《矩阵理论及其应用》黄有度朱士信课后习题答案
矩阵分析引论第四版课后练习题含答案

矩阵分析引论第四版课后练习题含答案简介《矩阵分析引论》是矩阵分析领域的经典教材之一,已经发行了四个版本。
该书主要以线性代数、矩阵理论和应用为主要内容,重点介绍了矩阵分析的基本概念、原理和应用。
本文主要介绍该书第四版中的课后练习题及其答案。
提供的资料本文为矩阵分析引论第四版课后练习题及其答案,包含了第一章到第五章的所有习题和答案。
其中,习题从简单到复杂,大部分习题都有详细的解答过程和答案。
内容概述第一章引言第一章主要介绍了矩阵分析的历史和基本概念、性质、符号等。
本章习题主要涉及了矩阵、向量、矩阵运算等基本概念和性质。
第二章基本概念和变换第二章主要介绍了线性变换的基本概念和性质,以及线性代数中的一些重要定理和定理的证明。
本章习题主要涉及了线性变换、矩阵的秩和标准型、特征值和特征向量等内容。
第三章矩阵运算第三章主要介绍了矩阵运算的基本概念和性质,包括矩阵乘法、逆矩阵、行列式等。
本章习题主要涉及矩阵运算的基本操作和应用。
第四章矩阵分解第四章主要介绍了矩阵分解的基本概念和应用,包括特征值分解、奇异值分解、QR分解等。
本章习题主要涉及了矩阵特征值和特征向量、矩阵的奇异值分解等内容。
第五章线性方程组和特征值问题第五章主要介绍了解线性方程组和求特征值的方法,包括高斯消元法、LU分解、带状矩阵、雅可比迭代等。
本章习题主要涉及了线性方程组的解法、矩阵的特征值问题等内容。
结语本文介绍了矩阵分析引论第四版课后练习题及其答案。
对于学习矩阵分析的同学,课后习题是一个非常重要的练习和提升自己能力的途径。
本文所提供的习题和答案可以帮助读者巩固和提高自己的矩阵分析能力。
同时,本文也希望能够帮助更多的人学习矩阵分析,并成为矩阵分析领域的专家。
研究生矩阵理论课后答案矩阵分析所有习题

#3-16:设若A,BHmn,且A正定,试证:AB与BA的特 征值都是实数. 证2:由定理3.9.1,PAP*=E,则 PABP-1=PAP*(P*)-1BP-1=(P*)-1BP-1=MHmn, 即AB相似于一个Hermite矩阵M. ∴ (AB)=(M)R,得证AB的特征值都是实数.又 因BA的非零特征值与AB的非零特征值完全相 同,故BA的特征值也都是实数. 证3:det(E-AB)=det(A(A-1-B)) =det A det(A-1-B)=0. 但det A >0,和det(A-1-B)=0的根全为实数(见例 3.9.1的相关证明)
习题3-1已知ACnn是正定Hermite矩阵, ,Cn.定义内积 (,)=A*.①试证它 是内积;②写出相应的C-S不等式
①: , A * ( A * )T ( A * )* A * , ; (k , ) k A * k ( , );
习题3-25
#3-25:A*=-A(ASHnn) U=(A+E)(A-E)-1Unn. (ASHnnAE的特征值全不为0,从而AE可逆)
解: U*=U-1 ((A-E)*)-1(A+E)*=(A-E)(A+E)-1 (-A-E)-1(-A+E)=(A-E)(A+E)-1 (A+E)-1(A-E)=(A-E)(A+E)-1 (A-E)(A+E)=(A+E)(A-E) A2-E=A2-E
( , ) ( ) A * A * A * ( , ) ( , );
( , ) 0; ( , ) A 0, 0 (因A正定).
*
②:Cauchy-Schwarz不等式: | (, ) |
研究生矩阵论课后习题答案(全)习题四

习题四1.求下列微分方程组的通解(1)⎪⎩⎪⎨⎧+=+=;34,2212211x x dt dxx x dt dx (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧+=-+=+=. ,3233212321,x x dt dx x x x dt dxx x dt dx解:(1)设,3421⎪⎪⎭⎫⎝⎛=A ⎪⎪⎭⎫⎝⎛=21x x x ,则原方程组可写为 Ax dtdx=, 矩阵A 的特征方程为0)1)(5(3421=+-=----=-λλλλλA I ,则矩阵A 的特征值为51=λ,12-=λ,求得矩阵A 的特征向量分别为⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛11,21,令⎥⎦⎤⎢⎣⎡-=1211P ,则⎥⎦⎤⎢⎣⎡-=-1211311P ,有 Λ=⎥⎦⎤⎢⎣⎡-=-10051AP P ,1-Λ=P P A , 则⎥⎦⎤⎢⎣⎡+--+=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-==------Λt t tt t t tt t t t Ate e e e e e e e e e PPe e55555122231121100121131. 故该方程组的通解为⎪⎪⎭⎫⎝⎛--+-++=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡+--+==------t t t t t t ttt t tt At e c c e c c e c c e c c c c e e e e e e e e c e x )2()22()2()(31222312152121521215555其中21,c c 为任意常数.(2)设,110111110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=A ⎪⎪⎪⎭⎫⎝⎛=321x x x x ,则原方程可写为Ax dtdx=, 矩阵A 的特征方程为0)1(2=-=-λλλA I ,则矩阵A 的特征值为01=λ,132==λλ.A 的属于特征值01=λ的特征向量为⎪⎪⎪⎭⎫ ⎝⎛-=1121η,由方程组⎩⎨⎧+==32322ηηηηηA A 解得A 的属于特征值132==λλ的广义特征向量为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=111,10132ηη.令[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==111101112,,321ηηηP ,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-1113121011P ,有11,100110000--==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=PJP A J AP P ,由于⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=t t tJt e te e e 000001, 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==-1113121010000011111011121t t tJt At e te e P Pe e ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--+-+-+-=t t tt t tt tt t t tt te e te te e e e e te e te te e 21111222,故方程组的通解为⎪⎪⎪⎭⎫⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+--+-+-+-==32121111222c c c te e te te e e e e te e te te e c e x t t tt t tt tt t t tt At ,其中321,,c c c 为任意常数.2.求微分方程组Ax dtdx=满足初始条件ξ=)0(x 的解: (1)⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=33,3421ξA ,(2)⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=001,102111121ξA .解:(1)由第1题知⎥⎦⎤⎢⎣⎡+--+=----t t t tt t tt Ate e e e e e e e e555522231,故微分方程组Ax dtdx=满足初始条件ξ=)0(x 的解为 ⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡+--+==------t t t t t t ttt t tt Ate e e e e e e e e e e e e x 555555423322231ξ. (2)矩阵A 的特征方程为0)1)(3(2=+-=-λλλA I ,故矩阵A 的特征值为31=λ,132-==λλ.A 的属于特征值31=λ的特征向量为⎪⎪⎪⎭⎫ ⎝⎛=2121η,由方程组⎩⎨⎧-=-=32322ηηηηηA A 解得A 的属于特征值132-==λλ的广义特征向量为⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=021,21232ηη,令[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==022211122,,321ηηηP ,则⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=-24025122312811P,有 11,100110003--==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=PJP A J AP P ,又 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=---t t t t Jt e te e e e 000003, 故微分方程组Ax dtdx=满足初始条件ξ=)0(x 的解为 ξξ1-==P Pe e x Jt At ⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=---00124025*******000022211122813t t t te te e e⎪⎪⎪⎭⎫⎝⎛--+=---t t tt t t e e e e e e 44224481333. 3.求)(t Bu Ax dtdx+=满足条件ξ=)0(x 的解: (1)⎪⎪⎭⎫ ⎝⎛==⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛=-21,)(,41,3421c c e t u B A tξ (2)⎪⎪⎪⎭⎫⎝⎛-==⎪⎪⎪⎭⎫ ⎝⎛=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101,1)(,262,0061011016ξt u B A解:(1)由第1题知⎥⎦⎤⎢⎣⎡+--+=----t t t tt t t t Ate e e e e e e e e555522231, 则⎪⎪⎭⎫⎝⎛--+-++=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡+--+=------t t t t t t ttt t tt Ate c c e c c e c c e c c c c e e e e e e e e e )2()22()2()(31222312152121521215555ξ,⎪⎪⎭⎫⎝⎛++-=⎪⎪⎭⎫⎝⎛-⎥⎦⎤⎢⎣⎡+--+=------------------v t t v t t v v v t v t v t v t v t v t v t v t v t A e e e e e e e e e e e e e e v Bu e6565)()(5)()(5)()(5)()(5)(6636314222231)(故 ⎥⎥⎦⎤⎢⎢⎣⎡+-+--=-----⎰t t t t t ttv t A e e te e e te dv v Bu e 550)(62121631)( 则该方程组的解为⎪⎪⎪⎪⎭⎫⎝⎛++--++---+++=+=-----⎰t t t t t t tv t A At te e c c e c c te e c c e c c dv v Bu e e t x 2])12()122[(312])212()21[(31)()(21521215210)(ξ(2)矩阵A 的特征方程为0)3)(2)(1(=+++=-λλλλA I ,则A 的特征值为11-=λ,3,232-=-=λλ,求得其特征向量分别为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=231,341,651321ηηη.令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-139********,2363451111P P ,有 11,300020001--==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=PJP A J AP P ,又 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=---t t t Jt e e e e 32000000, 则ξξ1-=P Pe e Jt At ⎪⎪⎪⎭⎫⎝⎛-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=---101139248111000002363451112132t t te e e ⎪⎪⎪⎭⎫ ⎝⎛+-+-+-=------t t tt t t e e e e e e 32323289121243 , ⎪⎪⎪⎭⎫ ⎝⎛++-++-++-=⎪⎪⎪⎭⎫ ⎝⎛=---------------------)(3)(2)()(3)(2)()(3)(2)(1)()(2663852262)(v t v t v t v t v t v t v t v t v t v t J v t A e e e e e e e e eP Pe v Bu e故 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----+--=----------⎰373236453131)(3232320)(t t t tt t t tt tv t A e e e e e e e e e dv v Bu e则该方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----+--+⎪⎪⎪⎭⎫ ⎝⎛+-+-+-=+=----------------⎰37323645313189121243)()(3232323232320)(t tt tt t t tt t t t t tttv t A At e e e e e e e e e e e e e e e dv v Bu e e t x ξ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+-++-=---------3732212611165313114323232t t t tt t t tt e e e e e e e e e .4.求方程te y y y y -=+'+''+'''6116满足0)0()0()0(=''='=y y y 的解.解:令y x y x y x ''='==321,,,则⎪⎩⎪⎨⎧+---='''='='='-,6116 , ,32133221t e x x x y x x x x x 写成向量方程组为t Be Ax x -+=',其中⎪⎪⎪⎭⎫⎝⎛=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=100,6116100010B A .对于矩阵A ,有J PAP=-1,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-321,132********,9413211111J P P于是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=---t tt Jt e e e e 32, 1-=P Pe e Jt At⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+-+--+--+--+-+-+-+-=---------------------------t t t tt t t t t t t t t t t t t t t t t t t t tt t e e e e e e e e e e e e e e e e e e e e e e e e e e e 3232323232323232329827325182463491656126238526621由于⎪⎪⎪⎭⎫ ⎝⎛=000)0(x ,则⎰⎰----=+=tv v t A t v v t A At dv Be e dv Be e x e t x 0)(0)()0()(⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-----+--+--=---------)1(29)1(8)1(23)1(4)1(21)1(221232232232t t tt t t t t t t t t tt t e e e e te e e e e te e e e e te故原方程的解为t t t t t t t t t e e e te e e e e te x y 322321414321)]1(21)1(2[21--------+-=-+--==5.试证明:若A 为2阶方阵,其特征值为21,λλ,特征向量为21,P P ,则方程Ax dtdx= 的解一定能表示成221121P e c P e c x t t λλ+=,其中21,c c 由下式确定:2211)0(P c P c x +=,然后利用这一结论求解定解问题:⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡--=11)0(,651021x x x dt dx 的解,并将这一结论推广到n 阶方阵情形.(1)证明:令],[21P P P =,则,,121211--⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=P P A AP P λλλλ于是x P P dt dx121-⎥⎦⎤⎢⎣⎡=λλ, x P dt dx P 1211--⎥⎦⎤⎢⎣⎡=λλ 令,1x P y -=则dtdxP dt dy 1-=,微分方程化为 y dt dy ⎥⎦⎤⎢⎣⎡=21λλ 其解为⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡=2121c c e e y t tλλ, 故方程Ax dtdx=的解一定能表示成 221121212121],[c e c P e c c c e e P P Py x t t t tλλλλ+=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡== 若是定解问题,则21,c c 由2211)0(P c P c x +=确定.(2)解:矩阵⎥⎦⎤⎢⎣⎡--6510的特征值为5,121-=-=λλ,特征向量分别为⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=51,1121P P , 则方程组⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--=216510x x dt dx 的通解为⎪⎪⎭⎫ ⎝⎛--+=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-------t t t t t te c e c e c e c e c e c 52152152155111,由于⎪⎪⎭⎫⎝⎛=11)0(x ,则⎩⎨⎧=--=+1512121c c c c , 解之,得⎪⎩⎪⎨⎧-==212321c c , 故原方程组的解为⎪⎪⎪⎪⎭⎫⎝⎛+--=⎪⎪⎭⎫ ⎝⎛----t t t t e e ee x x 552125232123. (3) n 阶方阵的情形:设微分方程组Ax dtdx=, 其中系数矩阵A 为n 阶可对角化矩阵,其特征值为n λλλ,,,21 ,特征向量分别为n P P P ,,,21 ,则该方程组的通解为n t n t P e c P e c P e c x n t λλλ+++= 221121,其中n c c c ,,,21 为任意常数.若为定解问题,则常数n c c c ,,,21 可由初始条件确定.6.已知),(0t t Φ是方程组)()()(t x t A dtt dx = 的转移矩阵,试证)(),(),(0000t A t t t t dt d ΦΦ-=. 证明:由于I t t t t =ΦΦ),(),(00,两边对0t 求导得,0),(),(),(),(000000=ΦΦ+ΦΦdt t t d t t t t dt t t d , 由于),(0t t Φ是方程组)()()(t x t A dtt dx =的转移矩阵,则 ),()(),(00t t t A dtt t d Φ=Φ, ),()(),(0000t t t A dt t t d Φ=Φ, 故0),()(),(),(),(000000=ΦΦ+ΦΦt t t A t t t t dt t t d , 两边右乘),(),(001t t t t Φ=Φ-,得 0)(),(),(0000=Φ+Φt A t t dt t t d , 即)(),(),(0000t A t t t t dt d ΦΦ-=. 7.求时变系统⎪⎩⎪⎨⎧===00)()()(x t x t x t A dtdx t t 的解,其中0),(x t A 分别如下:(1)⎪⎪⎭⎫ ⎝⎛=-101)(t e t A ,0,1100=⎪⎪⎭⎫ ⎝⎛=t x (2)⎪⎪⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+=111,000)1(100110)(022x t t t A [该题有误: )()()()(1221t A t A t A t A ≠](3)0,11,21)(00=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=t x t t t A 解:(1)对任意的21,t t ,有)()(101)()(122121t A t A e e t A t A t t =⎥⎦⎤⎢⎣⎡+=--, 故方程组的转移矩阵为+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++=⎰=Φ⎰⎰⎰30200)()(!31)(!21)()0,(0t t t dv v A dv v A dv v A dv v A I e t t由于⎥⎦⎤⎢⎣⎡-=-⎰t e t dv v A t t01)(0, ⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-⎰22200)1(2!21)(!21t e t t dv v A t t ,⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-⎰323300)1(3!31)(!31t e t t dv v A t t , ……… ⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛--⎰n t n n n t t e nt t n dv v A n 0)1(!1)(!110 则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++-++++++++=- 323232!31!2110)1)(!31!211(!31!211)0,(t t t e t t t t t t t t Φ ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=-t t t t t t te e e e e e e 010)1(. 故该方程组的解为 ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-=Φ=t t t t t e e e e e x t t x 121101)0,()(0 (3) 由于)(t A 各元素在区间],0[t 上有界,则该方程组的转移矩阵为⎰⎰⎰++=t v t dv v A dv v A dv v A I t 00221101)()()()0,(Φ ⎰⎰⎰++21033002211)()()(v t v dv v A dv v A dv v A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++++++++++= 4233428123122181231t t t t t t t t 故该方程组的解为⎪⎪⎪⎪⎭⎫ ⎝⎛+-+-+-++-+-=Φ= 43243208123218121231)0,()(t t t t t t t t x t t x 8.求下列定解问题的解:⎪⎩⎪⎨⎧=+=,00)(),()()()(x t x t u t B t x t A dt dx 其中(1)0,11,1)()(,101)(00=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡=-t x t t u t B e t A t (2)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+=111,01)()(,000)1(100110)(022x t t u t B t t t A 解:(1)由于系统所对应的齐次系统的转移矩阵为 ⎥⎦⎤⎢⎣⎡-=Φ----00000),(20t t t t t t t e e e e t t , 则该系统的解为⎰Φ+Φ=t dv v Bu v t x t t x 00)(),()0,()( dv v e e e e e e e t v t v v t v t t t t⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡-+⎪⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡-=⎰----10110102 ⎰⎪⎪⎭⎫ ⎝⎛-++⎪⎪⎭⎫ ⎝⎛-=----t v t v v t v t t dv e e e ve e 021 ⎪⎪⎪⎭⎫ ⎝⎛---++⎪⎪⎭⎫ ⎝⎛-=-1223211t t t t e t e e e ⎪⎪⎭⎫ ⎝⎛---+=-112321t e e t t。
研究生 矩阵论 课后答案

|
xk
|2
)
1 2
是范数.
k =1
(2)证明函数 || x ||∞ = max{| x1 |,| x2 |,...,| xn |}是范数.
2.设
x∈R2,
A=
⎛4 ⎜⎝1
1⎞ 4⎟⎠
,请画出由不等式||
x
||
A
≤
1决定的x的全
体所对应的几何图形.
3.在平面 R2中将一个棍子的一端放在原点,另一端放
生成子空间V,求V的正交补空间V ⊥.
15.(MATLAB)将以下向量组正交化.
(1) x1 = (1,1,1)T , x2 = (1,1, 0)T , x3 = (1, −1, 2);T
(2) f (t) = 1, g(t) = t, h(t) = t2是[0,1]上的多项式空间
的基,并且定义(
f
9.把下面矩阵A对应的λ -矩阵化为Smith标准形,并且写
出与A相似的Jordan标准形.
⎛1 −1 2 ⎞
(1)
⎜ ⎜
3
−3
6
⎟ ⎟
⎜⎝ 2 − 2 4⎟⎠
⎛ −4 2 10⎞
(2)
⎜ ⎜⎜⎝
−4 −3
3 1
7 7
⎟ ⎟⎟⎠
⎧ dx1
⎪ ⎪
dt
=
3x1
+ 8x3
10.(MATLAB)求解微分方程:
α3 = (0,1,1)T 的矩阵为: ⎡ 1
A=⎢ 1 ⎢⎣−1
0 1⎤ 1 0⎥ 2 1⎥⎦
求在基e1 = (1,0,0)T ,e2 = (0,1,0)T ,e3 = (0,0,1)T下的矩阵.
10.设S = {ε1,ε2 ,ε3,ε4}是四维线性空间V的一个基,已知
矩阵论de 课后答案.pdf

习题 1.11.解:除了由一个零向量构成的集合{θ}可以构成线性空间外,没有两个和有限(m)个向量构成的线性空间,因为数乘不封闭(kα 有无限多个,k∈p数域).2. 解:⑴是;⑵不是,因为没有负向量;⑶不是,因为存在两向量的和向量处在第二或第四象限,即加法不封闭;⑷是;⑸不是,因为存在二个不平行某向量的和却平行于某向量,即加法不封闭.3. 解:⑴不是,因为当k∈Q 或 R 时,数乘kα不封闭;⑵有理域上是;实数域上不是,因为当k∈R时,数乘kα不封闭.⑶是;⑷是;⑸是;⑹不是,因为加法与数乘均不封闭.4.解:是,因为全部解即为通解集合,它由基础解系列向量乘以相应常数组成,显然对解的加法与数乘运算满足二个封闭性和八条公理.5. 解:(1)是线性空间;(2)不是线性空间(加法不封闭;或因无零向量).6. 解:(1)设A的实系数多项式f(A)的全体为{f (A)= a0 I + a1 A + a m A m a i∈ R, m正整数}1显然,它满足两个封闭性和八条公理,故是线性空间.(2)与(3)也都是线性空间.7. 解:是线性空间.不难验证sin t,sin 2t,…,sin nt是线性无关的,且任一个形如题中的三角多项式都可由它们惟一地线性表示,所以它们是V中的一个组基.由高等数学中傅里叶(Fourier)系数知c i= 1 2π t sin itdt .π ⎰08. 解:⑴不是,因为公理 2 ')不成立:设 r=1, s=2, α=(3, 4),则(r+s) (3, 4)= (9, 4),而r (3, 4)⊕s (3, 4)=(3,4)⊕(6, 4)= (9, 8), 所以(r+s)α≠rα⊕sα.⑵ 不是,因为公理1)不成立:设α= (1,2) ,β= (3,4) ,则α⊕β=(1,2)⊕(3,4) = (1,2),β⊕α= (3,4)⊕(1,2) = (3,4) , 所以α⊕β≠β⊕α.⑶ 不是,因为公理2')不成立:设r=1, s=2,α=(3,4) ,则(r+s)α=3 (3, 4)= (27, 36) 而r α⊕ s α=1 (3,4)⊕ 2 (3,4)=(3, 4)⊕ (12, 16)= (15, 20),于是(r+s) α≠ r α⊕ s α.⑷ 是.9.证若α,β∈V,则2(α+β)= 2α+ 2β=(1 + 1)α+(1 + 1)β=(1α+ 1α)+ (1β+ 1β )= (α + α )+ (β + β )= α + (α + β )+ β2另一方面,因此从而有2(α+β)=(1+ 1)(α+β)=(1α+ 1β)+ 1(α+β)= (α + β )+ (α + β ) = α + ( β +α )+ βα+(α+β)+β=α+(β+α)+β,(-α )+α + (α + β )+ β + (- β ) = (-α )+α + (β +α )+ β + (- β )于是得α+β=β+α.10. 解:先求齐次方程组的基础解系ξ1=(3,3,2,0)T,ξ2=(-3,7,0,4)T,即为解空间V的一组基.所以,dim V=2.11. 解:考察齐次式k (x2+ x)+ k (x2-x) +k (x+1) = 01 2 3即(k+k )x2 + (k-k + k )x+k = 0 ,1 2 1 2 3 3得线性方程组k1 + k2 = 0k1 - k2+ k3=0k3 = 0由于系数行列式不等于零,那么只有k1 = k2= k3 = 0 时,上述齐次式才对∀x成立,所以x2+x,x2-x,x+1 线性无关,且任二次多项式ax2+ bx + c 都可惟一地用它们来表示(因为相应的非齐次方程组有惟一解),故为基.令2x2+ 7x+ 3 = (k1+k2 )x2+ (k1-k2+k3 )x+k3得k1=3,k2= -1,k3=3,即坐标为( 3, -1, 3 ) .312. 解:⑴因为 ( β1,β2,β3,β4)=(α1,α2,α3,α4)C,故C=(α1,α2,α3,α4)-1(β1,β2,β3,β4)1 0 0 0 -12 0 5 6 2 0 5 6= 0 1 0 0 1 3 3 6 1 3 3 6 0 0 1 0 -1 1 2 1 = -1 1 2 1.0 0 0 1 1 0 1 3 1 0 1 3⑵ 显然,向量α在基α1,α2,α3,α4下的坐标为X=(ξ1,ξ2,ξ3,ξ4)T, 设α在基β1,β2,β3,β4下的坐标为Y=(η1,η2,η3,η4)T,则ξ1 2 0 5 6 - 1 ξ1Y=C -1ξ2=1 3 3 6 ξ2ξ3 -1 1 2 1 ξ3ξ4 1 0 1 3 ξ44 1 -1 - 119 319ξ11 4 23= - 3 - ξ2 = B X27 9 271 2 ξ33 0 0 - 3 ξ4- 7 - 1 1 2627 3 279⑶ 如果X = Y,则有X= BX,即得齐次方程组(I- B)X=0 ,求其非零解为X = k (-1,-1,-1, 1 )T,k∈R ,即为所求.13. 解:(1)对k=1,2, ,n;l=k,k+1, ,n令F kl=(a ij)n⨯n,其中a kl=1,其余的a ij=0,则{F kl}为上三角矩阵空间的一组基,维数为12 n(n +1).(2)R+中任意非零元素都可作R+的基,dim R+=1.(3)I,A,A2为所述线性空间的一组基,其维数为3.414. 解: (1)由已知关系式求得⎧β1 = 4α1 + 8α2 + α3 - 2α4⎪ = -2α1 - 4α2 +α4⎪β2⎨ = α1 + 2α2⎪β3⎪= α2 + 2α3⎩β4于是,由基(I )到基(II )的过渡矩阵为⎡ 4 - 2 1 0⎤ ⎢ - 4 ⎥ C = ⎢ 8 2 1⎥⎢1 0 0⎥⎢ 2⎥⎣- 2 10 0⎦(2)α在基(II )下的坐标为(2,-1,1,1)T ,再由坐标变换公式计算α在基(I )下的坐标为C (2,-1,1,1)T =(11,23,4,-5)T .(3)不难计算得 det (1·I —C )=0,所以 1 是 C 的特征值.不妨取过渡矩阵 C 的对应于特征值 1 的一个特征向量为η,则有 C η=1 ·η,那么α= (β1 , β 2 , β3 , β 4 )η≠0,再由坐标变换公式知,α在基(I )下的坐标为ξ=C η=η,即存在非零α∈V 4 ,使得α在基(I )和基(II )下有相同的坐标.15. 解:不难看出,由简单基 E 11,E 12,E 21,E 22 改变为基(I )和基(II )的过渡矩阵分别为⎡2 0 - 2 1⎤⎡ 11 -1 -1⎤⎢ ⎥⎢⎥ C = ⎢1 1 13⎥ , C = ⎢2-1 2 -1⎥1⎢2 1⎥2⎢1 0 ⎥⎢1⎥⎢-1 1⎥⎣1 22 2⎦⎣ 0 1 1 1 ⎦则有(B 1,B 2,B 3,B 4)=(E 11,E 12,E 21,E 22)C 2=(A1,A2,A3,A4)C1 1C25。
矩阵论课后习题答案

第一章 线性空间与线性映射 习题一 (43-45)1、(1)对于V y x ∈∀,,x y x y x y x y y x y x y x y x +=⎪⎪⎭⎫⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+++=+112211112211;(2)对于V z y x ∈∀,,,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+++=++))()(1111112221111112112211121112211z y z x y x z y x z y x y x z z y x y x z y x z z y x y x y x z y x ,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛++++⎪⎪⎭⎫ ⎝⎛=++))()(1111112221111111122211111221121z y z x y x z y x z y x z y x z y z y x z y x z y z y z y x x z y x ,即)()(z y x z y x ++=++。
(3)对于⎪⎪⎭⎫⎝⎛=00θ和V x ∈∀,显然x x x x x x x =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+++=+21121000θ; (4)对于V x ∈∀,令⎪⎪⎭⎫⎝⎛--=2211x x x y , 则θ=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+0021221211221121x x x x x x x x x x x y x ,即x y -=。
(5)对于R ∈∀μλ,和V x ∈∀,有x x x x x x x x x x x x x x x x x x x x x x x )()()]()[(21)()()2(21)()()]1()1([21)1(21)1(2121212212122212121221121212121μλμλμλμλμλμλμλμλμλμλμλλμμμλλμλμλμμμμλλλλμλ+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛--+++++=⎪⎪⎪⎭⎫ ⎝⎛+-+-+++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+(6)对于R ∈∀λ和V y x ∈∀,,有⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎭⎫ ⎝⎛+++=+211112211112211))(1(21)()()(y x y x y x y x y x y x y x y x λλλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛-+-++-++++=⎪⎪⎪⎭⎫ ⎝⎛+-++-++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+211112211112212211122111122122121121212121))(1(21)()()1(21)1(21)()1(21)1(21)1(21)1(21y x y x y x y x y x y y x y x y x y x y x y y x x y x y y y x x x y x λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ,即y x y x λλλ+=+)(。
矩阵理论第4章习题解答

第四章 习题解答1. 证明:实对称矩阵A 的所有特征值在区间[],a b 上的充要条件是对任何0a λ<,0λ-A E 是正定矩阵;而对任何0a λ<,0λ-A E 是负定矩阵.证:因为A 为实对称矩阵,所以存在正交矩阵Q ,使得{}12,,n diag λλλ T A =Q Q ,其中特征值[],i a b λ∈.{}010200,,n diag λλλλλλλ--- T A -E =Q Q ,所以对于00,0i a λλλ∀<->知A 为正定矩阵;00,0i b λλλ∀>-<知A 为负定矩阵. 2. 设A ,B 都是实对称矩阵, A 的一切特征值在区间[],a b 上, B 的一切特征值在区间[],c d 上. 证明: A+B 的特征值必在区间[],a c b d ++.证:设A ,B 的特征值分别为()()()12n b A A A a λλλ≥≥≥≥≥ , ()()()12n d B B B c λλλ≥≥≥≥≥ ,又因为A ,B 为实对称矩阵,所以A ,B 为Hermite 矩阵,由定理18知,A+B 的特征值()k λ+A B ,1,2,,k n ∀= . 有()()()()()1k n k k λλλλλ+≤+≤+A B A B A B .即()()()()()()()1k k n k k k a c c d b dλλλλλλλ+≤+≤+≤+≤+≤+≤+A A B A B A B A 3 设P 是酉矩阵,()1,,n A diag a a = ,证明PA 的特征值μ满足不等式m M μ≤≤,其中,{}min i im a =,{}max i iM a =.证:因为P 是酉矩阵,所以HP P E =,又因为()()HH H H PA PA A P PA A A ==,所以由Browne 定理知,PA 的特征值μ满足不等式minminmaxmaxiiiiμ=≤≤=而minmin i iia m ==,maxmax i iia M ==,所以 m M μ≤≤.4.用圆盘定理证明9121081110401001-⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦A =至少有两个实特征值. 证: A 的4个盖尔圆为{}1|94G z z =-≤,{}2|82G z z =-≤, {}3|41G z z =-≤,{}4|11G z z =-≤,它们构成的两个连通区域部分为1123S G G G = , 24S G =, 易知1S 与2S 都关于实轴对称, 因为实矩阵的复特征值必成对共轭出现, 所以2S 中含有A 的一个特征值, 而1S 中至少含有A 的一个实特征值, 因此A 中至少有两个实特征值. 5 参见课本135页中的例1. 6 用圆盘定理估计7-168-1678885⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦A =的特征值和A 的谱半径, 然后选取一组正数123,,p p p 对A 的特征值作更细的估计. 解: A 的3个特征值在它的2个盖尔圆724z -≤,516z +≤得并集中, 且()31r A ≤. 因为矩阵A 有相同的主对角元素,所以,无法通过选取正数123,,p p p 给出更精细的估计.7证明141414141525115161636161171737⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =的谱半径()1r <A . 证: 113:||44S z -≤,223:||55S z -≤,333:||66S z -≤,433:||77S z -≤,故矩阵A 的盖尔,圆盘位于单位圆内且只与单位圆交于1,又因为||0E A -≠,所以知()1r <A .8. 证明14141141251515161636161717147⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =的谱半径()1r =A . 证: 113:||44S z -≤,223:||55S z -≤,333:||66S z -≤,443:||77S z -≤,故矩阵A 的盖尔,圆盘位于单位圆内且只与单位圆交于1,又因为()det 10=I -A , 所以()1r =A . 9.举例说明:(1)在有两个盖儿圆构成构成的连通部分中,可以在每一个盖儿圆中恰有一个特征值. (2)不一定每个盖尔圆中必有一个特征值.解:(1)如122-1⎛⎫ ⎪⎝⎭A =,故250λλ-=-=E A,1,2λ=(2)如1-0.80.50⎛⎫ ⎪⎝⎭A =,故20.40λλλ-=-+=E A,(1,211.2λ=±11.设()n,nij a =∈C A ,满足()1,2,,ij ij j ia a i n ≠>=∑ 则(1)A 可逆; (2)1det .nii ij j i i a a ≠=⎛⎫≥- ⎪⎝⎭∑∏A 证:(1)因为A 为严格对角占优矩阵,由定理4知,A 可逆。
矩阵论引论 习题答案

矩阵论引论习题答案矩阵论引论习题答案矩阵论是线性代数中的重要分支,它研究的是矩阵的性质和运算规律。
在实际应用中,矩阵论有着广泛的应用,涉及到各个领域,如物理学、经济学、计算机科学等。
在学习矩阵论时,习题是巩固知识和提高技能的重要途径。
下面,我将为大家提供一些矩阵论引论的习题答案。
1. 习题一已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求A的转置矩阵AT。
解答:A的转置矩阵AT = [1 4 7; 2 5 8; 3 6 9]。
2. 习题二已知矩阵A = [2 4; 6 8],求A的逆矩阵A-1。
解答:由于A是一个2x2的矩阵,我们可以使用伴随矩阵法来求解A的逆矩阵。
首先,计算A的行列式det(A) = 2*8 - 4*6 = 16 - 24 = -8。
然后,计算A的伴随矩阵adj(A) = [8 -4; -6 2]。
最后,计算A的逆矩阵A-1 = adj(A)/det(A) = [8/(-8) -4/(-8); -6/(-8) 2/(-8)] = [-1/2 1/2; 3/4 -1/4]。
3. 习题三已知矩阵A = [1 2 3; 4 5 6],矩阵B = [1 0; 0 1; 1 1],求矩阵C = AB。
解答:由于A是一个2x3的矩阵,B是一个3x2的矩阵,所以C是一个2x2的矩阵。
计算C的每个元素,C = [1*1 + 2*0 + 3*1 1*0 + 2*1 + 3*1; 4*1 + 5*0 + 6*1 4*0 + 5*1 + 6*1] = [4 5; 10 11]。
4. 习题四已知矩阵A = [1 2; 3 4],求A的特征值和特征向量。
解答:首先,求A的特征值λ。
计算A的特征多项式det(A - λI) = (1-λ)(4-λ) - 2*3 = λ^2 - 5λ + 2。
解特征多项式得到λ1 = (5 + √17)/2,λ2 = (5 - √17)/2。
然后,求A的特征向量v。