物理学常数表

合集下载

物理常数单位制

物理常数单位制

(2-2) (2-2')
三 电磁制(CGSM)量纲和单位
静磁学中最基本的定律是安培定律 国际制的形式是
F
=
µ0 I1I 2l 2πd
(3-1)
这里 µ0 是真空中的导磁率 其数值为 4π×10−7Nm/A2 而电磁制则是
F
=
2I1I 2l d
(3-1')
因此电磁制也不需要新的基本量纲 电流的量纲就是 L1/2M1/2T−1 电磁制给予一个新的
J ⋅ s m/s C
J ⋅ s m/s C
(6-5)
在目前的物理常数表(CODATA 2002)中 基本电荷(e)的不确定度分别是 0.09ppm 所以
kg 和 eV 比例的不确定度也应该是 0.09ppm 再来看 s−1 和 eV 以及 m−1 和 eV 的比例 普朗
克常数( h )的不确定度是 0.17ppm 由于它和基本电荷之间存在联系 即约瑟夫森常数(KJ) 所以这两个比例的不确定度不是 0.09 + 0.17 = 0.26ppm 而是 KJ 的不确定度 0.08ppm 约瑟 夫森常数的定义是
单位 emu 称为电磁单位电流(或称静磁安培) 其值为 1dyn1/2 emu 和 A 的转换公式为
1A = 0.1emu 1emu = 10A
(3-2) (3-2')
物理量
电量 电流 电位 电阻 电容 电感 磁感应通量 磁感应强度 磁场强度
国际制
静电制
量纲
单位
量纲
单位
TI
C(库仑)
L3/2M1/2T−1
L−1T2 和静电制中的量纲 L 之比为 L−2T2 所以两个单位值的比例应该是 1(cm/s2)−1(CGSM) =

kb玻尔兹曼常数

kb玻尔兹曼常数

kb玻尔兹曼常数玻尔兹曼常数(Boltzmann constant)是物理学中的一个基本常数,用符号k表示,通常在SI单位制中的数值为1.380649 ×10^(-23) J/K。

这个常数在统计物理学、热力学和量子力学中具有重要的意义。

玻尔兹曼常数最早由维尔纳·海森伯在1884年提出,并由马克斯·普朗克在1900年命名为玻尔兹曼常数,以纪念他在统计热力学中的贡献。

玻尔兹曼常数与其他基本常数(如普朗克常数和光速)一起,构成了物理学中的基本定值。

玻尔兹曼常数的物理含义是衡量了热力学温度和能量之间的关系。

它的值是能量单位与温度单位之间的比例关系。

具体而言,玻尔兹曼常数是将能量的单位(焦耳)转换为温度的单位(开尔文)时所需的比例系数。

根据玻尔兹曼常数的定义,如果一个系统的温度为1K,则其内能等于玻尔兹曼常数乘以1.380649 × 10^(-23)焦耳。

玻尔兹曼常数还与熵的概念密切相关。

熵是热力学中的一个重要量,用来描述一个系统的无序程度。

根据统计物理学,系统的熵等于玻尔兹曼常数乘以自然对数的倒数,并乘以可能的微观状态的数量。

这个关系表明,熵的量级与微观粒子数之间存在着关联,玻尔兹曼常数是将两者联系起来的关键因素。

在量子力学中,玻尔兹曼常数也扮演着重要的角色。

根据波尔兹曼-统计物理学,玻尔兹曼常数与量子力学中的普朗克常数之间存在一定的关系。

具体而言,将普朗克常数的平方除以玻尔兹曼常数,得到了一个称为波尔兹曼常数P的值,约为6.62607015 × 10^(-34) J·s / (1.380649 × 10^(-23) J/K)。

这个比值在量子力学中具有重要意义,帮助人们理解粒子的量子行为和统计特性。

综上所述,玻尔兹曼常数是物理学中非常重要的一个常数,它关系着热力学、统计物理学和量子力学等多个领域。

通过玻尔兹曼常数,我们可以将能量和温度联系起来,理解系统的熵以及量子粒子的统计特性。

大学物理 常用物理常数表

大学物理 常用物理常数表
e
R∞பைடு நூலகம்
a0
me
mp
mn
NA
R
k
σ
b
eV
u
atm
g
299 792458m.s-1
12.566 370 614…×10-7N.A-2
8.854 187 817…×10-12F.m-1
6.6742×10-11m3.kg-1.s-2
6.626 0693×10-34J.s
1.602 176 53×10-19C
5.670 400×10-8W.m-2.K-4
2.897 7685×10-3m.K
1.602 176 53×10-19J
1.660 538 86×10-27kg
101 325Pa
9.80665m.s-2
表2有关太阳和地球的数据
名称
数值
太阳的质量ms
太阳的半径Rs
太阳中心到地球中心的距离
地球的质量mE
附录2常用物理常量表
表1 基本物理常量表(2002年的推荐值)
物理量
符号
数值
真空中的光速
真空磁导率
真空电容率
万有引力常量
普朗克常量
元电荷
里得堡常量
波尔半径
电子质量
质子质量
中子质量
阿伏伽德罗常量
摩尔气体常量
玻尔兹曼常量
斯特藩常量
维恩位移定律常量
电子伏特
原子质量单位
标准大气压
标准重力加速度
c
μ0
ε0
G
h
10 973 731.568525m-1
0.529 177 2108×10-10m
9.109 3826×10-31kg

500多个常用化合物物理化学常数表

500多个常用化合物物理化学常数表
126 ——— ———
69 164.5--166
130 100-102 76.5--77.5 55--56
130 ——— ——— 114-116
85 229.2 182/20mm 110.6 115--117 77--78
184
0.7070 0.7400 0.9170 0.9320 0.7060
0.78 0.8100 0.9650
110-88-3 110-71-4 110-63-4
56-81-5 108-88-3 106-89-8 109-69-3 62-53-3
90.08 90.12 90.12
92.09 92.14 92.53 92.57 93.13
-50 -49
-80 -98 -116 25-25.5
-90 -85 -111
分子式
H3N
HCHO CH3OH CH3CN CH2N2 CH3CHO C2H7N
HCOOH CH3NHNH2
C2H5OH H4N2·H2O
CH3ONa C3H7N CH3COCH3 C2H5NO HCOOCH3 CH3COOH CH4N2O (CH3)2CHOH C2H8N2 H2NCH2CH2OH C2H5ONa H3NO.HCl CH3COC2H5 C4H8O C5H12 C3H7NO
50
异戊醇
(CH3)2CHC2H4OH 123-51-3
88.15
51
氰化亚铜
CuCN
544-92-3
89.56
52
草酸
HOOCCOOH
144-62-7 90.04
53
三聚甲醛
54
乙二醇二甲醚
55
1,4-丁二醇
56

物理常数单位制

物理常数单位制
关于单位制 物理常数和不确定度的资料
黄晨 * 2004 年 9 月 (* 联系地址 复旦大学化学系表面化学实验室 eMail morning_yellow@)
一 国际单位制(SI)和高斯单位制(CGS)的力学量纲和单位
力学物理定律在国际单位制(简称国际制 记作 SI)和高斯单位制(简称高斯制 又称为厘 米克秒制 记作 CGS)中具有相同的形式 并且它们都以长度 质量和时间作为基本量纲 所以所有的力学量都具有相同的量纲 另外 这两个单位之间的换算也相当方便 都是 10 的次方数
它是电动力学中最常用的单位制 另一套以安培定律为基础 称为电磁制 记作 CGSM 它
是国际单位制的理论基础
静电学中最基本的定律是库仑定律 而该定律在国际制和静电制中有着不同的形式 国
际制的形式是
这里 ε0 是真空中的介电常数 而电磁制则是
F
=
q1q2 4πε0r 2
其数值为 8.8541878×10−12C2/Nm2
如果静电制单位和电磁制单位的量纲之比为 L−nTn 那么两者的换算关系就是
1 静电制单位 = (2.99792458×1010)n 电磁制单位
(4-3)
例如 国际制中电容单位 F 的量纲为 L−2M−1T4I2 要把它转化为静电制单位 cm 首先要
经过电磁制单位 cm/s2 关系是 1F(SI) = 10−9(cm/s2)−1(CGSM) 由于电容在电磁制中的量纲
制和高斯制之间并不存在 但是在某些单位之间 例如能量单位 J 和 eV 就相差一个基本
电荷 e/C 该常数的不确定度就是这两个单位比值的不确定度 根据这个道理 同一物理常
数在不同单位下具有不一样的不确定度 例如基本电荷 用 C(库仑)时不确定度为 0.09ppm

常数表

常数表

附录物理学常用数表表1 物理学基本常数
表2 我国某些城市的重力加速度(单位:米/秒2)
表3 一般固态物质的密度(克/厘米3)
表4 液体密度(克/厘米3)
表5 水的表面张力系数α随温度t的变化
表6 几种物质的绝对折射率和临界角
表7 常用光谱灯的可见谱线波长(nm)
表8 常用仪器量具的主要技术指标和极限误差
注:一般而言,有刻度的仪器、量具的最大允差大约对应于其最小分度值所代表的物理量;对于数学式仪表,测量值的误差往往在于所显示的能稳定不变的数字中最末一位的半个单位所代表的物理量。

应当说明,“最大允差”是指所制造的同型号同规格的所有仪器中有可能产生的最大误差,并不表明每一台仪器的每个测量值都有如此之大的误差,它既包括仪器在设计、加工、装配过程中乃至材料选择中的缺欠所造成的系统误差,也包括正常使用过程中测量环境和仪器性能随机涨落的影响。

表9 常用电气仪表面板上的标记符号。

25个物理常数

25个物理常数

25个物理常数篇一:标题: 25个物理常数(创建与标题相符的正文并拓展)正文:物理学是研究自然现象的科学,其基础是一些基本常数。

这些常数是通过对自然界的观察和实验得出的,它们对物理学的理论和实践具有至关重要的影响。

本文将介绍25个基本的物理学常数,包括它们的值、定义和意义。

1. 开尔文(k)开尔文(k)是一个常量,它的值为1.19264×10-19J/(K·K)。

它是电离常数,用于描述电解质的电离程度。

2. 普朗克常数(h)普朗克常数(h)是一个基本的物理学常数,它的值为6.626176×10-35J/(K·s)。

它是热力学中的基本常数,用于描述能量和热量之间的关系。

3. 光速(c)光速(c)是一个基本的物理学常数,它的值为299,792,458米/秒。

它是真空中光的速度,也是宇宙中最基本的速度。

4. 磁感应强度(B)磁感应强度(B)是一个物理学常数,用于描述磁场的强度。

它的值通常在0到1000特斯拉之间,磁感应强度越大,磁场越强。

5. 电容(C)电容(C)是一个物理学常数,用于描述电容器的电容值。

它的值通常在0到1特斯拉之间,电容器的电容值越大,电容器的储存电能的能力越强。

6. 电阻(R)电阻(R)是一个物理学常数,用于描述导体的电阻值。

它的值通常在0到无穷大之间,电阻值越大,导体的电阻能力越强。

7. 温度(T)温度(T)是物理学中的基本常数,用于描述物体的状态。

它的值通常在0到开尔文之间,温度越高,物体的状态越热。

8. 引力(G)引力(G)是物理学中的基本常数,用于描述物体之间的引力大小。

它的值通常在6.6743×10-11N·(m/kg)^2。

9. 电磁场频率(E)电磁场频率(E)是物理学常数,用于描述电磁场的传播速度。

它的值通常在真空中约为3×10^10米/秒。

10. 质能关系(E=mc2)质能关系(E=mc2)是物理学中的一个重要公式,用于描述质量和能量之间的关系。

500多个常用化合物物理化学常数表

500多个常用化合物物理化学常数表

56 11 5 141 -40 -17 68 21 16 73 ——— -25 -17 ——— -26 40 ——— 11 33 93 22 152 -3 -17 -49 57
——— 6~31.00 3~16.00 4~57.00 3~12.80 14~33.00 2.5~97.00 3.3~19.0 3.5~99.99 7.3~36.00 ——— 2.5~13.00 ——— 5~23.0 ——— 2~12 2.7~16.60 5.5~17.00 ——— 1.8~11.50 1.5~12.00 1.4~8.00 2.2~16.00
99 1.5280 0.6590 0.9370 1.41 1.0340 0.9020 0.7400 0.8090 2.92 1.17 0.8670 1.01 1.2610 0.8650 1.1830 0.8860 1.0220 1.3790 1.4442-1.4462 1.4740 1.4960 1.4380 1.4024 1.5860 1.3750 1.4380 1.4220 1.3720 1.3690 1.4060 99.99 95 ≥99.9 ≥99.0 ≥99.5 99 ≥99.0 99 98 ≥99.5 ≥99.0 ≥99.0 ≥99.5 99.5 ≥99.0 ≥99.0 ≥99.5
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
4-甲基吡啶 苯酚 间氨基吡啶 2-甲基吡嗪 氟苯 1,2-二甲基咪唑 间氟吡啶 顺丁烯二酸酐 甲基环已烷 丁二酸酐 环丙基甲酸甲酯 正庚烷 二异丙胺 三乙胺 正戊酸 异丙醚 苯腈 二乙烯三胺 苯乙烯 一缩二乙二醇 苯甲醛 对二甲苯 乙基苯 间二甲苯 苄胺 邻甲苯胺 间甲苯胺 对甲苯胺 2,6-二甲基吡啶 对苯醌 苯甲醇 苯甲醚 间苯二胺
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档