∴(a﹣1)×1+2×b=0,解得a+2b=1,∵a,b∈R+,∴2ab≤=,当且仅当2a=b,即a=,b=时取等号,∴ab的最大值等于.故答案为:.15.直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若△ABC是边长为的等边三角形,AA1=5,则V的最大值为π.解:如图,等边三角形内切球的半径r=3>,要使球的体积最大,则球与直三棱柱ABC﹣A1B1C1的上下底面相切,∴球半径R=,∴V max==.故答案为:π.16.已知定义在R上的函数f(x)的图象连续不断,若存在常数t(t∈R),使得f(x+t)+tf(x)=0对任意的实数x成立,则称f(x)是回旋函数.给出下列四个命题中,正确的命题是①③④.①若f(x)是的回旋函数,则函数f(x)至少有一个零点;②若y=a x(a>1)为回旋函数,则t>0;③函数f(x)=x2不是回旋函数:④函数y=tanω1x(ω1>0),函数y=sinω2x(ω2>0)是回旋函数,则ω1,ω2的取值的集合是相等的.解:对于①,若f(x)是t=的回旋函数,则f(x+)+f(x)=0,即f(x+)=﹣f(x)恒成立,∴f(x)•f(x+)≤0,∴由零点存在性定理可得,函数f(x)在区间[x,x+]上至少有一个零点,故①正确;对于②,若指数函数y=a x为阶数为t回旋函数,则a x+t+ta x=0,a t+t=0,∴t<0,故②错误;对于③,若(x+a)2+ax2=0对任意实数都成立,令x=0,则必须有a=0,令x=1,则有a2+3a+1=0,a=0不是这个方程的解,故假设不成立,该函数不是回旋函数,故③正确;对于④,∵函数y=tanω1x(ω1>0),函数y=sinω2x(ω2>0)是回旋函数,∴tanω1(x+t)+t•tanω1x=0,sinω2(x+t)+t•sinω2x=0,∴ω1,ω2的取值的集合是相等的,故④正确.故答案为:①③④.三、解答题(一)必考题17.在①c sin=a sin C,②2cos A(b cos C+c cos B)=a,③(sin B﹣sin C)2=sin2A﹣sin B sin C 中任选一个,补充在横线上,并回答下面问题.在△ABC中,已知内角A,B,C所对的边分别为a,b,c.若c=(﹣1)b,_____.(1)求C的值;(2)若△ABC的面积为3﹣,求b的值.解:(1)选①,,由正弦定理可得sin C sin=sin A sin C,因为C为三角形内角,sin C>0,所以sin=sin A,即cos=2sin cos,因为A为三角形内角,∈(0,),所以sin=,可得=,可得A=,可得B=﹣C,又c=()b,由正弦定理可得sin C=(﹣1)sin B,即sin C=(﹣1)sin(﹣C)=cos C+sin C,可得sin C﹣cos C=0,即sin(C﹣)=0,又C∈(0,π),所以C﹣∈(﹣,),选②,2cos A(b cos C+c cos B)=a,由正弦定理可得2cos A(sin B cos C+sin C cos B)=sin A,所以2cos A sin(B+C)=2cos A sin A=sin A,因为sin A≠0,所以cos A=,又A为三角形内角,A∈(0,π),所以A=,可得B=﹣C,又c=()b,由正弦定理可得sin C=(﹣1)sin B,即sin C=(﹣1)sin(﹣C)=cos C+sin C,可得sin C﹣cos C=0,即sin(C﹣)=0,又C∈(0,π),所以C﹣∈(﹣,),所以C﹣=0,即C=.选③,(sin B﹣sin C)2=sin2A﹣sin B sin C,由正弦定理可得(b﹣c)2=a2﹣bc,即b2+c2﹣a2=bc,因此cos A==,又A为三角形内角,A∈(0,π),所以A=,可得B=﹣C,又c=()b,由正弦定理可得sin C=(﹣1)sin B,即sin C=(﹣1)sin(﹣C)=cos C+sin C,可得sin C﹣cos C=0,即sin(C﹣)=0,又C∈(0,π),所以C﹣=0,即C=.(2)因为△ABC的面积为3﹣=bc sin A=bc=b2,所以解得b=2.18.2020年4月,各行各业开始复工复产,生活逐步恢复常态,某物流公司承担从成都到重庆的蔬菜运输业务.已知该公司统计了往年同期100天内每天配送的蔬菜量X(40≤X <160,单位:件.注:蔬菜全部用统一规格的包装箱包装),并分组统计得到表格如表:蔬菜量X[40,80)[80,120)[120,160)天数204040试解答如下问题:(Ⅰ)该物流公司负责人决定用分层抽样的形式在[40,80)、[80,120)两组数据中抽6天来分析配送的蔬菜量的情况,再从这六天中随机抽2天调研,求这2天配送的蔬菜量中至少有1天小于80件的概率;(Ⅱ)该物流公司拟一次性租赁一批货车专门运营从成都到重庆的蔬菜运输.已知一辆货车每天只能运营一趟.每辆货车每趟最多可装载40件,满载才发车,否则不发车.若发车,则每辆货车每趟可获利2000元;若未发车,则每辆货车每天平均亏损400元.该物流公司负责人甲提出的方案是租赁2辆货车,负责人乙提出的方案是租赁3辆货车,为使该物流公司此项业务的平均营业利润最大,应该选用哪种方案?【解答】(Ⅰ)记事件A为“2天配送的蔬菜量中至多有1天小于80件的概率”,在[40,80)、[80,120)两组数据中用分层抽样抽6天,[40,80)中抽的天数为天,记为A,B,[80,120)中抽的天数为天,记为a,b,c,d,则从这6天中随机抽取2天的所有可能情况有以下:(A,B),(A,a),(A,b),(A,c),(A,d),(B,a),(B,b),(B,c),(B,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共15种,选中的2天中配送的蔬菜量中至少有1天小于80件的可能情况有以下:(A,B),(A,a),(A,b),(A,c),(A,d),(B,a),(B,b),(B,c),(B,d),共9种∴选中的2天中配送的蔬菜量中至少有1天小于80件概率为.(Ⅱ)若租赁2辆车,平均利润为若租赁3辆车,平均利润为∵4080>3520,所以应该选择租赁3辆货车,此时平均营业利润最大.19.如图(1),在矩形ABCD中,E,F在边CD上,BC=CE=FF=FD.沿BE,AF,将△CBE和△DAF折起,使平面CBE和平面DAF都与平面ABEF垂直,如图(2).(Ⅰ)试判断图(2)中直线CD与AB的位置关系,并说明理由;(Ⅱ)若平面DFA∩平面CEB=l,证明:l⊥平面ABEF.【解答】证明:(Ⅰ)CD∥AB.理由如下:连结CD,分别取AF,BE的中点M,N,连结DM,CN,MN,由图(1)可得,△ADF与△BCE都是等腰直角三角形且全等,则DM⊥AF,CN⊥BE,DM=CN ∵平面ADF⊥平面ABEF,交线为AF,DM⊂平面ADF,DM⊥AF∴DM⊥平面ABEF.同理得,CN⊥平面ABEF,∴DM∥CN.又∵DM=CN∴四边形CDMN为平行四边形,∴CD∥MN.∵M,N分别是AF,BE的中点,∴MN∥AB∴CD∥AB.(Ⅱ)证明:∵DM∥CN,DM⊆平面DFA,CN⊄平面DFA∴CN∥面DFA∵CN⊂平面CEB,面DFA∩平面CEB=l∴CN∥l∵DM∥CN∴DM∥l由(Ⅰ)问有DM⊥平面ABEF.∴l⊥平面ABEF.20.已知函数f(x)=x2lnx﹣2x.(Ⅰ)求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)求证:存在唯一的x0∈(1,2),使得曲线y=f(x)在点(x0,f(x0))处的切线的斜率为f(2)﹣f(1);(Ⅲ)比较f(1.01)与﹣2.01的大小,并加以证明.解:(Ⅰ)函数f(x)=x2lnx﹣2x的定义域是(0,+∞),导函数为f'(x)=2xlnx+x﹣2,所以f'(1)=﹣1,又f(1)=﹣2,所以曲线y=f(x)在点(1,f(1))处的切线方程为y=﹣x﹣1;(Ⅱ)证明:由已知f(2)﹣f(1)=4ln2﹣2,所以只需证明方程2xlnx+x﹣2=4ln2﹣2在区间(1,2)有唯一解.即方程2xlnx+x﹣4ln2=0在区间(1,2)有唯一解.设函数g(x)=2xlnx+x﹣4ln2,则g'(x)=2lnx+3.当x∈(1,2)时,g'(x)>0,故g(x)在区间(1,2)单调递增.又g(1)=1﹣4ln2<0,g(2)=2>0,所以存在唯一的x0∈(1,2),使得g(x0)=0.综上,存在唯一的x0∈(1,2),使得曲线y=f(x)在点(x0,f(x0))处的切线的斜率为f(2)﹣f(1);(Ⅲ)f(1.01)>﹣2.01.证明如下:首先证明:当x>1时,f(x)>﹣x﹣1.设h(x)=f(x)﹣(﹣x﹣1)=x2lnx﹣x+1,则h'(x)=x+2xlnx﹣1.当x>1时,x﹣1>0,2xlnx>0,所以h'(x)>0,故h(x)在(1,+∞)单调递增,所以x>1时,有h(x)>h(1)=0,即当x>1时,有f(x)>﹣x﹣1.所以f(1.01)>﹣1.01﹣1=﹣2.01.21.设椭圆C:+=1(a>b>0),定义椭圆C的“相关圆”方程为x2+y2=.若抛物线y2=4x的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和两个焦点构成直角三角形.(Ⅰ)求椭圆C的方程和“相关圆”E的方程;(Ⅱ)过“相关圆”E上任意一点P作“相关圆”E的切线与椭圆C交于A,B两点,O 为坐标原点.(ⅰ)证明:∠AOB为定值;(ⅱ)连接PO并延长交“相关圆”E于点Q,求△ABQ面积的取值范围.解:(Ⅰ)∵抛物线y2=4x的焦点与椭圆C的一个焦点重合,且椭圆C短轴的一个端点和两个焦点构成直角三角形,∴b=c=1,∴a2=1+1=2,∴椭圆C的方程为.∴“相关圆”E的方程为x2+y2=.证明:(Ⅱ)(i)当直线l的斜率不存在时,不妨设直线AB方程为x=,则A(,),B(,﹣),∴,当直线l的斜率存在时,设其方程为y=kx+m,设A(x1,y1),B(x2,y2),联立方程组,得x2+2(kx+m)2=2,即(1+2k2)x2+4kmx+2m2﹣2=0,△=16k2m2﹣4(1+2k2)(2m2﹣2)=8(2k2﹣m2+1)>0,即2k2﹣m2+1>0,(*),∵直线与圆相切,∴==,∴3m2=2+2k2,∴+km(x1+x2)+m2===0,∴,∴为定值.解:(ii)∵PQ是“相关圆”的直径,∴,∴要求△ABQ的面积的取值范围,只需求弦长|AB|的范围,当直线AB的斜率不存在时,由(i)知|AB|=,|AB|====,①当k≠0时,|AB|=,∵,∴0<,∴≤3,∴<|AB|,当且仅当k=时,取“=”号.②当k=0时,|AB|=.|AB|的取值范围为≤|AB|,∴△ABQ面积的取值范围是[,].(二)选考题[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,直线l1的参数方程为为参数),直线l2的参数方程为参数).若直线l1,l2的交点为P,当k变化时,点P的轨迹是曲线C.(1)求曲线C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴且取相同的单位长度建立极坐标系,直线l:,已知点P在曲线C上,点P到直线l和极轴的距离分别为d1,d2,求d1+d2的最大值.解:(1)直线l1的参数方程为参数),转换为直线l1的普通方程为y=k (﹣x),直线l2的参数方程为参数).转化为直线l2的普通方程为y﹣2=,联立直线l1,l2方程,消去参数k,得曲线C的普通方程为y(y﹣2)=﹣x2,整理得x2+(y﹣1)2=1(x≠0).(2)直线l:,即为ρ(cosθ+sinθ)=2,即ρcosθ+ρsinθ﹣4=0,由x=ρcosθ,y=ρsinθ,可得x+y﹣4=0,由x2+(y﹣1)2=1(x≠0),可得C的参数方程为(α为参数,且0≤α<2π,且α≠),可设P(cosα,1+sinα),d1===(3﹣cosα﹣sinα),又d2=1+sinα,则d1+d2=+sinα﹣cosα=sin(α﹣)+,当α=时,sin(α﹣)取得最大值1,则d1+d2取得最大值.[选修4-3;不等式选讲]23.已知函数f(x)=|2x﹣1|﹣|x﹣3|.(Ⅰ)解不等式f(x)>0;(Ⅱ)若不等式m2﹣4|m|+|x﹣3|>f(x)对x∈R恒成立,求实数m的取值范围.解:(Ⅰ)f(x)>0即为|2x﹣1|>|x﹣3|,∴|2x﹣1|2>|x﹣3|2,即4x2﹣4x+1>x2+9﹣6x,∴3x2+2x﹣8>0,解得或x<﹣2,∴不等式的解集为;(Ⅱ)m2﹣4|m|+|x﹣3|>|2x﹣1|﹣|x﹣3|即m2﹣4|m|>|2x﹣1|﹣|2x﹣6|恒成立,由||2x﹣1|﹣|2x﹣6||≤|(2x﹣1)﹣(2x﹣6)|=5(x=3时等号成立),可知m2﹣4|m|>5,解得|m|>5,∴m>5或m<﹣5,即实数m的取值范围为(﹣∞,﹣5)∪(5,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
澄海区2008-2009学年度第一学期期末考试高三文科数学试卷本试卷分选择题和非选择题两部分,共4页,满分150分.考试时间120分钟. 注意事项:1.答第一部分(选择题)前,考生务必将自己的姓名、座位号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考生务必将第二部分(非选择题)的解答写在答题卷的框线内,框线外的部分不计分.4.考试结束后,监考员将第一部分的答题卡和第二部分的答题卷都收回,试卷由考生自己保管. 参考公式:柱体的体积公式Sh V =,其中S 是柱体的底面积,h 是柱体的高. 锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 第一部分(选择题,共50分)一、选择题:本大题共有10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.请把它选出后在答题卡上规定的位置上用铅笔涂黑.1.已知集合}|{},023|{2a x x N x x x M >=>-+=,若N M ⊆,则实数a 的取值范围是A .),3[+∞B .),3(+∞C .]1,(--∞D . )1,(--∞ 2.函数4sin 1)(2xx f +=的最小正周期是 A .2πB .πC .π2D .π4 3.函数xx y 142+=的单调递增区间是A .),0(+∞B .),21(+∞C .)1,(--∞D .)21,(--∞4.若ABC ∆的内角A 满足322sin =A ,则=+A A cos sinA .315B .315-C .35D .35-5.已知|a |=3,|b |=5,且12=⋅b a ,则向量a 在向量b 上的投影为A .512B .3C .4D .5 6.已知等比数列的公比为2,且前四项之和等于1,那么前八项之和等于( )B.217.记等差数列}{n a 的前n 项和为n S ,若||||113a a =,且公差0<d ,则当n S 取最大值时,=nA .4或5B .5或6C .6或7D .7或8OO 'MQP N BA8.若函数123+++=mx x x y 是R 上的单调函数,则实数m 的取值范围是A .),31(+∞B .]31,(-∞C .),31[+∞D .)31,(-∞9.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n ;②若α∥β,β∥γ,m ⊥α,则m ⊥γ; ③若m ∥α,n ∥α,则m ∥n ; ④若α⊥γ,β⊥γ,则α∥β.其中正确命题的序号是A .①和②B .②和③C .③和④D .①和④10.若定义在R 上的偶函数()x f 满足()()x f x f =+2,且当[]1,0∈x 时,(),x x f =,则函数()x x f y 3log -=的零点个数是A .多于4个B .4个C .3个D .2个第二部分(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,满分20分.本大题分为必做题和选做题两部分. (一)必做题:第11、12、13题是必做题,每道试题考生都必须做答. 11.记等差数列}{n a 的前n 项和为n S ,若431,,a a a 成等比数列,则3523S S S S --的值为 .12.右图是一个空间几何体的主视图、侧视图、俯视图,如果主视图、侧视图所对应的三角形都是边长为2的正三角形,俯视图对应的四边形为正方形,那么这个几何体的体积为 .13.已知点),(y x P 在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-0220102y x y x 表示的平面区域上运动,则y x z -=的最大值是 ;最小值是 .(二)选做题:第14、15题是选做题,考生只能选做一题,二题全答的,只计算前一题的得分. 14.(坐标系与参数方程选做题)曲线⎩⎨⎧==θθsin cos y x (θ为参数)上的点到两坐标轴的距离之和的最大值是 .15.(几何证明选讲选做题)如下图4,⊙'O 和⊙O 相交于A 和B ,PQ 切⊙O 于P ,交⊙'O 于Q 和M ,交AB 的延长线于N ,MN =3,NQ=15,则PN =__________.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤 16.(本小题满分13分)在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=.(Ⅰ)若ABC △的面积等于,求a b ,;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积. 17.(本小题满分13分)已知数列}{n a 中,02,311=-=+a a a n n ,数列}{n b 中,())( 1*N n a b nn n ∈-=⋅.(Ⅰ)求数列}{n a 通项公式;(Ⅱ)求数列}{n b 通项公式以及前n 项的和. 18.(本小题满分14分)已知二次函数cx bx ax x f ++=2)(,不等式x x f 2)(->的解集为)3,1(.(Ⅰ)若方程06)(=+a x f 有两个相等的实根,求)(x f 的解析式; (Ⅱ)若)(x f 的最大值为正数,求实数a 的取值范围. 19.(本小题满分14分)如图(1),ABC ∆是等腰直角三角形,4AC BC ==,E 、F 分别为AC 、AB 的中点,将AEF ∆沿EF 折起, 使A '在平面BCEF 上的射影O 恰为EC 的中点,得到图(2).(Ⅰ)求证:EF A C '⊥;(Ⅱ)求三棱锥BC A F '-的体积.20.(本小题满分14分)已知数列{}n a 的前n 项和为n S ,若211=a 且)2(021≥=⋅+-n S S a n n n . (Ⅰ)求证}1{nS 是等差数列,并求出n a 的表达式; (Ⅱ) 若)2()1(2≥-=n a n b n n ,求证122322<+++n b b b .21.(本小题满分12分)已知实数a≠0,函数()()R x x ax x f ∈-=22)(.(Ⅰ)若函数)(x f 有极大值32,求实数a 的值; (Ⅱ)若对]1,2[-∈∀x ,不等式916)(<x f 恒成立,求实数a 的取值范围. 澄海区2008-2009学年度第一学期期末考试高三文科数学参考答案一、选择题CDBAA DCCAB 二、填空题11、21或2; 12、334; 13、2,1-;14、2; 15、 三、解答题16、(本小题满分13分)解:(Ⅰ)由余弦定理及已知条件得,224a b ab +-=, ----------2分又因为ABC △的面积等于,所以1sin 2ab C =4ab =. ----------4分联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =. ----------6分 (Ⅱ)由题意得sin()sin()4sin cos B A B A A A ++-=,即sin cos 2sin cos B A A A = ----------7分 当cos 0A =时,2A π=,6B π=,3a =3b = 当cos 0A ≠时,得sin 2sin B A =,由正弦定理得2b a =, ----------9分联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得3a =3b =. ----------12分所以ABC △的面积1sin 23S ab C ==. ----------13分 17、(本小题满分13分) 解:(1)∵021=-+n n a a∴)1(21≥=+n a a nn -----------2分 又31=a∴{}n a 是首项为3,公比为2的等比数列 -----------4分∴*)(231N n a n n ∈⋅=- -----------6分(2)∵())( 1*N n a b nn n ∈-=⋅∴nn n a b 1)1(⋅-= =1231)1(-⨯⋅-n n -----------8分∴n n b b b S +⋅⋅⋅++=211231)1(23131-⨯⋅-+⋅⋅⋅+⨯+-=n n -----------10分 =211)21(131+⎥⎦⎤⎢⎣⎡---n=-⎥⎦⎤⎢⎣⎡--n )21(192=⎥⎦⎤⎢⎣⎡--1)21(92n -----------13分 18、(本小题满分14分)解:(Ⅰ)∵不等式x x f 2)(->的解集为)3,1(∴1=x 和3=x 是方程)0(0)2(2<=+++a c x b ax 的两根 -----------1分∴⎪⎪⎩⎪⎪⎨⎧=-=+342ac ab -----------2分∴a c a b 3,24=--= -----------3分 又方程06)(=+a x f 有两个相等的实根∴0)6(42=+-=∆a c a b -----------4分∴094)12(42=⨯-+a a a∴0)1)(15(=-+a a∴51-=a 或1=a (舍) -----------5分 ∴53,56,51-=-=-=c b a -----------6分∴535651)(2---=x x x f -----------7分(Ⅱ)由(Ⅰ)知a x a ax x f 3)12(2)(2++-=aa a 142---= -----------9分∵0<a ,∴)(x f 的最大值为aa a 142--- -----------11分∵)(x f 的最大值为正数∴⎪⎩⎪⎨⎧>---<01402a a a a∴⎩⎨⎧>++<01402a a a 解得32--<a 或032<<+-a -----------13分∴所求实数a 的取值范围是)0,32()32,(+----∞ -----------14分 19、(本小题满分14分)(Ⅰ)证法一:在ABC ∆中,EF 是等腰直角ABC ∆的中位线,EF AC ∴⊥ -----------2分在四棱锥BCEF A -'中,E A EF'⊥,EC EF ⊥,EF ∴⊥平面A EC ', -----------5分又⊂'C A 平面A EC ',EF A C '∴⊥ -----------7分证法二:同证法一EFEC ⊥ -----------2分EF ∴⊥平面A EC ', -----------5分又⊂'C A 平面A EC ',EF A C '∴⊥ -----------7分(Ⅱ)在直角梯形EFBC 中,4,2==BC EC ,421=⋅=∴∆EC BC S FBC -----------9分 又A O '垂直平分EC ,322=-'='∴EO E A O A -----------11分∴FBC A BC A F V V -''-=334=-----------13分 ∴三棱锥BC A F '-的体积为334 -----------14分20、(本小题满分14分)(I )证明:∵n n a a a S +⋅⋅⋅++=21∴当n ≥2时,a n = S n – S n – 1 -----------1分 又021=+-n n n S S a∴)2(0211≥=+---n S S S S n n n n , -----------3分若S n = 0,则a n = 0,∴a 1 = 0与a 1 =21矛盾! ∴S n ≠0,S n – 1≠0. ∴02111=+--n n S S 即2111=--n n S S -----------5分 又21112=-S S . ∴{nS 1}是首项为2,公差为2的等差数列 -----------6分 解:由(I )知数列{nS 1}是等差数列.∴n n S n 22)1(21=⋅-+=即nS n 21= -----------7分 ∴当)1(21)1(2121,21--=--=-=≥-n n n n S S a n n n n 时 -----------8分 又当21,111===a S n 时 ∴⎪⎪⎩⎪⎪⎨⎧≥--==)2()1(21)1(21n n n n a n -----------9分(III )证明:由(II )知)2(1)1(21)1(2≥=-⋅-=n nn n n b n -----------10分∴2222232213121n b b b n +++=+++nn )1(1321211 -++⨯+⨯< -----------12分 )111()3121()211(n n --++-+-= 111<-=n-----------14分 21、(本小题满分12分)解:(Ⅰ)ax ax ax x ax x f 44)2()(232+-=-=)2)(32(3483)( 2--=+-=∴x x a a ax ax x f -----------2分令f x '()=0得0)2)(32(3=--x x a∴x =23或x =2 -----------4分 () f x ax x x R ()()=-∈22有极大值32,又f ()20=∴f x ()在32=x 时取得极大值 -----------5分 27322732)32(===∴a a f , -----------6分(Ⅱ)由)2)(32()( --=x x a x f 知:当0>a 时,函数f x ()在]32,2[-上是增函数,在]1,32[上是减函数此时,a f y 2732)32(max == -----------7分又对]1,2[-∈∀x ,不等式916)(<x f 恒成立∴9162732<a 得23<a ∴230<<a -----------9分当0<a 时,函数f x ()在]32,2[-上是减函数,在]1,32[上是增函数又a f 32)2(-=-,a f =)1(,此时,a f y 32)2(max -=-= -----------11分 又对]1,2[-∈∀x ,不等式916)(<x f 恒成立 ∴91632<-a 得181->a ∴0181<<-a -----------11分 故所求实数的取值范围是)23,0()0,181( - -----------12分。