《建立一次函数的模型解决实际问题》练习题
第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册

第四章一次函数之一次函数的应用专题练习北师大版2024—2025学年八年级上册一、利用一次函数模型解决实际问题例1.实验表明,在某地,温度在15℃至25℃的范围内,一种蟋蟀1min的平均鸣叫次数y可近似看成该地当时温度x(℃)的一次函数.已知这种蟋蟀在温度为16℃时,1min平均鸣叫92次;在温度为23℃时,1min平均鸣叫155次.(1)求y与x之间的函数表达式;(2)当这种蟋蟀1min平均鸣叫128次时,该地当时的温度约是多少?变式1.如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位:cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数表达式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8cm,求此时碗的数量最多为多少个?变式2.某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.二、利用一次函数解决行程问题例2.小军到某景区游玩,他从景区入口处步行到达小憩屋,休息片刻后继续前行,此时观光车从景区入口处出发的沿相同路线先后到达观景点,如图,l1,l2分别表示小军与观光车所行的路程y(m)与时间x(min)之间的关系.根据图象解决下列问题:(1)观光车出发分钟追上小军;(2)求l2所在直线对应的函数表达式;(3)观光车比小军早几分钟到达观景点?请说明理由.变式1.在一条笔直的道路上依次有A,B,C三地,男男从A地跑步到C地,同时乐乐从B地跑步到A地,休息1分钟后接到通知,要求乐乐比男男早1分钟到达C地,两人均匀速运动,如图是男男跑步时间t(分钟)与两人距A 地路程s(米)之间的函数图象.(1)a=,乐乐去A地的速度为;(2)结合图象,求出乐乐从A地到C地的函数解析式(写出自变量的取值范围);(3)请直接写出两人距B地的距离相等的时间.变式2.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s (km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为km/h,C点的坐标为.(2)慢车出发多少小时后,两车相距200km.变式3.某物流公司的一辆货车A从乙地出发运送货物至甲地,1小时后,这家公司的一辆货车B从甲地出发送货至乙地.货车A、货车B距甲地的距离y(km)与时间x(h)之间的关系如图所示.(1)求货车B距甲地的距离y与时间x的关系式;(2)求货车B到乙地后,货车A还需多长时间到达甲地.三、利用一次函数解决最低费用和最高利润问题例3.某校开设棋类社团,购买了五子棋和象棋.五子棋比象棋的单价少8元,用1000元购买的五子棋数量和用1200元购买的象棋数量相等.(1)两种棋的单价分别是多少?(2)学校准备再次购买五子棋和象棋共30副,根据学生报名情况,购买五子棋数量不超过象棋数量的3倍.问购买两种棋各多少副时费用最低?最低费用是多少?变式1.眉山是“三苏”故里,文化底蕴深厚.近年来眉山市旅游产业蓬勃发展,促进了文创产品的销售,某商店用960元购进的A款文创产品和用780元购进的B款文创产品数量相同.每件A款文创产品进价比B款文创产品进价多15元.(1)求A,B两款文创产品每件的进价各是多少元?(2)已知A款文创产品每件售价为100元,B款文创产品每件售价为80元,根据市场需求,商店计划再用不超过7400元的总费用购进这两款文创产品共100件进行销售,问:怎样进货才能使销售完后获得的利润最大,最大利润是多少元?变式 2.近年来,中国传统服饰备受大家的青睐,走上国际时装周舞台,大放异彩.某服装店直接从工厂购进长、短两款传统服饰进行销售,进货价和销售价如表:价格/类别短款长款进货价(元/件)8090销售价(元/件)100120(1)该服装店第一次用4300元购进长、短两款服装共50件,求两款服装分别购进的件数;(2)第一次购进的两款服装售完后,该服装店计划再次购进长、短两款服装共200件(进货价和销售价都不变),且第二次进货总价不高于16800元.服装店这次应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?变式3.某小区物管中心计划采购A,B两种花卉用于美化环境.已知购买2株A 种花卉和3株B种花卉共需要21元;购买4株A种花卉和5株B种花卉共需要37元.(1)求A,B两种花卉的单价.(2)该物管中心计划采购A,B两种花卉共计10000株,其中采购A种花卉的株数不超过B种花卉株数的4倍,当A,B两种花卉分别采购多少株时,总费用最少?并求出最少总费用.变式4.A、B两种型号的吉祥物具有吉祥如意、平安幸福的美好寓意,深受大家喜欢.某超市销售A、B两种型号的吉祥物,有关信息见如表:成本(单位:元/个)销售价格(单位:元/个)A型号35aB型号42b若顾客在该超市购买8个A种型号吉祥物和7个B种型号吉祥物,则一共需要670元;购买4个A种型号吉祥物和5个B种型号吉祥物,则一共需要410元.(1)求a、b的值;(2)若某公司计划从该超市购买A、B两种型号的吉祥物共90个,且购买A 种型号吉祥物的数量x(单位:个)不少于B种型号吉祥物数量的,又不超过B种型号吉祥物数量的2倍.设该超市销售这90个吉祥物获得的总利润为y元,求y的最大值.变式5.成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A 种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.变式6.某县著名传统土特产品“豆笋”、“豆干”以“浓郁豆香,绿色健康”享誉全国,深受广大消费者喜爱.已知2件豆笋和3件豆干进货价为240元,3件豆笋和4件豆干进货价为340元.(1)分别求出每件豆笋、豆干的进价;(2)某特产店计划用不超过10440元购进豆笋、豆干共200件,且豆笋的数量不低于豆干数量的,该特产店有哪几种进货方案?(3)若该特产店每件豆笋售价为80元,每件豆干售价为55元,在(2)的条件下,怎样进货可使该特产店获得利润最大,最大利润为多少元?变式7.近年来,市民交通安全意识逐步增强,头盔需求量增大.某商店购进甲、乙两种头盔,已知购买甲种头盔20只,乙种头盔30只,共花费2920元,甲种头盔的单价比乙种头盔的单价高11元.(1)甲、乙两种头盔的单价各是多少元?(2)商店决定再次购进甲、乙两种头盔共40只,正好赶上厂家进行促销活动,促销方式如下:甲种头盔按单价的八折出售,乙种头盔每只降价6元出售.如果此次购买甲种头盔的数量不低于乙种头盔数量的一半,那么应购买多少只甲种头盔,使此次购买头盔的总费用最小?最小费用是多少元?四、利用一次函数解决含参数的最高利润问题例4.在襄阳市创建“经济品牌特色品牌”政策的影响下.每到傍晚,市内某网红烧烤店就食客如云,这家烧烤店的海鲜串和肉串非常畅销,店主从食品加工厂批发以上两种产品进行加工销售,其中海鲜串的成本为m元/支,肉串的成本为n元/支;两次购进并加工海鲜串和肉串的数量与成本如下表所示(成本包括进价和其他费用):次数数量(支)总成本(元)海鲜串肉串第一次3000400017000第二次4000300018000针对团以消费,店主决定每次消费海鲜串不超过200支时,每支售价5元;超过200支时、不超过200支的部分按原价,超过200支的部分打八折.每支肉串的售价为3.5元.(1)求m、n的值;(2)五一当天,一个旅游团去此店吃烧烤,一次性消费海鲜串和肉串共1000支,且海鲜串不超过400支.在本次消费中,设该旅游团消费海鲜串x支,店主获得海鲜串的总利润为y元,求y与x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,该旅游团消费的海鲜串超过了200支,店主决定给该旅游团更多优惠,对每支肉串降价a(0<a<1)元,但要确保本次消费获得肉串的总利润始终不低于海鲜串的总利润,求a的最大值.变式1.为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:甲乙运动鞋价格进价(元/双)m m﹣20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?变式2.为了振兴乡村经济,我市某镇鼓励广大农户种植山药,并精加工成甲、乙两种产品、某经销商购进甲、乙两种产品,甲种产品进价为8元/kg;乙种产品的进货总金额y(单位:元)与乙种产品进货量x(单位:kg)之间的关系如图所示.已知甲、乙两种产品的售价分别为12元/kg和18元/kg.(1)求出0≤x≤2000和x>2000时,y与x之间的函数关系式;(2)若该经销商购进甲、乙两种产品共6000kg,并能全部售出.其中乙种产品的进货量不低于1600kg,且不高于4000kg,设销售完甲、乙两种产品所获总利润为w元(利润=销售额﹣成本),请求出w(单位:元)与乙种产品进货量x(单位:kg)之间的函数关系式,并为该经销商设计出获得最大利润的进货方案;(3)为回馈广大客户,该经销商决定对两种产品进行让利销售.在(2)中获得最大利润的进货方案下,甲、乙两种产品售价分别降低a元/kg和2a元/kg,全部售出后所获总利润不低于15000元,求a的最大值.变式3.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:衬衫价格甲乙m m﹣10进价(元/件)260180售价(元/件)若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同.(1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a元(60<a<80)出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?五、利用一次函数解决方案问题例5.暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.变式1.某水果店购进甲、乙两种苹果的进价分别为8元/kg、12元/kg,这两种苹果的销售额y(单位:元)与销售量x(单位:kg)之间的关系如图所示.(1)写出图中点B表示的实际意义;(2)分别求甲、乙两种苹果销售额y(单位:元)与销售量x(单位:kg)之间的函数解析式,并写出x的取值范围;(3)若不计损耗等因素,当甲、乙两种苹果的销售量均为a kg时,它们的利润和为1500元,求a的值.。
人教版八年级数学下册一次函数的实际应用解答题专项练习(word版含解析)

八年级数学下册一次函数的实际应用解答题专项练习1.甲、乙两台机器共同加工一批零件,一共用了6小时,在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工,甲机器在加工过程中工作效率保持不变,甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC.如图所示.(1)这批零件一共有个,甲机器每小时加工个零件;(2)在整个加工过程中,求y与x之间的函数解析式;(3)乙机器排除故障后,求甲加工多长时间时,甲与乙加工的零件个数相差10个.2.某企业计划通过扩大生产能力来消化第一季度积累的订单,决定增加一条新的生产线并招收工人.根据以往经验,一名熟练工人每小时完成的工件数量比一名普通工人每小时完成的工件数量多10个,且一名熟练工人完成160个工件与一名普通工人完成80个工件所用的时间相同.(1)求一名熟练工人和一名普通工人每小时分别能完成多少个工件?(2)新生产线的目标产能是每小时生产200个工件,计划招聘n名普通工人与m名熟练工人共同完成这项任务,请写出m与n的函数关系式(不需要写自变量n的取值范围);(3)该企业在做市场调研时发现,一名普通工人每天工资为120元,一名熟练工人每天工资为150元,而且本地区现有熟练工人不超过8人.在(2)的条件下,该企业如何招聘工人,使得工人工资的总费用最少?3.某电信公司推出如下A,B两种通话收费方式,记通话时间为x分钟,总费用为y元.根据表格内信息完成以下问题:(1)分别求出A,B两种通话收费方式对应的函数表达式;(2)在给出的坐标系中作出收费方式A对应的函数图象,并求出;①通话时间为多少分钟时,两种收费方式费用相同;②结合图象,直接写出选择哪种通话方式能节省费用?4.如图(1)是某手机专卖店每周收支差额y(元)(手机总利润减去运营成本)与手机台数x(台)的函数图象,由于疫情影响目前这个专卖店亏损,店家决定采取措施扭亏.方式一:改善管理,降低运营成本,以此举实现扭亏.方式二:运营成本不变,提高每台手机利润实现扭亏(假设每台手机的利润都相同).解决以下问题:(1)说明图(1)中点A和点B的实际意义;(2)若店家决定采用方式一如图(2),要使每周卖出70台时就能实现扭亏(收支平衡),求节约了多少运营成本?(3)若店家决定两种方式都采用,降低运营成本为m元,提高每台手机利润n元,当5000≤m≤7000,50≤n≤100时,求店家每周销售100台手机时可获得的收支差额范围,并在图(3)中画出取得最大收支差额时y与x的关系的大致图象,要求描出反映关键数据的点.5.如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B走了一段路后,自行车发生故障,B进行修理,所用的时间是小时.(3)B第二次出发后小时与A相遇.(4)若B的自行车不发生故障,保持出发时的速度前进,则出发多长时间与A相遇?(写出过程)6.甲、乙两人相约周末登崂山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,且当乙提速后,乙的登山上升速度是甲登山上升速度的3倍,且根据图象所提供的信息解答下列问题:(1)乙在A地时距地面的高度b为米;t的值为;(2)请求出甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式;(3)已知AB段对应的函数关系式为y=30x﹣30,则登山多长时间时,甲、乙两人距地面的高度差为70米?(直接写出答案)7.某水果店11月份购进甲、乙两种水果共花费1800元,其中甲种水果10元/千克,乙种水果16元/千克.12月份,这两种水果的进价上调为:甲种水果13元/千克,乙种水果18元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款400元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到130千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过80千克,则12月份该店需要支付这两种水果的货款最少应是多少元?8.甲骑电动车,乙骑自行车从深圳湾公园门口出发沿同一路线匀速游玩,设乙行驶的时间为x(h),甲、乙两人距出发点的路程S甲、S乙关于x的函数图象如图①所示,甲、乙两人之间的路程差y关于x的函数图象如图②所示,请你解决以下问题:(1)甲的速度是km/h,乙的速度是km/h;(2)对比图①、图②可知:a=,b=;(3)乙出发多少时间,甲、乙两人路程差为7.5km?9.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,月用电量不超过200度时,按0.55元/度计费,月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费,设每户家庭月用电量为x度时,应交电费y元.(1)分别求出0≤x≤200和x>200时,y与x的函数解析式.(2)小明家4月份用电250度,应交电费多少元?(3)小明家6月份交纳电费117元,小明家这个月用电多少度?10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m时,用了小时,甲队在开挖后6小时内,每小时挖m;(2)分别求出y甲、y乙与x的函数解析式,并写出自变量x的取值范围;(3)开挖2小时,甲、乙两队挖的河渠的长度相差m,开挖6小时,甲、乙两队挖的河渠的长度相差m;(4)求开挖后几小时,甲、乙两队挖的河渠的长度相差5m.11.新冠肺炎疫情爆发后,口罩成为了最紧缺的防护物资之一,比亚迪,长安,格力等企业响应国家号召,纷纷开设口罩生产线.2月1日,重庆东升公司复工,利用原有的A生产线开始生产口罩,8天后,采用最新技术的B生产线建成投产同时,为加大口罩产能,公司耗时2天对A 生产线进行技术升级,升级期间A生产线暂停生产,升级后,产能提高20%.如图反映了每条A,B生产线的口罩总产量y(万个)与时间x(天)之间的关系,根据图象,解答下列问题:(1)技术升级后,每条A生产线每天生产口罩万个;(2)每条B生产线每天生产口罩万个;(3)技术升级后,东升公司的口罩日总产量为136万个,已知公司有15条A生产线,则B 生产线有条;(4)在(3)的条件下,东升公司进一步扩大产能,两生产线在原每日工作时长8小时的基础上,增加m小时(m为正整数),同时新增k条B生产线,此时公司口罩日总产量达到260万个,求正整数k的值.12.某校开展“文明在行动”的志愿者活动,准备购买某一品牌书包送到希望学校.在A商店,无论一次购买多少,价格均为每个50元,在B商店,一次购买数量不超过10个时,价格为每个60元;一次购买数量超过10个时,超出10个部分打八折.设一次购买该品牌书包的数量为x个(x>0).(Ⅰ)根据题意填表:(Ⅱ)设在A商店花费y1元,在B商店花费y2元,分别求出y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小丽在A商店和在B商店一次购买书包的数量相同,且花费相同,则她在同一商店一次购买书包的数量为个.②若小丽在同一商店一次购买书包的数量为50个,则她在A,B两个商店中的商店购买花费少;③若小丽在同一商店一次购买书包花费了1800元,则她在A,B两个商店中商店购买数量多.13.小明和妈妈元旦假期去看望外婆,返回时,他们先搭乘顺路车到A地,约定小明爸爸驾车到A地接他们回家.一家人在A地见面,休息半小时后,小明爸爸驾车返回家中.已知小明他们与外婆家的距离s(km)和小明从外婆家出发的时间t(h)之间的函数关系如图所示.(1)小明家与外婆家的距离是km,小明爸爸驾车返回时平均速度是km/h:(2)点P的实际意义是什么?(3)求他们从A地驾车返回家的过程中,s与t之间的函数关系式.14.新冠疫情期间,口罩的需求量增大,某口罩加工厂承揽生产1600万个口罩的任务,每天生产的口罩数量相同,计划用x天(x>4)完成.(1)求每天生产口罩y(万个)与生产时间x(天)之间的函数表达式;(2)由于疫情形势严峻,卫生管理部门要求厂家提前4天交货,那么加工厂每天要多做20万个口罩才能完成任务,求实际生产时间.15.某公司销售玉米种子,价格为5元/千克,如果一次性购买10千克以上的种子,超过10千克部分的种子的价格打8折,部分表格如下:(1)直接写出表格中a,b的值;(2)设购买种子数量为x(x>10)千克,付款金额为y元,求y与x的函数关系式;(3)小李第一次购买种子35千克,第二次又购买了8千克,若两次购买种子的数量合在一起购买可省多少钱?参考答案1.解:(1)由函数图象可知,共用6小时加工完这批零件,一共有270个.AB段为甲机器单独加工,每小时加工个数为(90﹣50)÷(3﹣1)=20(个),故答案为:270,20;(2)设y OA=k1x,当x=1时,y=50,则50=k1,∴y OA=50x;设y AB=k2x+b2,,解得,∴y AB=20x+30;设y BC=k3x+b3,,解得,∴y BC=60x﹣90;综上所述,在整个加工过程中,y与x之间的函数解析式是y=;(3)乙开始的加工速度为:50÷1﹣20=30(个/小时),乙后来的加工速度为:(270﹣90)÷(6﹣3)﹣20=40(个/小时),设乙机器排除故障后,甲加工a小时时,甲与乙加工的零件个数相差10个,20a﹣[30×1+40(a﹣3)]=±10,解得a=4或a=5,答:排除故障后,甲加工4小时或5小时时,甲与乙加工个数相差10.2.解:(1)设一名普通工人每小时完成x个工件,则一名熟练工人每小时完成(x+10)个工件,,解得x=10,经检验,x=10是原分式方程的解,∴x+10=20,即一名熟练工人和一名普通工人每小时分别能完成20个工件、10个工件;(2)由题意可得,10n+20m=200,则m=﹣0.5n+10,即m与n的函数关系式是m=﹣0.5n+10;(3)设工人工资的总费用为w元,w=120n+150m=120n+150(﹣0.5m+10)=45n+1500,∴w随n的增大而增大,∵本地区现有熟练工人不超过8人,∴m≤8,即﹣0.5n+10≤8,解得n≥4,∴当n=4时,w取得最小值,此时w=1680,m=﹣0.5n+10=8,答:招聘普通工人4人,熟练工人8人时,工人工资的总费用最少.3.解:(1)由表格可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是:当0≤x≤40时,y=18,当x>40时,y=0.3(x﹣40)+18=0.3x+6,由上可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是y =;(2)∵收费方式A对应的函数表达式是y=0.2x+12,∴当x=0时,y=12,当x=40时,y=20,收费方式A对应的函数图象如右图所示;①设通话时间为a分钟时,两种收费方式费用相同,0.2a+12=18或0.2a+12=0.3a+6,解得a=30或a=60,即通话时间为30分钟或60分钟时,两种收费方式费用相同;②由图象可得,当0≤x<30或x>60时,选择A种通话方式能节省费用;当x=30或x=60时,两种通话方式一样;当30<x<60时,选择B种通话方式能节省费用.4.解:(1)由图像可知A点是函数图象与x轴的交点,所以点A的实际意义表示当卖出100台手机时,该专卖店每周收支差额为0;B点是函数图象与y轴的交点,所以点B的实际意义表示当手机店一台手机都没有卖出时,该专卖店亏损20000元;(2)由图(1)可求出以前的函数为y=200x﹣20000,若店家决定采用方式一,降低运营成本,即将函数图象上下平移,所以可以设新函数为y=200x+b,∵函数图象经过点(70,0),代入可得200×70+b=0,解得:b=﹣14000,∴要使每周卖出70台时就能实现扭亏(收支平衡),运营成本为14000元,节约了6000元运营成本;(3)设新函数为y=(200+n)x﹣(20000﹣n),∵50≤n≤100,∴250≤200+n≤300,当店家每周售出100台手机,收支差额最小时y=250×100﹣7000=18000,收支差额最大时y=300×100﹣5000=25000,∴收支差额范围为18000≤y≤25000,图象为:.5.解:(1)∵当t=0时,S=10,∴B出发时与A相距10千米.故答案为:10.(2)1.5﹣0.5=1(小时).故答案为:1.(3)观察函数图象,可知:B第二次出发后1.5小时与A相遇.(4)设A行走的路程S与时间t的函数关系式为S=kt+b(k≠0),将(0,10),(3,22.5)代入S=kt+b,得:,解得:,∴A行走的路程S与时间t的函数关系式为S=x+10.设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=mt.∵点(0.5,7.5)在该函数图象上,∴7.5=0.5m,解得:m=15,∴设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=15t.联立两函数解析式成方程组,得:,解得:,∴若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇.6.解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟), 乙提速后的速度为:10×3=30(米/分钟),b=15÷1×2=30;t=2+(300﹣30)÷30=11,故答案为:30;11;(2)设甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式为y=kx+100,根据题意,得20k+100=300,解得k=10,故y=10x+100(0≤x≤20);(3)根据题意,得:当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.7.解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克, 根据题意得:,解得,答:该店11月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(130﹣a)千克, 根据题意得:w=10a+20(130﹣a)=﹣10a+2600;(3)根据题意得,a≤80,由(2)得,w=﹣10a+2600,∵﹣10<0,w随a的增大而减小,∴a=80时,w有最小值w最小=﹣10×80+2600=1600(元).答:12月份该店需要支付这两种水果的货款最少应是1600元.8.解:(1)由图可得,甲的速度为:25÷(1.5﹣0.5)=25÷1=25(km/h),乙的速度为:25÷2.5=10(km/h), 故答案为:25,10;(2)由图可得,a=25×(1.5﹣0.5)﹣10×1.5=10,b=1.5,故答案为:10;1.5;(3)由题意可得,前0.5h,乙行驶的路程为:10×0.5=5<7.5,则甲、乙两人路程差为7.5km是在甲乙相遇之后,设乙出发xh时,甲、乙两人路程差为7.5km,25(x﹣0.5)﹣10x=7.5,解得,x=,25﹣10x=7.5,得x=;即乙出发或时,甲、乙两人路程差为7.5km.9.解:(1)当0≤x≤200时,y与x的函数解析式是y=0.55x;当x>200时,y与x的函数解析式是y=0.55×200+0.7(x﹣200),即y=0.7x﹣30;(2)小明家4月份用电250度,月用电量超过200度,所以应交电费为:0.7×250﹣30=145(元),(3)因为小明家6月份的电费超过110元,所以把y=117代入y=0.7x﹣30中,得x=210.答:小明家6月份用电210度.10.解:(1)依题意得,乙队开挖到30m时,用了2h,开挖6h时甲队比乙队多挖了60﹣50=10(m);故答案为:2;10;=k1x, (2)设甲队在0≤x≤6的时段内y与x之间的函数关系式y甲由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y甲=10x,设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b,乙由图可知,函数图象过点(2,30)、(6,50),∴,解得,∴y 乙=5x +20;当0≤x ≤2时,设y 乙与x 的函数解析式为y 乙=kx ,可得2k =30,解得k =15,即y 乙=15x ; ∴y 乙=,(3)依题意得,开挖2小时,甲、乙两队挖的河渠的长度相差10m ,开挖6小时,甲、乙两队挖的河渠的长度相差10m ;故答案为:10;10;(4)当0≤x ≤2时,15x ﹣10x =5,解得x =1.当2<x ≤4时,5x +20﹣10x =5,解得x =3,当4<x ≤6时,10x ﹣(5x +20)=5,解得x =5.答:当两队所挖的河渠长度之差为5m 时,x 的值为1h 或3h 或5h .11.解:(1)由图可知,升级前A 生产线的日产量为:32÷8=4(万个),∵升级后,日产能提高20%,∴技术升级后,每条A 生产线每天生产口罩4×(1+20%)=4.8(万个), 故答案为:4.8;(2)A 生产线技术升级后,A 生产线的产量由32万到56万,所用的时间为(56﹣32)÷4.8=5(天),故B 生产线从第8天开始生产到第15天的产能为56万个,所以每条B 生产线每天生产口罩:56÷(15﹣8)=8(万个),故答案为:8;(3)设B 生产线有x 条,根据题意得:15×4.8+8x =136,解得:x =8,故答案为:8;(4)A生产线升级后每小时产能为:4.8÷8=0.6(万个),B生产线的每小时产能为:8÷8=1(万个),根据题意得:0.6×(8+m)×15+(8+m)(8+k)=260,整理得:(8+m)(17+k)=260,∵m、k为正整数,∴8+m为大于8的正整数,17+k为大于17的正整数,∴(8+m)(17+k)=260=10×26=13×20,∴8+m=10,17+k=26或8+m=13,17+k=20,∴m=2,k=9或m=5,k=3,∴每日工作时长增加2小时,B生产线增加9条或每日工作时长增加5小时,B生产线增加3条即可使公司口罩日总产量达到260万个,∴正整数k的值为9或3.答:正整数k的值为9或3.12.解:(Ⅰ)在A商店,购买5个费用=5×50=250(元),购买15个费用为15×50=750(元),在B商店,购买5个费用=5×60=300(元),购买15个费用为10×60+60×0.8(15﹣10)=840(元),故答案为:250,750,300,840;(Ⅱ)由题意可得:y1=50x(x≥0),当0≤x≤10时,y2=60x,当x>10时,y2=60×10+60×0.8×(x﹣10)=48x+120(x>10),∴y2=;(Ⅲ)①由题意可得:50x=48x+120,解得x=60,故答案为:60;②∵50×50<48×50+120,∴在A商店购买花费少,故答案为:A;③若在A商店,=36(个),若在B商店,=35(个),∵36>35,∴在A商店购买的数量多,故答案为:A.13.解:(1)由图象可得小明家与外婆家的距离为300km,小明经过2小时到达点A,点A到小明外婆家的距离=(300﹣2×90)=120(km),∴小明爸爸驾车返回时平均速度==60(km/h),故答案为:300,60;(2)点P表示小明出发2小时到达A地与小明爸爸相遇;(3)设s与t之间的函数关系式为s=kt+b,且过点(2.5,180),(4.5,300),∴,解得,∴s与t之间的函数关系式为s=60t+30(2.5≤t≤4.5).14.解:(1)每天生产口罩y(万个)与生产时间x(天)之间的函数表达式为:y=(x>4);(2)由题意可得:+20=,解得:x1=20,x2=﹣16,经检验,x1=20,x2=﹣16是原分式方程的解,但x=﹣16不合题意舍去,∴20﹣4=16(天),答:实际生产时间为16天.15.解:(1)a=5×5=25,b=5×10+(20﹣10)×0.8×5=90;(2)y=5×10+5×0.8(x﹣10)=4x+10;(3)购买35千克付款金额=4×35+10=150(元),购买8千克付款金额=5×8=40(元),一起购买付款金额=4×(35+8)+10=182(元), ∴150+40﹣182=8(元),答:一起购买可省8元.。
八年级数学下第二十一章一次函数21.4一次函数的应用21.4.2建立一次函数模型解双函数应用

感悟新知
3 某工厂有甲、乙两个净化水池,容积都是480 m3.注 知2-练 满乙池的水得到净化可以使用时,甲池未净化的水已 有192 m3.此时,乙池以10 m3/h的速度将水放出使用, 而甲池仍以8 m3/h的速度注水.设乙池放水为x h 时, 甲、乙两池中的水量用y m3表示.
(1)分别写出甲、乙两池中的水量y关于x的函数关系式及 自变量x的取值范围,并在同一直角坐标系中画出这 两个函数的图像.
A
14
20
B
10
8
感悟新知
(1)设从甲仓库运送到A港口的物资为x吨,求总费用y( 知2-讲 元)与x(吨)之间的函数关系式,并写出x的取值范围.
(2)求出最低总费用,并说明总费用最低时的调配方案.
导引:(1)第一步,先用含x的式子表示出从甲仓库运往B港口的物资的 吨数,以及从乙仓库运往A、B两港口的物资吨数;第二步, 根据运输的总费用等于四条运输路线的费用总和,便可求出总 费用y(元)与x(吨)之间的函数关系式;第三步,根据问题的实 际意义列出不等式组,即可求得x的取值范围. (2)根据一次函数的增减性及自变量的取值范围,即可确定总费 用最低时的物资调配方案和最低总费用.
知1-练
感悟新知
3. 【中考·葫芦岛】甲、乙两车从A城出发前往B城, 在整个行驶过程中,汽车离开A城的距离y(km)与 行驶时间t(h)的函数图像如图所示,下列说法正确 的有( D )
①甲车的速度为50 km/h ②乙车用了3 h到达B城 ③甲车出发4 h时,乙车追上甲车 ④乙车出发后经过1 h或3 h两车相距50 km A.1个 B.2个 C.3个 D.4个
第二十一章 一次函数
21.4 一次函数的应用
第2课时 建立一次函数模型 解双函数应用
实际问题与一次函数-调配问题

可持续性
随着环保意识的提高,未来调配 问题将更加注重可持续性,考虑 资源消耗、碳排放、能源消耗等 因素,实现绿色、低碳的解决方
案。
未来调配问题的挑战与机遇
挑战
随着问题的复杂性和规模的增加,调配问题的求解难度也将相应提高,需要更加专业和高效的算法和技术。同时, 数据安全和隐私保护也是未来调配问题需要考虑的重要问题。
一次函数建模
在调配问题中,可以将资源、成本、产量等量纲不同的数据 通过一次函数进行建模。通过设定合适的参数和变量,可以 将实际问题的数在调配问题中的求解方法
线性规划法
线性规划是一种求解线性目标函数的数学方法。在调配问题中,可以通过线性规 划法找到最优解,即使得目标函数取得最大值或最小值的资源配置方案。
例如,在农业生产中,农民需要根据土地、气候等条件合理分配种植作物,以实现产量 最大化。在商业环境中,企业需要合理调配资金、原材料、设备等资源,以满足生产需
求并降低成本。
人员调配问题
总结词
人员调配问题主要关注如何根据工作任务和人员能力合理分配人力资源,以达到最佳的工作效果。
详细描述
例如,在项目管理中,项目经理需要根据项目需求和团队成员的技能、经验合理分配工作任务,以确 保项目顺利进行。在体育训练中,教练需要根据运动员的特点和训练目标合理安排训练计划,以提高 运动员的竞技水平。
灵活运用多种方法
解决调配问题时,可以根据实际情况 灵活运用多种方法,以提高解决问题 的效率和质量。
05
调配问题的未来发展与展望
调配问题的发展趋势
智能化
随着人工智能和大数据技术的不 断发展,调配问题将更加依赖于 智能化算法和数据处理技术,实
现更高效、精确的解决方案。
多元化
建立函数模型,解决实际问题

建立函数模型,解决实际问题建立函数模型解决实际决策型问题是实践性,创新性很强的命题亮点,其解题步骤一般如下:由实际问题⋅⋅−−−−−→分析抽象转化数学模型(如函数等)−−−→−推理演算解答数学问题−−→−校验回归实际问题。
一、建立一次函数模型例1.鞋子的“鞋码”y 与鞋长x (cm )存在一次函数的关系,下表是几组“鞋码”与鞋长的对应数值: 鞋长(cm ) 16 19 24 27 鞋码22 28 38 44 (1)请根据表格中的数值,求出y 与x 之间的函数关系式;(2)如果你需要的鞋长为26cm ,那么应该买多大码的鞋?【命题意图】本题旨在考查根据表格提供的数据,利用待定系数法建立一次函数(模型)关系,然后用所求的函数关系(模型)解决问题。
【思路点拔】可先设一次函数解析式为:y =k x +b ,根据表中所提供的数据,取两组值分别代入解析式中的x 与y 得到方程组,解方程组即可求出函数解析式解:(1)设y =k x +b ,则由题意,得⎩⎨⎧+=+=b k b k 19281622,解得:⎩⎨⎧-==102b k , ∴ y =2x -10;(2)当x =26时,y =2×26-10=42答:应该买42码的鞋。
二、建立反比例函数模型例2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (千帕)是气球体积V (米3)的反比例函数,其图象如图所示(千帕是一种压强单位).(1)写出这个函数的解析式;(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不少于多少立方米?【命题意图】本题旨在考查根据图象(点的坐标),利用待定系数法确定反比例函数关系(模型),然后用所求的函数关系(模型)解决问题。
【思路点拔】由图象中A 点的坐标求得反比例函数解析式;对于(3),可利用反比例函数的性质,先求出气压是144千帕时对应的体积,再分析出气球的体积应不小于多少.解:(1)设此反比例函数为)0(≠=k V k p . 由图象知反比例函数的图象经过点A (1.5,64),∴5.164k =,∴k=96. 故此函数的解析式为Vp 96=; (2)当V=0.8时,1208.09696===V p (千帕);(3)当p=144时,V96144=, ∴3214496==V (3米). 由图象可知,该反比例函数p 随V 的增大而减小,故为安全起见,气球的体积应不小于332m . 【解题心得】在解题时,要充分利用图象、表格中信息和文字信息,把实际问题转化为数学问题,进一步体会数与形的统一.。
2020—2021年新湘教版八年级数学下册《利用一次函数解决实际问题》课时练习及答案.docx

湘教版2017—2018学年八年级数学下学期4.5 一次函数的应用1 利用一次函数解决实际问题要点感知1 函数图象由两个一次函数拼接在一起,我们要按照图象实行分段处理,每段看它适合哪种函数模型.预习练习1-1 如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费__________元.要点感知2 同一坐标系中若有多条直线,我们要对每条直线进行处理,重在找出这些函数的交点坐标和每个图形的起始坐标(交点的求法一般将两个函数的表达式联立在一起,组成方程组,方程组的解便是交点坐标).预习练习2-1 在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为( )A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)2-2 如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须__________.知识点1 利用一次函数解决分段计费问题1.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费( )A.0.4元B.0.45元C.约0.47元D.0.5元2.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80立方米,那么这个月甲用户应交煤气费__________元.3.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费.设每户家庭月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?知识点2 利用一次函数解决相交直线问题4. “五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.当他们离目的地还有20千米时,汽车一共行驶的时间是( )A.2小时B.2.2小时C.2.25小时D.2.4小时5.某市政府决定实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图,则下列说法中错误的是( )A.甲队每天挖100米B.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当x=3时,甲、乙两队所挖管道长度相同6.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为( )A.5.5公里B.6.9公里C.7.5公里D.8.1公里7.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发小时时,行进中的两车相距8千米.8.小李和小陆沿同一条路行驶到B地,他们离出发地的距离s和行驶时间t之间的函数关系的图象如图.已知小李离出发地的距离s和行驶时间t之间的函数关系为s=2t+10.则:(1)小陆离出发地的距离s和行驶时间t之间的函数关系为:_________________;(2)他们相遇的时间t=__________.9.学生甲、乙两人跑步的路程s与所用时间t的函数关系图象表示如图(甲为实线,乙为虚线).根据图象判断:如果两人进行一百米赛跑,当甲跑到终点时,乙落后甲多少米?10.电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差__________元.11.为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:档次第一档第二档第三档每月用电量0<x≤(2)(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.参考答案预习练习1-1 7.4预习练习2-1 D2-2 大于41.A2.723.(1)当0≤x≤20时,y与x之间的函数表达式为:y=2x(0≤x≤20);当x>20时,y与x之间的函数表达式为:y=2.8(x-20)+40=2.8x-16(x>20);(2)∵小颖家四月份、五月份分别交水费45.6元、38元,∴小颖家四月份用水超过20吨,五月份用水没有超过20吨.∴45.6=2.8(x1-20)+40,38=2x2.∴x1=22,x2=19.∵22-19=3,∴小颖家五月份比四月份节约用水3吨.4.C5.D6.B7.23或438.(1)s=10t(2)5 49.根据图形可得:甲的速度是648=8(米/秒),乙的速度是:6488=7(米/秒),∴根据题意得:100-1008×7=12.5(米).当甲跑到终点时,乙落后甲12.5米. 答:当甲跑到终点时,乙落后甲12.5米.10.1011.(1)140<x≤230 x>230(2)54(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c ,将(140,63),(230,108)代入,得14063,230108.a c a c +=+=⎧⎨⎩解得127.a c ==-⎧⎪⎨⎪⎩,则第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=12x-7(140<x ≤230).(4)根据图象可得出:用电230度,需要付费108元,用电140度,需要付费63元,故108-63=45(元),230-140=90(度),45÷90=0.5(元),则第二档电费为0.5元/度;∵小刚家某月用电290度,交电费153元,290-230=60(度),153-108=45(元),45÷60=0.75(元),m=0.75-0.5=0.25. 答:m 的值为0.25.。
数学建模中的二种模型与真题训练(解析版)

数学建模中的二种模型与真题训练所谓数学建模,就是将某一领域或部门的某一实际问题,通过一定的假设,找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程。
笔者以一次函数的应用为例,探讨几种不同的数学建模过程。
一、直接给出模型二、猜测建立模型 三、实际推导模型我国著名的数学家华罗庚曾经指出:“人们对于数学产生枯燥无味、神秘难懂的印象,原因之一便是脱离实际。
”因此,每一位数学教师都应该善于挖掘身边的生活实例,将它们作为有效的教学资源,让学生在做数学、体验数学的实践活动中,自主构建数学模型,感受数学的魅力,提高学生学习数学的兴趣,并增强学习数学的自信心。
题型一:建立方程模型解决实际问题一.选择题(共2小题) 1.(2022秋•江北区校级月考)在一个三角形中,若其中一个内角等于另外两个内角的差,则这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .都有可能【分析】根据三角形的内角和可求解△ABC 的一内角为90°,进而可判断三角形的形状.【解答】解:设这个三角形为△ABC ,且∠A =∠B ﹣∠C ,则∠A +∠C =∠B ,∵∠A +∠C +∠B =180°,∴∠B =90°,∴△ABC 为直角三角形,故选:A .【点评】本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.2.(2022春•合肥期末)在新冠肺炎疫情防控期间,某药房第一次用7000元购进一次性医用口罩若干个,第二次又用8000元购进该款口罩,但第二次每个口罩的进价是第一次的1.2倍,且购进的数量比第一次少200个.设第一次购进一次性医用口罩的数量为x 个,则根据题意可列方程为( )A .=× 1.2B .×1.2=技巧方法 题型归纳C.×1.2=D.×1.2=【分析】第一次购进一次性医用口罩的数量为x个,则第二次购买一次性医用口罩(x﹣200)个,利用单价=总价÷数量,结合第二次购买每个口罩的价格是第一次购买价格的1.2倍,即可得出关于x的分式方程.【解答】解:第一次购进一次性医用口罩的数量为x个,则第二次购买一次性医用口罩(x﹣200)个,由题意得.故选:C.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二.填空题(共5小题)3.(2022•浦江县模拟)如图1是某一遮阳篷支架从闭合到完全展开的一个过程,当遮阳篷支架完全闭合时,支架的若干支杆可看作共线.图2是遮阳篷支架完全展开时的一个示意图,支杆MN固定在垂直于地面的墙壁上,支杆CE与水平地面平行,且G,F,B三点共线,在支架展开过程中四边形ABCD始终是平行四边形.(1)若遮阳棚完全展开时,CE长2米,在与水平地面呈60°的太阳光照射下,CE在地面的影子有2米(影子完全落在地面).(2)长支杆与短支杆的长度比(即CE与AD的长度比)是+1.【分析】(1)过C作与水平地面呈60°的直线KC交MN的延长线于K,分别过K、E作KS∥CE,ES∥CK可得四边形CESK是平行四边形,然后根据平行四边形的性质求得KS的长即可.(2)由题意可知:CB=FB=GF,GH=HB,则FH⊥GB,进而证明△MOK∽△FOH,再证明GH=GF,最后找到CE与AD的长度比即可.【解答】解:(1)过C作与水平地面呈60°的直线KC交MN的延长线于K,分别过K、E作KS∥CE,ES∥CK,∴四边形CESK是平行四边形,∴KS=CE=2,即CE在地面上影子的长为2米.故答案为:2.(2)连结FH,设DE=a,CD=b,由题意可知:BC=a,BF=a,GF=a,BH=b,GH=b,在△GHB中,HB=GH,GF=FB,∴FH⊥GB,又∵MK⊥GB,∴MK∥FH,∴△MOK∽△FOH.∵FK=MH,∴OH=OF,∴∠OFH=∠OHF,又∵∠GFH=90°,即∠GFO+∠OFH=90°,∴∠GFO+∠OHF=90°,又∵∠FGO+∠OHF=90°,∴∠GFO=∠FGO,即OG=OF,∴OH=OF=OG,∴∠FGH=45°,∴GH=GF.即:b=a,∴===+1,∴CE:AD=+1.故答案为:+1.【点评】本题主要考查了三角形相似的判定与性质、折叠的性质等知识点,灵活运用相关知识成为解答本题的关键.4.(2022春•南海区校级月考)如图,直角三角形ABC中,AC+BC=5,S△ABC=,则AC2+BC2的值是19.【分析】由三角形的面积公式求得AC•BC=3;结合完全平方公式的变形公式得到AC2+BC2=(AC+BC)2﹣2AC•BC,代入求值即可.【解答】解:∵S△ABC=,AC•BC=S△ABC,∴AC•BC=,∴AC•BC=3.∴AC2+BC2=(AC+BC)2﹣2AC•BC=52﹣2×3=19.故答案为:19.【点评】本题主要考查了勾股定理,解题时,利用了完全平方公式的转化公式,巧妙的得到AC2+BC2=(AC+BC)2﹣2AC•BC.5.(2022•龙岗区模拟)如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.在测量AB的投影时,同时测量出DE在阳光下的投影长为4.2m,则DE的长为7m.【分析】利用同一时刻物体高度与影长比值相等进而得出答案.【解答】解:∵AB=5m,某一时刻AB在阳光下的投影BC=3m,EF=4.2m,∴=,则=,解得DE=7,即DE的长为7m.故答案是:7m.【点评】此题主要考查了相似三角形的应用和平行投影的性质,利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.6.(2022秋•北碚区校级期中)在新冠疫情下,口罩作为重要的防疫物资,国家投入了大量的资金和工厂进行口罩的生产,每个工厂生产的口罩型号,颜色均有差异.某商店共有a种不同型号的口罩,每种口罩都有红、白、蓝三种颜色,并且货源充足,每种型号的口罩红色的价格均为每包50元,白色的价格均为每包b 元,蓝色的价格均为每包c元,且满足66≤b<c≤74,b、c均为正整数.A、B、C三人每人都将每种型号的口罩各买一包,且对于同种型号的口罩,三人选择的颜色各不相同.结账时,A、B都花了1200元,且他们买的蓝色口罩数量不同,C花了1400元,三种颜色的口罩皆有购买,请问C用于购买白色、蓝色的口罩最多一共花费1350元.【分析】由题意可得a(50+b+c)=3800,再由a,b,c均为正整数,且66≤b<c≤74,求出b+c=140,a=20,则满足条件的有四种情况:①b=67,c=73;②b=68,c=72;③b=69,c=71;④a=66,b=74;设A、B购买红色型号的口罩x包,白色型号的口罩y包,蓝色型号的口罩(40﹣x﹣y)包,分别列出方程求解讨论即可.【解答】解:A、B、C三人将a种不同型号的口罩三种颜色的口罩各买一包,共花了1200+1200+1400=3800(元),即a(50+b+c)=3800,∵a,b,c均为正整数,且66≤b<c≤74,∴185=50+67+68≤50+b+c≤50+72+73=195,∴50+b+c=190,a=20,即b+c=140,a=20,∴有四种情况:①b=67,c=73;②b=68,c=72;③b=69,c=71;④a=66,b=74;设A、B购买红色型号的口罩x包,白色型号的口罩y包,蓝色型号的口罩(40﹣x﹣y)包,①,整理得23x+6y=520,∵x≤20,y≤20,且x、y是整数,∴,∴C只购买了白色和蓝色口罩,不符合题意;②,整理得11x+2y=240,∵x≤20,y≤20,且x、y是整数,∴,∴C只购买了白色和蓝色口罩,不符合题意;③,整理得21x+2y=440,∵x≤20,y≤20,且x、y是整数,∴,∴C只购买了白色和蓝色口罩,不符合题意;④,整理得3x+y=70,∵x≤20,y≤20,且x、y是整数,∴或或或,∴当x=19,y=13时,C用于购买白色、蓝色的口罩最多,1400﹣50=1350(元);综上所述:C用于购买白色、蓝色的口罩最多一共花费1350元,故答案为:1350.【点评】本题考查二元二次方程的实际应用,能够理解题意,根据题意列出方程,根据所给的取值范围,求解不定方程是解题的关键.7.(2022春•沙坪坝区校级期中)“如果华佗再世,崇洋都被医治,外邦来学汉字,激发我民族意识…”最近,刘畊宏的键身操刷爆全网,掀起了一股全民健身热潮,《本草纲目》健身操让众多网友直呼酸爽.最出圈的《公公偏头疼》、《龙拳》、《本草纲目》三首曲目每分钟卡路里的消耗量之比为4:3:6,三首曲目时长之比为3:2:2.走红以后,根据众多网友的反馈,刘教练对健身操的动作与曲目时长都进行了重新编排.重新编排后,《龙拳》每分钟卡路里的消耗量比之前降低了,《本草纲目》每分钟卡路里的消耗量为之前的《公公偏头疼》和《本草纲目》的卡路里每分钟消耗量总和,《龙拳》的卡路里总消耗量减少,《公公偏头疼》增加的卡路里消耗量与《龙拳》减少的卡路里消耗量之比为2:3,《本草纲目》增加的卡路里消耗量是《公公偏头疼》增加的卡路里消耗量的2倍,且占三首曲目卡路里消耗总量的10%,则重44:89.【分析】设《公公偏头疼》、《龙拳》、《本草纲目》三首曲目每分钟卡路里的消耗量分别为4k,3k,6k,三首曲目时长分别为3t,2t,2t,根据题意,分别求出《龙拳》卡路里的总消耗量为2bk,《公公偏头疼》卡路里的总消耗量为8kc,《本草纲目》增加的卡路里的消耗量为k(3t﹣2b),再根据题意建立方程,求解方程即可.【解答】解:设《公公偏头疼》、《龙拳》、《本草纲目》三首曲目每分钟卡路里的消耗量分别为4k,3k,6k,三首曲目时长分别为3t,2t,2t,∴总消耗的热量为4k•3t+3k•2t+6k•2t=30kt,则重新编排后,《龙拳》每分钟卡路里的消耗量为3k•(1﹣)=2k,《本草纲目》每分钟卡路里的消耗量为6k•=8k,设重新编排后,《公公偏头疼》、《龙拳》、《本草纲目》三首曲目三首曲目时长分别为a、b、c,∴《龙拳》卡路里的总消耗量为2bk,《公公偏头疼》卡路里的总消耗量为8kc,∴《龙拳》减少的卡路里的消耗量为3k•2t﹣2kb=6kt﹣2kb,∵《公公偏头疼》增加的卡路里的消耗量与《龙拳》减少的卡路里的消耗量之比为2:3,∴《公公偏头疼》增加的卡路里的消耗量为(6kt﹣2bk)=k(3t﹣2b),∵《本草纲目》增加的卡路里消耗量是《公公偏头疼》增加的卡路里消耗量的2倍,∴《本草纲目》增加的卡路里的消耗量为k(3t﹣2b),∴重新编排后三首曲目卡路里消耗总量为3k•2t﹣(6kt﹣2kb)+4k•3t+k(3t﹣2b)+6k•2t+k(3t﹣2b)=6k(6t﹣b),∴k(3t﹣2b)=6k(6t﹣b)×10%,∴t=b,∴8kc﹣12kt=k(3t﹣2b),解得b:c=44:89,故答案为:44:89.【点评】本题考查了方程的实际应用,能够根据题意建立方程是解题的关键.三.解答题(共5小题)8.(202214倍,求这个多边形的边数;(2)已知一个多边形的每一个内角的度数都等于144°,求这个多边形的边数.【分析】由多边形的内角和定理:(n﹣2)•180°(n≥3且n为整数),多边形的外角和等于360°,即可求解.【解答】解:(1)设这个多边形的边数为n,(n﹣2)×180°=4×360°,∴n=10,答:这个多边形的边数是10.(2)∵这个多边形的每一个内角的度数都等于144°,∴这个多边形的每一个外角的度数都等于180°﹣144°=36°,∴这个多边形的边数为:360°÷36°=10.【点评】本题考查多边形的有关知识,关键是掌握多边形的内角和定理:(n﹣2)•180°(n≥3且n为整数);多边形的外角和等于360°.9.(2023春•潜江月考)11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是20肘尺(肘尺是古代的长度单位),另外一棵高16肘尺;两棵棕榈树的树干间的距离是30肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?【分析】根据题意画出图形,利用勾股定理建立方程,求出x的值即可.【解答】解:通过建模把距离转化为线段的长度.由题意得:AB=20,DC=16,BC=30,设BE为x肘尺,EC为(30﹣x)肘尺,在Rt△ABE和Rt△DEC中,AE2=AB2+BE2=202+x2,DE2=DC2+EC2=162+(30﹣x)2,又∵AE=DE,∴202+x2=162+(30﹣x)2,∴x=12.6,答:这条鱼出现的地方离比较高的棕榈树的树根12.6肘尺.【点评】本题考查勾股定理的正确运用;善于挖掘题目的隐含信息是解决本题的关键.10.(2022春•锦江区期末)成都是一座休闲又充满幸福感的城市,眼下露营正成为成都人民一种新的周末休闲娱乐方式,经营户外用品店的小明决定采购一批帐篷进行销售,已知防晒帐篷的采购价是普通帐篷的2倍,且用4500元购买的防晒帐篷比用1500元购买的普通帐篷多5件.(1)求防晒帐篷和普通帐篷的采购价;(2)小明准备拿出7500元全部用于采购防晒帐篷和普通帐篷并进行销售,设防晒帐篷采购a件,普通帐篷采购b件.①用含a的式子表示b;②经过市场调研,小明决定将防晒帐篷售价定为380元/件,普通帐篷售价定为180元/件.若采购的普通帐篷不超过30件且采购的普通帐篷数量多于防晒帐篷数量,为了使销售完采购的帐篷时所获得的利润最大,请你为小明制定采购方案并求出最大利润.【分析】(1)设普通帐篷的采购价位x元,则防晒帐篷的采购价为2x元,以购买帐篷的数量为等量关系列出分式方程解答即可;(2)①根据购买普通帐篷和防晒帐篷的总价是7500列出式子整理即可;②列出利润w关于a的函数关系式,然后根据不等关系得出a的取值范围,计算w即可.【解答】解:(1)设普通帐篷的采购价位x元,则防晒帐篷的采购价为2x元,由题意得,,解得x=150,经检验x=150是原分式方程的根并符合实际意义,所以2x=2×150=300,答:普通帐篷的采购价为150元,防晒帐篷的采购价为300元.(2)①根据题意可知:300a+150b=7500,整理得:b=50﹣2a;②设销售利润为w元,则w=(380﹣300)a+(180﹣150)b=80a+30(50﹣2a)=20a+1500,w是关于a的一次函数,a>0,所以w随着a的增大而增大,∵采购的普通帐篷不超过30件且采购的普通帐篷数量多于防晒帐篷数量,∴,解得10,a为正整数,所以当a=16时利润最大,最大利润w=20×16+1500=1820,所以购买16件防晒帐篷,18件普通帐篷,可以获得最大利润1820元.【点评】本题考查分式方程和一元一次不等式组的应用,分析题意,找到合适的等量关系或不等关系是解决问题的关键.11.(2022秋•宜兴市期末)好学的丽丽用所学知识测量路灯的高度.如图,丽丽和爸爸站在路灯AD下,爸爸的身高EF=1.8m,丽丽的身高MN=1.6m.爸爸的影子BF=3m,丽丽的影子CN=2m,两人相距FN=16m,求路灯AD的高度.【分析】根据相似三角形△EBF∽△ABD的对应边成比例可得答案.【解答】解:∵EF∥AD,∴△EBF∽△ABD.∴.∴=.∴.同理:,∴,∴.∴.∴AD=7.2m.答:路灯AD的高度为7.2m.【点评】本题考查相似三角形的判定与性质的实际应用及分析问题、解决问题的能力.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.12.(2022春•武汉期末)如图1,已知直线l1∥l2,点A、B在直线l1上,点C、D在l2上,线段AD交线段BC于点E,且∠BED=60°.(1)求证:∠ABE+∠EDC=60°;(2)如图2,当F、G分别在线段AE、EC上,且∠ABF=2∠FBE,∠EDG=2∠GDC,标记∠BFE为∠1,∠BGD为∠2.①若∠1﹣∠2=16°,求∠ADC的度数;【分析】(1)利用平行线的性质和三角形的外角的性质解答即可;(2)①设∠FBE=x,∠GDC=y,则∠ABF=2x,∠EDG=2y,利用方程的思想方法,依据已知条件列出方程组即可求解;②利用①中的方法,设∠FBE=x,∠GDC=y,则∠ABF=2x,∠EDG=2y,通过计算k∠1+∠2,令计算结果中的x的系数为0即可求得结论.【解答】(1)证明:∵l1∥l2,∴∠ABE=∠ECD.∵∠BED=∠ECD+∠EDC,∠BED=60°,∴∠ABE+∠EDC=60°;(2)解:①∵∠ABF=2∠FBE,∠EDG=2∠GDC,∴设∠FBE=x,∠GDC=y,则∠ABF=2x,∠EDG=2y.∴∠ABE=3x,∠EDC=3y.∴3x+3y=60°,∴x+y=20°.∵∠1+∠FBE=∠BED=60°,∠2+∠EDG=∠BED=60°,∴∠1+∠FBE=∠2+∠EDG,∴∠1﹣∠2=∠EDG﹣∠FBE,∵∠1﹣∠2=16°,∴2y﹣x=16°.∴,解得:.∴∠ADC=3y=36°.设∠FBE=x,∠GDC=y,则∠ABF=2x,∠EDG=2y.∴∠ABE=3x,∠EDC=3y.由①知:x+y=20,∴y=20﹣x,∵∠1=∠BED﹣∠FBE=60﹣x,∠2=∠BED﹣∠EDG=60﹣2y,∴k∠1+∠2=k(60﹣x)+60﹣2y=60k﹣kx+60﹣2(20﹣x)=(2﹣k)x+60k+20,∵k∠1+∠2为定值,∴2﹣k=0,∴k=2,∴此时k∠1+∠2=60×2+20=140°,∴当k=2时,(k∠1+∠2)为定值,此时定值为140°.故答案为:2;140°.【点评】本题主要考查了平行线的性质,三角形的外角的性质,利用方程或方程组的思想解答是解题的关键.题型二:建立函数模型解决实际问题一.选择题(共4小题)1.(2023度)不同而有不同的数值,某次实验测得音速y(米/秒)与气温x(℃)的部分数据如表:气温x(℃)05101520…音速y(米/秒)331334337340343…下列说法不正确的是()A.气温是因变量,音速是自变量B.y随x的增大而增大C.当气温是25℃时,音速是346米/秒D.气温每升高5℃,音速增加3米/秒【分析】结合表格信息运用函数的概念进行求解.【解答】解:由题意得,气温是自变量,音速是因变量;而y随x的增大而增大,气温每升高5℃,音速增加3米/秒,故当气温是25℃时,音速是346米/秒,故选:A.【点评】此题考查了运用函数的概念解决实际问题的能力,关键是能准确理解并运用该知识.2.(2022秋•亳州期中)已知一个长方形的周长为50cm,相邻两边分别为xcm,ycm,则它们的关系为是()A.y=50﹣x(0<x<50)B.y=50﹣x(0≤x≤50)C.y=25﹣x(0<x<25)D.y=25﹣x(0≤x≤25)【分析】根据长方形周长的计算方法进行列式、求解.【解答】解:由题意得2(x+y)=50,解得y=25﹣x(0<x<25),故选:C.【点评】此题考查了根据实际问题列函数解析式的能力,关键是能正确理解问题间数量关系进行求解.3.(2022•涧西区一模)如图①,点A、B是⊙O上两定点,圆上一动点P从圆上一定点B出发,沿逆时针方向匀速运动到点A,运动时间是x(s),线段AP的长度是y(cm).图②是y随x变化的关系图象,则图中m的值是()A.B.C.5D.【分析】从图2看,当x=2时,y=AP=6,即此时A、O、P三点共线,则圆的半径为AP=3,当x=0时,由勾股定理逆定理可知,OA⊥OB,则点P从点B走到A、O、P三点共线的位置时,此时t=2,走过的角度为90°,可求出点P运动的速度,当t=m时,AP=OA=OB,即△OAP是等边三角形,进而求解.【解答】解:从图2看,当x=2时,y=AP=6,即此时A、O、P三点共线,则圆的半径为AP=3,当x=0时,OB2+OA2=AP2,∴△OAB是直角三角形,且OA⊥OB,则点P从点B走到A、O、P三点共线的位置时,如图所示,此时x=2,走过的角度为90°,则走过的弧长为×2π×r=,∴点P的运动速度是÷2=(cm/s),当t=m时,AP=OA=OB,即△OAP是等边三角形,∴∠AOP=60°,∴∠BOP=360°﹣90°﹣60°=210°,此时点P走过的弧长为:×2π×r=,∴m=÷=,故选:D.【点评】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系.4.(2021秋•梁溪区校级期中)如图,在一张白纸上画1条直线,最多能把白纸分成2部分(如图1),画2条直线,最多能把白纸分成4部分(如图2),画3条直线,最多能把白纸分成7部分(如图3),当在一张白纸上画15条直线,最多能把白纸分成的部分是()A.120B.121C.122D.123【分析】设直线的条数为x,最多能把白纸分成了y部分,当x=1时,y=2,当x=2时,y=4,当x=3时,y =7,所以y与x满足了二次函数,然后进行计算即可.【解答】解:设直线的条数为x,最多能把白纸分成了y部分,由题意得:y=ax2+bx+c,则,解得:,y=x2+x+1,∴当x=15时,代入y=x2+x+1得,y=121,故选:B.【点评】本题考查了规律型:图形的变化类,根据数据判断它们满足的是什么函数是解题的关键.二.填空题(共3小题)5.(2021春•北镇市期中)如图,在长方形ABCD中,AB=8cm,AD=6cm,点M,N从A点出发,点M沿线段AB运动,点N沿线段AD运动(其中一点停止运动,另一点也随之停止运动).若设AM=AN=xcm,阴影部分的面积为ycm2,则y与x之间的关系式为y=﹣x2+48.【分析】因为空白部分面积可表示为x2,长方形ABCD的面积为8×6,则可表示出该函数解析式为y=﹣x2+48.【解答】解:由题意得,该阴影部分的面积为6×8﹣x2=﹣x2+48,故答案为:y=﹣x2+48.【点评】此题考查了根据实际问题写出相关函数表达式的能力,关键是能准确理解题目间的数量关系.6.(2021春•普宁市期中)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=6,D是线段AB上一个动点,以BD为边在△ABC外作等边△BDE.若F是DE的中点,则CF的最小值为9.【分析】连接BF,依据等边三角形的性质,即可得到点F在∠DBE的角平分线上运动;当点D在CF上时,∠CFB=90°,根据垂线段最短可知,此时CF最短,最后根据CB的长即可得到CF的长.【解答】解:如图所示,连接BF,∵等边△BDE中,F是DE的中点,∴BF⊥DE,BF平分∠DBE,∴∠DBF=30°,即点F在∠DBE的角平分线上运动,∴当点D在CF上时,∠CFB=90°,根据垂线段最短可知,此时CF最短,又∵∠ABC=30°,∴∠CBF=60°,∵Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=6,∴BC=AC=6 ,∴Rt△BCF中,CF=BC×sin∠CBF=6 ×=9.故答案为:9.【点评】本题考查的是等边三角形的性质,即等边三角形的三个内角都相等,且都等于60°.连接BF,得到点F在∠DBE的角平分线上运动是解决问题的关键.7.(2022秋•青羊区期末)已知矩形ABCD中,AB=2AD=8,点E、F分别是边AB、CD的中点,点P为AD边上动点,过点P作与AB平行的直线交AF于点G,连接PE,点M是PE中点,连接MG,则MG的最小值=.【分析】方法一:如图,过点M作MN⊥PG于点N,取AP的中点H,连接MH,EF,设AP=x,则AH=PH=x,利用矩形性质和三角形中位线定理可得:MH=AE=2,再证明四边形MNPH是矩形,可得:PN=MH=2,MN=PH=x,再证得△APG是等腰直角三角形,得出PG=AP=x,推出NG=PG﹣PN=x﹣2,运用勾股定理可得MG2=MN2+NG2=(x)2+(x﹣2)2=(x﹣)2+,再运用二次函数性质即可求得答案.方法二:如图,以点D为原点,直线CD为x轴,直线AD为y轴建立平面直角坐标系,设P(0,t),运用中点坐标公式可得M(﹣2,),利用待定系数法求得直线AG的解析式为y=x+4,进而可得G(t﹣4,t),再运用两点间距离公式即可求得答案.【解答】解:方法一:如图,过点M作MN⊥PG于点N,取AP的中点H,连接MH,EF,设AP=x,则AH=PH=x,∵四边形ABCD是矩形,且AB=2AD=8,∴AB=CD=8,AD=4,∠BAD=∠D=90°,AB∥CD,∵PG∥AB,∴PG∥CD,∴∠APG=∠D=90°,∵点E、F分别是边AB、CD的中点,AB=2AD=8,∴AE=AD=DF=4,∵点M是PE中点,点H是AP的中点,∴MH∥AB,MH=AE=2,∴∠PHM=∠BAD=90°,∵MN⊥PG,∴∠MNP=∠MNG=90°=∠PHM=∠APG,∴四边形MNPH是矩形,∴PN=MH=2,MN=PH=x,∵AD=DF,∠D=90°,∴△ADF是等腰直角三角形,∴∠AFD=45°,∵PG∥CD,∴∠AGP=∠AFD=45°,∵∠APG=90°,∴△APG是等腰直角三角形,∴PG=AP=x,∴NG=PG﹣PN=x﹣2,在Rt△MNG中,MG2=MN2+NG2=(x)2+(x﹣2)2=(x﹣)2+,∵>0,∴当x=时,MG2取得最小值,∵MG===,∴MG的最小值为,故答案为:.方法二:如图,以点D为原点,直线CD为x轴,直线AD为y轴建立平面直角坐标系,∵四边形ABCD是矩形,且AB=2AD=8,∴A(0,4),B(﹣8,4),C(﹣8,0),D(0,0),∵点E、F分别是边AB、CD的中点,∴E(﹣4,4),F(﹣4,0),设P(0,t),∵点M是PE中点,∴M(﹣2,),设直线AG的解析式为y=kx+b,则,解得:,∴直线AG的解析式为y=x+4,∵PG∥x轴交AF于G,∴G(t﹣4,t),∴MG2=[(t﹣4)﹣(﹣2)]2+(t﹣)2=t2﹣6t+8=(t﹣)2+,∵>0,∴MG2有最小值,∵MG>0,∴MG的最小值为=,故答案为:.【点评】本题考查了矩形性质,三角形中位线定理,等腰直角三角形性质,勾股定理,运用待定系数法求一次函数解析式,两点间距离公式,二次函数的最值等知识,解题关键是运用函数思想解决几何问题.三.解答题(共7小题)8.(2022春•顺德区校级期中)甲、乙两地打电话需付的电话费y(元)是随时间t(分钟)的变化而变化的,试根据下表列出的几组数据回答下列问题:123456…通话时间t(分钟)0.150.300.450.60.750.9…电话费y(元)(1)自变量是t,因变量是y.(2)写出电话费y(元)与通话时间t(分钟)之间的关系式.(3)若小明通话15分钟,则需付话费多少元?(4)若小明某次通话后,需付话费6元,则小明通话多少分钟?【分析】(1)根据函数的定义即可确定自变量与因变量;(2)根据表格信息可得每通话1分钟需付话费0.15元可求得此题结果;(3)将t=15代入该函数解析式进行求解即可;(4)将y=6代入该函数解析式进行求解即可.【解答】解:(1)由题意可得,自变量是t,因变量是y,故答案为:t,y;(2)由题意可得,每通话10.15元,∴电话费y(元)与通话时间t(分钟)之间的关系式是y=0.15t;(3)当t=15时,得y=0.15×15=2.25,故小明通话15分钟,则需付话费2.25元;(4)当y=6时,得0.15t=6,解得t=40,故小明通话40分钟.【点评】此题考查了运用函数的概念解决实际问题的能力,关键是能结合题意与函数的概念进行列式、计算.9.(2022春•云岩区期中)你知道什么是“低碳生活”吗?“低碳生活”是指人们生活中尽量减少所耗能量,从而降低(特别是二氧化碳)的排放量的一种生活方式.排碳计算公式:家居用电的二氧化碳排放量(kg)=耗电量(kW•h)×0.785开私家车的二氧化碳排放量(kg)=耗油量(L)×2.7家用天然气二氧化碳排放量(kg)=天然气使用量(m3)×0.19家用自来水二氧化碳排放量(kg)=自来水使用量(t)×0.91(1)设家居用电的二氧化碳排放量为y(kg),耗电量为x(kW•h),则家居用电的二氧化碳排放量可以用关系式表示为y=0.785x;(2)在上述关系式中,耗电量每增加1kW•h,二氧化碳排放量增加0.785kg;当耗电量从1kW⋅h增加到100kW•h时,二氧化碳排放从0.785kg增加到78.5kg;(3)小明家本月家居用电大约110kW•h,天然气20m3,自来水5t,开私家车耗油75L,请你计算一下小明家这几项的二氧化碳排放量.【分析】(1)根据家居用电的二氧化碳排放量(kg)=耗电量(kW•h)×0.785可得此题结果;(2)由家居用电的二氧化碳排放量(kg)=耗电量(kW•h)×0.785可解得此题结果;(3)分别按照表中提供信息分别进行求解.【解答】解:(1)由题意可得y=0.785x,故答案为:y=0.785x;(2)∵家居用电的二氧化碳排放量(kg)=耗电量(kW•h)×0.785,∴耗电量每增加1kW•h,二氧化碳排放量增加0.785kg,当耗电量1kW⋅h时二氧化碳排放量为0.785kg,当耗电量100kW⋅h时二氧化碳排放量为78.5kg,故答案为:0.785kg,78.5kg;(3)110×0.785=86.35(kg),0.19×20=3.8(kg),0.91×5=4.55(kg),2.7×75=202.5(kg),答:小明家用电的二氧化碳排放量是86.35kg,天然气的二氧化碳排放量是3.8kg,自来水的二氧化碳排放量是4.55kg,开私家车的二氧化碳排放量是202.5kg.【点评】此题考查了运用函数解决实际问题的能力,关键是能正确理解问题间数量关系,并正确运用函数知识进行求解.10.(2023春•中原区期中)已知梯形上底的长是x,下底的长是15,高是8,梯形的面积记为y.(1)求梯形的面积y与上底长x之间的关系式;(2)请将下面的表格补充完整,并说明当x每增加1时,y如何变化;底长x…23456…面积y…6872768084…(3)当x=0时,y的值表示的含义是什么?【分析】(1)结合题意,运用梯形面积公式进行列式、化简;(2)分别将对应x的值代入(1)题所求函数解析式进行求解;(3)当x=0时该梯形就变成了一个三角形,y的值表示的含义是就是该三角形的面积.【解答】解:(1)由题意得,y=×(x+15)×8,化简得y=4x+60,∴该梯形的面积y与上底长x之间的关系式是y=4x+60;(2)当x=3时,y=4×3+60=12+60=72;当x=6时,y=4×6+60=24+60=84,故答案为:84;(3)当x=0时,该图形就变成了一个三角形,∴y的值表示的含义是就是一个底为15,高是8的三角形的面积.【点评】此题考查了运用函数解决实际问题的能力,关键是能准确理解题意,正确地列式、计算.11.(2022春•碑林区校级期中)大剧院举行专场音乐会,成人票每张20元,学生票每张8元.暑假期间,为了丰富广大师生的业余文化生活,大剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的80%付款,两种方案只能选择其中一种,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别求出两种优惠方案中y与x的关系式;(2)若听音乐会的学生人数为12人,请通过计算确定选择哪种方案更优惠.【分析】(1)根据两种消费方式分别列出对应的函数解析式;(2)将x=12分别代入两个函数解析式进行计算比较.【解答】解:(1)由题意得,方案1中y与x的关系式为:y=20×4+8×(x﹣4),。
2020—2021年最新湘教版八年级数学下册《利用一次函数解决实际问题》课时练习及答案.docx

湘教版2017—2018学年八年级数学下学期4.5 一次函数的应用1 利用一次函数解决实际问题要点感知1 函数图象由两个一次函数拼接在一起,我们要按照图象实行分段处理,每段看它适合哪种函数模型.预习练习1-1 如图所示中的折线ABC为甲地向乙地打长途电话需付的电话费y(元)与通话时间t(分钟)之间的函数关系,则通话8分钟应付电话费__________元.要点感知2 同一坐标系中若有多条直线,我们要对每条直线进行处理,重在找出这些函数的交点坐标和每个图形的起始坐标(交点的求法一般将两个函数的表达式联立在一起,组成方程组,方程组的解便是交点坐标).预习练习2-1 在同一平面直角坐标系中,若一次函数y=-x+3与y=3x-5的图象交于点M,则点M的坐标为( )A.(-1,4)B.(-1,2)C.(2,-1)D.(2,1)2-2 如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入>成本)时,销售量必须__________.知识点1 利用一次函数解决分段计费问题1.如图是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费( )A.0.4元B.0.45元C.约0.47元D.0.5元2.某城市按以下规定收取每月煤气费,用煤气不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知甲用户某月份用煤气80立方米,那么这个月甲用户应交煤气费__________元.3.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费.设每户家庭月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?知识点2 利用一次函数解决相交直线问题4. “五一节”期间,王老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.当他们离目的地还有20千米时,汽车一共行驶的时间是( )A.2小时B.2.2小时C.2.25小时D.2.4小时5.某市政府决定实施供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图,则下列说法中错误的是( )A.甲队每天挖100米B.乙队开挖两天后,每天挖50米C.甲队比乙队提前2天完成任务D.当x=3时,甲、乙两队所挖管道长度相同6.某市出租车起步价是5元(3公里及3公里以内为起步价),以后每公里收费1.6元,不足1公里按1公里收费,小明乘出租车到达目的地时计价器显示为11.4元,则此出租车行驶的路程可能为( )A.5.5公里B.6.9公里C.7.5公里D.8.1公里7.甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发小时时,行进中的两车相距8千米.8.小李和小陆沿同一条路行驶到B地,他们离出发地的距离s和行驶时间t 之间的函数关系的图象如图.已知小李离出发地的距离s和行驶时间t之间的函数关系为s=2t+10.则:(1)小陆离出发地的距离s和行驶时间t之间的函数关系为:_________________;(2)他们相遇的时间t=__________.9.学生甲、乙两人跑步的路程s与所用时间t的函数关系图象表示如图(甲为实线,乙为虚线).根据图象判断:如果两人进行一百米赛跑,当甲跑到终点时,乙落后甲多少米?10.电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差__________元.11.为了促进节能减排,倡导节约用电,某市将实行居民生活用电阶梯电价方案,图中折线反映了每户每月用电电费y(元)与用电量x(度)间的函数关系式.(1)根据图象,阶梯电价方案分为三个档次,填写下表:档次第一档第二档第三档每月用电量0<x≤x(度) 140(2)小明家某月用电120度,需交电费__________元;(3)求第二档每月电费y(元)与用电量x(度)之间的函数关系式;(4)在每月用电量超过230度时,每多用1度电要比第二档多付电费m元,小刚家某月用电290度,交电费153元,求m的值.参考答案预习练习1-1 7.4预习练习2-1 D2-2 大于41.A2.723.(1)当0≤x≤20时,y与x之间的函数表达式为:y=2x(0≤x≤20);当x>20时,y与x之间的函数表达式为:y=2.8(x-20)+40=2.8x-16(x >20);(2)∵小颖家四月份、五月份分别交水费45.6元、38元,∴小颖家四月份用水超过20吨,五月份用水没有超过20吨.∴45.6=2.8(x1-20)+40,38=2x2.∴x1=22,x2=19.∵22-19=3,∴小颖家五月份比四月份节约用水3吨.4.C5.D6.B7.23或438.(1)s=10t(2)549.根据图形可得:甲的速度是648=8(米/秒),乙的速度是:6488=7(米/秒),∴根据题意得:100-1008×7=12.5(米).当甲跑到终点时,乙落后甲12.5米. 答:当甲跑到终点时,乙落后甲12.5米.10.1011.(1)140<x≤230 x>230(2)54(3)设第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=ax+c ,将(140,63),(230,108)代入,得14063,230108.a c a c +=+=⎧⎨⎩解得127.a c ==-⎧⎪⎨⎪⎩, 则第二档每月电费y(元)与用电量x(度)之间的函数关系式为:y=12x-7(140<x ≤230).(4)根据图象可得出:用电230度,需要付费108元,用电140度,需要付费63元,故108-63=45(元),230-140=90(度),45÷90=0.5(元),则第二档电费为0.5元/度;∵小刚家某月用电290度,交电费153元,290-230=60(度),153-108=45(元),45÷60=0.75(元),m=0.75-0.5=0.25. 答:m 的值为0.25.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)如果该酒厂每天至少投入成本26400元,那么每天至少获利多少元?
AB
成本(元/瓶)5035
利润(元/瓶)2015
(3)兔子跑完全程的平均速度是多少?
(4)请叙述乌龟爬行的全过程.
10.某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:
①金卡售价600元/张,每次凭卡不再收费.
②银卡售价150元/张,每次凭卡另收10元.
暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元
水银柱的长度x(cm)
4.2
…
8.2
9.8
体温计的读数y(℃)
35.0
…
40.0
42.0
(1)求y关于x的函数关系式;(不需要写出x的取值范围)
(2)用该体温计测体温时,水银柱的长度为6.2cm,求此时体温计的读数.
5.如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km) 之间的函数关系图象.
第2课时 建立一次函数的模型解决实际问题
1.一根弹簧的原长为12 cm,它能挂的重量不能超过15 kg并且每挂重1kg就伸长 cm,写出挂重后的弹簧长度y(cm)与挂重x(kg)之间的函数关系式()
A、y = x + 12(0<x≤15)
B、y = x + 12(0≤x<15)
C、y = x + 12(0≤x≤15)
9.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).请你根据图象回答下列问题.
(1)这次“龟兔再次赛跑”的路程多少米?
(2)兔子和乌龟跑完全程所用时间各是多少?
D、y = x + 12(0<x<15)
2.在一定范围内,某产品的购买量y(吨)与单价x(元)满足一次函数关系,若购买1000吨,每吨800元,购买2000吨,每吨700元,如客户购买400吨,单价为()
A.820元 B.840元 C.860元 D.880
3.某食品厂向A市销售面包,如果从铁路托运,每千克需运费0.)设该市向A市销售面包 千克,铁路运费y元,公路运费z元,则y,z与 之间的函数关系式分别为_______,_________;
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
11.某酒厂每天生产A,B两种品牌的白酒共600瓶,A,B两种品牌的白酒每瓶的成本和利润如下表:
设每天生产A种品牌白酒x瓶,每天获利y元.
(2)若厂家只出运费1500元,选用______运送,运送面包多;
(3)若厂家运送1500千克,选用______运送,所需运费少.
4.已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.
①根据图象,写出当x≥3时该图象的函数关系式;
②某人乘坐2.5km,应付多少钱?
③某人乘坐13km,应付多少钱?
④若某人付车费30.8元,出租车行驶了多少千米?
6.A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台. 已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台, 求总运费W(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?
7.某单位要制作一批宣传材料。甲公司提出:每份材料收费20元,另收3000元的设计费;乙公司提出:每份材料收费30元,不收设计费。
(1)什么情况下选择甲公司比较合算?(2)什么情况下选择乙公司比较合算?
(3)什么情况下两家的收费相同?
8.某单位计划在新年期间组织员工到某地旅游,参加的人数估计在10—25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元。经过协商,甲旅行社表示可以给予每位七五折优惠;乙旅行社表示可以免去一位的费用,其余的给予八折优惠。该单位选择哪家旅行社支付的费用较少?