数学分析数列极限分析解析
数列的极限例题及详解

数列的极限例题及详解
极限是数学分析中的一个重要概念,它描述了某种函数在某点附近的行为趋势,同时提供了有效的技术来解决数列的极限问题。
我们本文将讨论数列的极限问题,包括定义和几个例子。
一.定义
极限是一个抽象的概念,它指的是一个数列中的每一项都趋近一定的值,这个值称为数列的极限。
另外,数列的极限也称为极限点或极限值。
当然,数学家们对极限的定义更加严格,但这些都不重要,我们只需要理解数列的极限概念即可。
二.例题
1.设a_n=(-1)^n/n,求a_n的极限。
解:
首先,由于(-1)^n为一个交替变化的算子,它的值在n变大时无论n的奇偶性如何,(-1)^n的值都保持不变,因此极限就是
(-1)^n/n的值。
考虑n变大时,(-1)^n/n的值接近于0,所以a_n
的极限就是0.
2.设a_n=(1+1/n)^n,求a_n的极限。
解:
这个例题比较特殊,因为算子(1+1/n)^n这里n和指数相关,考虑当n变大时,(1+1/n)^n的值就接近于e,所以a_n的极限就是e.
3.设a_n=1/n,求a_n的极限。
解:
由于1/n的值是从1开始逐渐减小,当n变大时,1/n的值就逐渐接近于0,所以a_n的极限就是0.
三.总结
本文讨论了数列的极限问题,先介绍了数列极限的定义,然后举例说明了3种数列的极限问题,这其中包含了数列算子计算中比较常见的概念,如交替系数,和指数极限等。
希望本文对读者有所帮助。
数学分析讲义 - CH02(数列极限)

第二章 数列极限 §1 数列极限概念一、数列极限的定义()函数:,f N n f +→R n 称为数列。
()f n 通常记作12,,,,n a a a或简单地记作,其中称为该数列的通项。
}{n a n a 例如:11{}:1,,,,2n a n ,通项1n a n=。
如何描述一个数列“随着的无限增大,无限地接近某一常数”。
下面给出数列极限的精确定义。
n n a 定义1 设为数列,a 为定数.若对任给的正数}{n a ε,总存在正整数,使得当时,有N n N >n a a ε-<则称数列收敛于,定数称为数列的极限,并记作}{n a a a }{n a a a n n =∞→lim ,或)(∞→→n a a n读作“当n 趋于无穷大时,{}n a 的极限等于或趋于”. a n a a 若数列没有极限,则称不收敛,或称为发散数列. }{n a }{n a }{n a 【注】该定义通常称为数列极限的“N ε-定义”。
例1 设(常数),证明n a c =lim n n a c →∞=.证 对0ε∀>,因为0n a c c c ε-=-=<恒成立,因此,只要取,当n 时,便有1N =N >n a c ε-<这就证得li .m n c c →∞=例2 1lim0n n→∞=(0)α>. 证 对0ε∀>,要110n nε-=< 只要1n ε>只要取11N ε⎡⎤=+⎢⎥⎣⎦,则当时,便有N n >110n nε-=< 这就证得1lim0n n→∞=。
例3 lim 11n nn →∞=+.证 因为11111n n n n-=<++ 对0ε∀>,取11N ε⎡⎤=+⎢⎥⎣⎦,则当时,便有N n >11111n n n nε-=<<++ 这就证得lim 11n nn →∞=+。
关于数列极限的“N ε-定义”,作以下几点说明: 【1】定义中不一定取正整数,可换成某个正实数。
第一讲-数列极限(数学分析)

第一讲 数列极限一、上、下确界 1、定义:1)设S R ⊂,若:,M R x S x M ∃∈∀∈≤,则称M 是数集S 的一个上界,这时称S 上有界;若:,L R x S x L ∃∈∀∈≥,则称L 是数集S 的一个下界,这时称S 下有界;当S 既有上界又有下界时就称S为有界数集。
2)设S R ⊂,若:,M R x S x M ∃∈∀∈≤,且0,:x S x M εε∀>∃∈>-,则称M 是数集S 的上确界,记sup M S =;若:,L R x S x L ∃∈∀∈≥,且0,:x S x L εε∀>∃∈<+,则称L 是数集S 的下确界,记inf L S =。
2、性质: 1)(确界原理)设S R ⊂,S ≠∅,若S 有上界,则S 有上确界;若S 有下界,则S 有下确界。
2)当S 无上界时,记sup S =+∞;当S 无下界时,记inf S =-∞。
3)sup()max{sup ,sup };inf()min{inf ,inf }AB A B A B A B ==。
4)sup inf();inf sup()S S S S =--=--。
5)sup()sup sup ;inf()inf inf A B A B A B A B +=++=+。
6)sup()sup inf A B A B -=-。
(武大93) 7)设(),()f x g x 是D 上的有界函数,则inf ()inf ()inf{()()}sup ()inf ()sup{()()}sup ()sup ()x Dx Df Dg D f x g x f D g D f x g x f D g D ∈∈+≤+≤+≤+≤+3、应用研究1)设{}n x 为一个正无穷大数列,E 为{}n x 的一切项组成的数集,试证必存在自然数p ,使得inf p x E =。
(武大94) 二、数列极限 1、定义:1)lim 0,():,||n n n a a N N n N a a εεε→∞=⇔∀>∃=>-<,称{}n a 为收敛数列;2)lim 0,:,n n n a M N n N a M →∞=+∞⇔∀>∃>>,称{}n a 为+∞数列;3)lim 0,:,n n n a M N n N a M →∞=-∞⇔∀>∃><-,称{}n a 为-∞数列;4)lim 0,:,||n n n a M N n N a M →∞=∞⇔∀>∃>>,称{}n a 为∞数列;5)lim 0n n a →∞=,称{}n a 为无穷小数列;2、性质1)唯一性:若lim ,lim n n n n a a a b a b →∞→∞==⇒=。
数学分析中极限问题的浅析 (1)

《数学分析》中极限问题的浅析极限理论是数学分析这门学科的基础,极限方法是数学分析的基本方法,通过极限思想、借助极限工具使数学分析内容更加严谨,可以说,极限贯穿整个数学分析的始末,学好极限十分重要。
完整的极限理论的建立,依赖于实数的基本性质,即实数系的所谓连续性,我们已经熟悉的单调有界原理,就是连续性的一个等价命题。
极限问题类型很多,变化复杂,解决极限问题在数学分析中更显得尤为重要。
这里举一些比较典型的实例,希望从中归纳出解决极限问题的方法。
下面举例说明求解极限问题的若干方法,其主要是根据极限的定义、运算法则和性质、定理,以及数学上的其他知识和技巧。
一 求数列极限(一) 利用迫敛性定理求极限首先说明迫敛性定理[1]求极限,这是一种简单而常用的方法。
例1、证明 (1) (a > 0)(2) 证明: (1)当a = 1时,等式显然成立。
当a >1时,令则:a = (1 + h n )n = 1 + nh n + 故0 < h n <h n = 0即: (1 + h n ) = 1 当 0 < a < 1时:lim ∞→n 1=n a lim ∞→n 1=n n n n h a +=1 (h n > 0)n nn n nh h h n n >++- 22)1(na由迫敛性定理lim∞→n lim ∞→n =n a lim∞→n lim ∞→n =n a lim ∞→n =na 11 1 lim ∞→n n a1= 1(2) 设n = (1 + h n )n = 1 + nh n +>由迫敛性定理得 h n = 0从而:例:求极限即:e n由迫敛性定理可得:从而:由连续函数定义知:极限定义是判定极限是某个数的充要条件,因此有时要用到它的否定形式[2],现叙述如下:(二)单调有界原理求极限单调有界原理是判定极限存在的重要法则,虽然它不能判定极限是什么nn h n +=1其中h n > 0 则2≥n nn n h h n n ++- 22)1(22)1(nh n n -即: 0 < h n <)2(12≥-n n lim∞→n lim ∞→n =n n lim ∞→n (1 + h n ) = 1lim+→0λ⎪⎪⎭⎫+++ ⎝⎛λλλn e e e n 21时:解:当0>λλλλλnnn ne e e e ≤++< 1n n e n e e λλλλ≤ ⎝⎛⎪⎪⎭⎫++≤ 1令 +→0λlim +→0n n n e e e e =⎪⎪⎭⎫+++ ⎝⎛λλλλ21lim+→0n λn ee n n =⎪⎪⎭⎫⎝⎛++λλ 1⋅λ{},,,对任意自然数,若存在设数列01000N N N a n >∃>ε{}为极限。
高中数学数列极限的性质与计算方法详解

高中数学数列极限的性质与计算方法详解数列是高中数学中的重要概念,而数列的极限更是数学分析的基础。
在高中数学中,数列极限的性质和计算方法是一个重要的考点。
本文将详细解析数列极限的性质和计算方法,并通过具体题目进行举例,帮助高中学生和他们的父母更好地理解和掌握这一知识点。
一、数列极限的性质1. 有界性:如果数列{an}存在有界的上界和下界,那么该数列必定收敛。
例如,考虑数列{an} = (-1)^n,该数列的值在-1和1之间,因此数列{an}是有界的,且极限为0。
2. 单调性:如果数列{an}单调递增且有上界,或者单调递减且有下界,那么该数列必定收敛。
例如,考虑数列{an} = 1/n,该数列单调递减且有下界0,因此数列{an}是收敛的,且极限为0。
3. 夹逼定理:如果数列{an}满足an≤bn≤cn,并且lim an = lim cn = L,那么数列{bn}也收敛,并且极限为L。
例如,考虑数列{an} = 1/n,{bn} = (1 + 1/n)^n,{cn}= (1 + 1/n)^(n+1),显然有an≤bn≤cn,并且lim an = lim cn = 0,因此数列{bn}也收敛,且极限为0。
二、数列极限的计算方法1. 基本四则运算法则:如果数列{an}和{bn}的极限分别为A和B,那么数列{an + bn}的极限为A + B,数列{an - bn}的极限为A - B,数列{an * bn}的极限为A * B,数列{an / bn}的极限为A / B(其中B ≠ 0)。
2. 极限的乘法法则:如果数列{an}的极限为A,数列{bn}的极限为B,那么数列{an * bn}的极限为A * B。
例如,考虑数列{an} = 1/n,{bn} = n,显然lim an = 0,lim bn = ∞,但是lim (an * bn) = 1。
3. 极限的倒数法则:如果数列{an}的极限为A(A ≠ 0),那么数列{1/an}的极限为1/A。
高中数学数列极限的概念及相关题目解析

高中数学数列极限的概念及相关题目解析数列是高中数学中的重要概念之一,而数列的极限更是数学学科中的基础知识。
在高中数学的学习中,理解和掌握数列极限的概念及相关题目的解析方法是非常重要的。
本文将从数列极限的定义、性质以及常见的数列极限题目出发,详细解析数列极限的相关知识。
一、数列极限的定义和性质数列极限是指当数列的项无限接近某个确定的值时,这个确定的值就是数列的极限。
数列极限的定义可以用数学符号表示为:对于数列{an},当n趋于无穷大时,如果存在一个常数a,使得对于任意给定的正数ε,都存在正整数N,使得当n>N 时,有|an-a|<ε成立,则称数列{an}的极限为a。
数列极限具有以下性质:1. 数列极限的唯一性:如果数列{an}的极限存在,那么它是唯一的。
2. 有界性:如果数列{an}的极限存在,那么它是有界的,即存在正数M,使得对于所有的n,都有|an|≤M成立。
3. 夹逼准则:如果对于数列{an}、{bn}和{cn},满足an≤bn≤cn,并且lim(an)=lim(cn)=a,那么lim(bn)=a。
二、数列极限的题目解析1. 求数列极限的方法:题目:已知数列{an}的通项公式为an=1/n,求lim(an)。
解析:对于这道题目,我们可以通过直接代入数值的方法来求解。
当n取不同的值时,计算出对应的an的值,然后观察an的变化规律。
当n趋于无穷大时,我们可以发现an的值趋近于0。
因此,根据数列极限的定义,lim(an)=0。
2. 判断数列极限是否存在:题目:已知数列{an}的通项公式为an=(-1)^n/n,判断lim(an)是否存在。
解析:对于这道题目,我们可以通过分析数列的变化规律来判断其极限是否存在。
当n取不同的奇数时,an的值为正数,而当n取不同的偶数时,an的值为负数。
因此,数列{an}的值在正数和负数之间不断变化,没有趋于一个确定的值,所以lim(an)不存在。
3. 利用夹逼准则求数列极限:题目:已知数列{an}的通项公式为an=√(n^2+1)-n,求lim(an)。
数学分析 2-1数列极限的概念

0
前页 后页 返回
三、数列极限的定义
先观察几个数列:
xn
1
1
an
1 n
O
102 103 104
105 106 107
108
109 1010 1011
n
前页 后页 返回
xn
1
2
an
1
1 n
O
102 103 104
105 106 107
n 108 109 1010 1011
前页 后页 返回
xn
3 an n
前页 后页 返回
(一)极限的直观定义 结论: 当 n “无限增大”时 ,数列的变化趋势有三种情形:
1、an“无限增大”;
2、an“变化Байду номын сангаас势不定”;
前页 后页 返回
观察数列{1 (1)n1 } 当 n 时的变化趋势. n
前页 后页 返回
观察数列{1 (1)n1 } 当 n 时的变化趋势. n
前页 后页 返回
观察数列{1 (1)n1 } 当 n 时的变化趋势. n
前页 后页 返回
观察数列{1 (1)n1 } 当 n 时的变化趋势. n
A1 , A2 , A3 ,, An ,
S
他计算到正3072 6 29边形,得:
3927 3.1416
1250
前页 后页 返回
Archimedes' calculation of
In the third century B.C., Archimedes calculated the value of pi to an accuracy of one accuracy of one part in a thousand. His technique was based on inscribing and circumscribing polygons in a circle, and is very much akin to the method of lower and upper sums used to define the Riemann integral. His approach is presented in the following sequence of slides.
数学分析中数列极限概念的教学

数学分析中数列极限概念的教学数学分析中,数列极限概念是非常重要的概念,它为深入研究数学分析提供了重要支持,也是数学分析中最具有挑战性的概念之一。
因此,数列极限概念的教学对于数学分析的学习、教学和研究来说,至关重要。
一般来说,数列极限概念的教学包括以下几个方面:(1)定义数列:数列是按照一定的规律排列的有穷多个数,数列可以是有理数、实数、复数、函数和向量等。
(2)数列的极限:数列的极限是指当数列的元素趋近无穷时,它的值所取的上限或者下限,用符号lim表示数列的极限。
(3)数列极限的几何意义:当数列中的每一项和它后面元素的差值变得越来越小时,数列极限就代表数列元素趋于某一数值,这个数值就是数列极限。
(4)数列极限的证明:为了证明数列极限存在,可以使用定义型极限法、准则型极限法、收敛极限法等。
(5)极限的应用:数列极限的应用已经超出了数列的范畴,它可以用来解决复杂的数学问题,如求解微分方程和积分等。
在数列极限概念的教学中,讲师应注意以下几点:(1)在教学中,讲师一定要明白数列极限概念,要能够清楚地讲解,让学生们更好地理解数列极限的含义。
(2)讲师在教学中要能够充分体现数列极限的几何意义,要能够用图形、案例或者具体的实例来帮助学生理解数列极限概念。
(3)讲师要能够用不同的方法来证明数列极限的存在,使学生们熟悉极限的定义和极限的证明。
(4)讲师要能够用实际例子和案例,将数列极限概念运用到日常生活中,让学生们更加了解数列极限概念在实际中的应用价值。
以上是数学分析中数列极限概念的教学,数列极限概念的教学不仅具有重要的理论意义,而且具有重要的应用价值,是数学分析教学中一个重要的环节。
讲师在教学数列极限概念时,一定要认真负责,要能够调动学生的学习兴趣,使学生能够更好、更深入地理解数列极限概念,为学生构建数学分析的理论基础打下良好的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 数列极限§1 数列极限概念教学目的与要求:使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。
教学重点,难点:数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。
教学内容: 一、课题引入1°预备知识:数列的定义、记法、通项、项数等有关概念。
2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰,日取其半,万古不竭。
”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21,…… 或简记作数列:⎭⎬⎫⎩⎨⎧n 21分析:1°、⎭⎬⎫⎩⎨⎧n 21随n 增大而减小,且无限接近于常数0;2二、数列极限定义1°将上述实例一般化可得:对数列{}na ,若存在某常数a ,当n 无限增大时,n 能无限接近常数a 该数为收敛数列,a 为它的极限。
例如:⎭⎬⎫⎩⎨⎧n 1, a=0;⎭⎬⎫⎩⎨⎧-+n n )1(3, a=3; {}2n , a 不存在,数列不收敛;{}n)1(-, a 不存在,数列不收敛;2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对⎭⎬⎫⎩⎨⎧-+n n )1(()3以3为极限,对ε=1013)1(3--+=-na a nn =1011n只需取N=10,即可3°“抽象化”得“数列极限”的定义定义:设{}na 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在某一自然数N ,使得当n >N 时,都有aa n -<ε则称数列{}na 收敛于a ,a 为它的极限。
记作a a n n =∞→lim {(或a n →a,(n →∞)) 说明(1)若数列{}na 没有极限,则称该数列为发散数列。
(2)数列极限定义的“符号化”记法:a a n n =∞→lim ⇔ε∀>0,∃N ,当n (3)上述定义中ε的双重性:ε>0是任意..的,由“任意性”可知,不等式aan-<ε,可用an-替 “<”号也可用“≤”号来代替(为什么?)(4)上述定义中N 的双重性:N 是仅依赖..于ε的自然数,有时记作N=N (ε)(这并非说明N 是ε的函数,是即:N 是对应确定....的!但N 又不是唯一....的,只要存在一个N ,就会存在无穷多个N(5)如何用肯定的语气叙述a a n n ≠∞→lim : 0ε∃>0,∀N ,∃n 。
尽管n 。
>N ,但aaon-(6)如何用肯定的语气叙述,数列{}na 发散:Ra ∈∀ ,)(a O Oεε=∃>0,∀N ,∃n o,尽管n o >N ,但aaon -≥εo 。
(7)a a n n =∞→lim即a {}n a 中,所有下标大于N 的a n ,都落在a 的ε邻城内。
.的例题 例1.证明01lim =∞→kn n (K 为正实数)证:由于kk n n 101=- 所以∀ε>0,取N=⎥⎥⎦⎤⎢⎢⎣⎡k 11ε,当n >N 时,便有ε〈-01k n注:或写作:∀ε>0,取N=⎥⎥⎦⎤⎢⎢⎣⎡k 11ε,当n >N 时,有ε〈=-KK n n 101,∴01lim=∞→kn n例2. 证明343lim22=-∞→n n n 分析,要使ε〈≤-=--n n n n 12412343222(为简化,限定n 3≥ 只要n ε12〉之外,则{}n a 一定不以a 为极限。
例5 证明{}2n 和{}n )1(-都是发散数列。
分析 利用定义1' 证例6 设a y x n n n n ==∞→∞→lim lim ,作数列﹛z n ﹜如下:﹛z n ﹜:x 1,y 1,x 2,y 2,…,x n ,y n ,…。
证明 a z n n =∞→lim 。
分析 利用定义1' 证例7 设{}n a 为给定的数列,{}n b 为对{}n a 增加、减少或改变有限项之后得到的数列。
证明:数列{}n b 与{}n a 同时为收敛或发散,且在收敛时两者的极限相等。
分析 利用定义1'证 设{}n a 为收敛数列,且n n a ∞→lim =a 。
按定义1',……。
现设{}n a 发散,倘若{}n b 收敛,则因{}n a 可看成是对{}n b 增加、减少或改变有限项之后得到的数列,故由刚才所证,{}n a 收敛,矛盾。
所以当{}n a 发散时{}n b 也发散。
在所有收敛数列中,有一类重要的数列,称为无穷小数列,其定义如下:定义2 若0lim =∞→n n a ,则称{}n a 为无穷小数列。
前面例1、2、4中的数列都是无穷小数列。
由无穷小数列的定义,读者不难证明如下命题:定理2. 1 数列{}n a 收敛于α的充要条件是:{}α-n a 为无穷小数列。
五、小结:(可以师生共同总结,或教师引导学生小结,然后教师再条理一下)本节课重点在于“数列极限的概念”,而“用极限定义证明极限”的例题学习也是为了巩固极限概念。
为此,同学们要注意:°极限概念的“ε-N ”叙述要熟练掌握,并注意理科ε,N 的双重性。
°用极限定义证明极限时,关键是由任给的ε>0通过反解不等式|a n -a |<ε求N ,其中的若干技巧在于化简不等式。
特别注意不等式的“放大”要适度;即要尽可能化简,又不要过度,N 的表达式一定仅依赖于ε,当然N 是否是自然数,倒是无关紧要的。
3°同学们在学习这部分知识的同时要反复体验其中渗透看的重要数学思维方法,如:抽象化法,数形结合法,符合化法等,这对于大家体验数学的本着特点及培养数学思维能力是十分有益的。
关于这一点希望同学们在课下复习时反复体会一下,并结合以前学过的知识中的类似方法对照思考。
复习思考题、作业题:数列收敛发散的定义是什么?收敛发散的概念是不是相反的?1(1),2,3,4,6§§2 收敛数列的性质教学目的与要求:掌握收敛数列的性质如唯一性,有界性,四则运算等及应用。
教学重点,难点:收敛数列的性质应用,数列子列的定义及数列子列收敛与数列收敛之间的关系。
教学内容:收敛数列主要有唯一性、有界性、保号性、保序性、迫敛性、四则运算性、子列性等重要性质,通过这些性质的学习,可使学生掌握数列极限的定义与应用定义证明有关命题。
1、唯一性定理2.2 若数列{}n a收敛,则它只有一个极限。
分析使用几何定义——定义1'证注1:本性质证明使用几何定义。
为让学生学会取特殊的ε,可讲解反证法ε”定义。
证明。
这样更可体现极限的“N-注2:一个收敛数列一般含有无穷多个数,而它的极限只是一个数。
体现了无限与有限之间的转化关系,这样由这一个数就能精确地估计出几乎全体项的大小,以下收敛数列的一些性质,大都基于这一事实。
2、有界性定理2.3 若数列{}n a收敛,则{}n a为有界数列,即存在正数M,使得对一切正整数n有≤。
aMn分析证注1:ε的取法注2:有界性只是数列收敛的必要条件,而非充分条件,例如数列{}n)1(-有界,但它并不收敛(见§1例6)。
3、保号性定理2.4若0lim a >a n n =∞→或<0,则对任何∈'a (0,a )(或)0,('a a ∈),存在正数N ,使得当n >N 时有a n >'a (或a n <'a )。
分析 证注1:ε的取法注2: 在应用保号性时,经常取2'aa =。
4、保序性定理2.5 设{}n a 与{}n b 均为收敛数列,若存在正数N 0,使得当n >N 0时有a n ≤b n ,则n n n n b a ∞→∞→≤lim lim 。
分析 定义与第一章§1例2 证注1:N 的取法思考:如果把定理2.5中的条件a n ≤b n ,换成严格不等式a n <b n ,那么能否把结论换成n n n n b <a ∞→∞→lim lim ?例1 设an ≥0(n=1,2,…)。
证明:若a a n n =∞→lim ,则a a n n =∞→lim 。
分析 定理2.5、定义与分类讨论 证4、迫敛性定理2.6 设收敛数列{}n a ,{}n b 都以a 为极限,数列{}n c 满足:存在正数N 0,当n >N 0时有n n n b c a ≤≤ (4) 则数列{}n c 收敛,且a c n n =∞→lim 。
例2 求数列{}nn 的极限。
分析解5、四则运算法则定理2.7 若{}n a 与{}n b 为收敛数列,则{}n n b a +,{}n n b a -,{}n n b a ⋅也都是收敛数列,且有,lim lim )(lim n n n n n n n b a b a ∞→∞→∞→±=±n n n n n n n b a b a ∞→∞→∞→⋅=⋅lim lim )(lim 。
特别当b n ,为常数c 时有n n n n n n n n a c ca c a c a ∞→∞→∞→∞→=+=+lim lim ,lim )(lim 。
若再假设b n ≠0及0lim ≠∞→n n b ,则⎭⎬⎫⎩⎨⎧n n b a 也是收敛数列,且有n n n n nnn b a b a ∞→∞→∞→=lim /lim lim。
分析 只须用定义证明关于和、积与倒数运算的结论 证 例3 求1110111limb n b n b n b a n a n a n a k k k k m m m m n ++++++++----∞→ , 其中m ≤k ,a m ≠0,b k ≠0。
分析 四则运算法则例4 求1lim +∞→n nn a a ,其中1-≠a 。
分析 分类讨论与四则运算法则 解例5 求)1(lim n n n n -+∞→。
6、子列定理定义1 设{}n a 为数列,{}k n 为正整数集N+的无限子集,且n 1<n 2<…<n k<…,则数列,,,,21k n n n a a a称为数列{}n a 的一个子列,简记为{}kna 。
注1 由定义1可见,{}n a 的子列{}k n a 的各项都选自{}n a ,且保持这些项在{}n a 中的先后次序。
{}kna 中的第k 项是{}na 中的第n k项,故总有k nk≥。
实际上{}k n 本身也是正整数列{}n 的子列。
例 数列{}n a 的子列{}k a 2、{}12-k a 、{}n a 。
注2 数列{}n a 本身以及{}n a 去掉有限项后得到的子列,称为{}n a 的平凡子列;不是平凡子列的子列,称为{}n a 的非平凡子列。