初三数学知识点总结【很好】
初三数学知识点归纳整理

初三数学知识点归纳整理最全初三数学知识点归纳篇一一、二次根式1、二次根式:一般地,式子叫做二次根式。
注意:(1)若这个条件不成立,则不是二次根式。
(2)是一个重要的非负数,即;≥0。
2、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积。
3、二次根式比较大小的方法:(1)利用近似值比大小。
(2)把二次根式的系数移入二次根号内,然后比大小。
(3)分别平方,然后比大小。
4、商的算术平方根:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。
5、二次根式的除法法则:(1)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。
6、最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式。
①被开方数的因数是整数,因式是整式。
②被开方数中不含能开的尽的因数或因式。
(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。
(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。
(4)二次根式计算的最后结果必须化为最简二次根式。
7、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。
8、二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用。
(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。
二、一元二次方程1、一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。
2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。
初三数学中考知识点总结【优秀10篇】

初三数学中考知识点总结【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初三数学中考知识点总结【优秀10篇】面对着中考,对于数学要想拿高分离不开平时的刻苦,以及大量的试题训练,当然也少不了一些备考的技巧。
初三数学中考知识点总结优秀6篇

初三数学中考知识点总结优秀6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如工作总结、策划方案、演讲致辞、报告大全、合同协议、条据书信、党团资料、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of practical sample essays for everyone, such as work summary, planning plan, speeches, reports, contracts and agreements, articles and letters, party and group materials, teaching materials, essays, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!初三数学中考知识点总结优秀6篇总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,不妨让我们认真地完成总结吧。
初三数学知识点归纳总结3篇

初三数学知识点归纳总结(一)数与式一、整数的进位和退位:1. 等于或大于5的数进1,小于5的数舍去;2. 计算过程中数字右侧的0不用写出来,加减乘除都适用;3. 当加上(或减去)一个数后,得到的和(或差)比被加数(或被减数)大10的整数倍时,通常采用进位(退位)的方法,即在个位数上加1(或减1),十位、百位、千位等数依次同样采用这样的方法。
二、分数的约分与通分:1. 分数的约分:将分子和分母同时除以一个最大公约数,约分后得到的新分数与原分数相等。
2. 分数的通分:将两个及以上的分数分别乘以它们对应的分母的相乘积,得到的新分数就是它们的公分母。
三、代数式与方程:1. 代数式:由数、字母及它们的各种符号所组成的式子。
2. 方程式:已知数和未知数间相等的关系,用等号隔开,这种包含未知数的公式称为方程式。
(二)几何一、图形的认识:常见的基本图形有:点、线段、直线、射线、角、三角形、四边形、圆、梯形、正方形、长方形等。
了解几何图形的定义及性质。
二、相似:相似的两个图形,可以用一个比值(称为相似比)来表示。
这个比值可以是边长、面积或者其他几何量之间的比值。
在相似中,对应的角相等,对应的边成比例。
三、全等:全等的两个图形,必须每一条边的对应边和每一个角的对应角都相等。
四、平移、旋转、翻折:我们可以通过平移(移动)、旋转和翻折来改变一个图形的位置或方向。
平移、旋转、翻折后得到的图形与原来的图形对应部分一一匹配,则它们是全等的。
(三)数据分析一、数据的搜集:在收集数据的时候要清晰明了,数据的总数、表格和图表的标题,要简明扼要、通俗易懂。
二、中心趋势度量:1. 平均数:一组数据的平均数是所有数据之和与数据总个数的商。
2. 中位数:将一组数据按照从小到大(或从大到小)排序后,位于中间的一个数,即为中位数。
3. 众数:在一组数据中出现次数最多的数,即为众数。
三、数据的描绘:我们可以使用表格、图表和描述等方式来描绘数据。
初三数学知识点考点归纳总结

初三数学知识点考点归纳总结一. 代数运算1.1 有理数有理数的四则运算,分数的加减乘除运算,化简分数、约分、分数转小数与百分数。
1.2 代数式代数式的基本概念、同类项合并、分配律、消元、整除关系、基本恒等式。
1.3 方程式一元一次方程式的解及其应用,一元二次方程式的解及其应用,二元一次方程式的解及其应用。
1.4 比例比例的概念、性质,比例的计算及应用,重复比例,反比例定理及其应用。
二. 几何与图形2.1 三角形角的概念、角度和弧度的转换,三角形的分类及性质,三角形的内角和定理,三角形的外角和定理。
2.2 直线与角平行直线和平行线特征及其性质,垂直直线和直角的特征及其性质,角的大小以及相邻角、对顶角等相关概念。
2.3 圆和圆的性质圆的基本性质,弧、弦、切线、割线等相关概念及其性质,圆内接四边形和正多边形。
2.4 空间几何与立体图形线面体的概念,正方体、长方体、棱柱、棱锥、圆柱、圆锥的性质和计算。
三. 概率与统计3.1 随机事件和概率事件的概念和性质,基本事件概率、加法规则,条件概率和乘法规则,概率分布和直方图的绘制。
3.2 常见概率问题求样本空间、容斥原理,贝叶斯定理,计算机模拟实验,概率统计中的应用问题。
四. 函数4.1 一些常见函数幂函数、指数函数、对数函数、三角函数、反三角函数的基本概念和性质。
4.2 函数的运算函数的加、减、乘、除的运算,函数的复合运算,导数的概念,导数的基本应用:切线问题和极值点问题。
以上是初三数学知识点考点的归纳总结。
需要注意的是,以上知识点只是初三数学所要学习的知识点的一个大致的方向,可能还存在某些细节问题需要重点学习。
同时,不管学习的什么知识点,都需要掌握好其基本概念和方法,这样才能在应用中灵活运用,解决问题,取得相应的成绩。
初三数学知识点总结大全(热门6篇)

初三数学知识点总结大全(热门6篇)初三数学知识点总结大全第1篇1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。
镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。
13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°。
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形、②边形共有条对角线。
初三数学知识点总结大全第2篇平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A 的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
初三数学的一些知识点总结

初三数学的一些知识点总结一、数的基本性质1. 自然数、整数、有理数、实数的概念和性质2. 加减乘除的性质3. 乘方和开方的性质4. 绝对值的性质5. 有理数的比较大小二、代数方程与不等式1. 一元一次方程及解法2. 一元二次方程及解法3. 一元一次不等式及解法4. 一元二次不等式及解法5. 代数式的求值和化简三、函数1. 函数的概念2. 一次函数及其图像3. 二次函数及其图像4. 反比例函数及其图像5. 绝对值函数及其图像四、集合与逻辑1. 集合的概念和表示2. 集合间的关系3. 命题的概念4. 命题的连接词与逻辑运算5. 命题的等价与推理五、平面几何1. 角的概念与性质2. 直线、线段、射线、平行线、垂直线3. 三角形、四边形的性质4. 圆的性质5. 三角形、四边形间的关系六、空间几何1. 点、线、面的概念2. 立体图形的概念3. 体积、表面积的计算4. 直角坐标系5. 空间几何问题的应用七、统计与概率1. 统计的概念和方法2. 概率的基本概念3. 抽样与样本调查4. 事件的概率计算5. 概率问题的应用八、数学实践1. 数学建模2. 数学游戏3. 数学思维训练4. 数学问题解决策略5. 数学思想的应用以上是初中数学课程中的一些重要知识点,每个知识点都有其特定的概念和性质,掌握这些知识点对于学生提高数学能力和解题能力具有重要的意义。
希望同学们在学习数学的过程中,能够认真对待这些知识点,注重数学思维的培养,不断提升自己的数学水平和解题能力。
中考数学复习知识点归纳总结6篇

中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。
3. 代数表达式:用字母表示数,表达数量关系和变化规律。
4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。
二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。
2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。
3. 面积与体积:计算平面图形的面积,计算立体图形的体积。
4. 解析几何:理解直线的方程,理解圆及其方程。
三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。
2. 函数的运算:函数的加减法,函数的乘法,复合函数。
3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。
4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。
四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。
2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。
3. 概率的概念:理解概率的基本概念,会计算事件的概率。
4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。
五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。
2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。
3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。
4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。
在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。
同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。
此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。
希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x 化为一般式为3x 2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A (3,0)在y 轴上。
2.直角坐标系中,x 轴上的任意点的横坐标为0. 3.直角坐标系中,点A (1,1)在第一象限. 4.直角坐标系中,点A (-2,3)在第四象限. 5.直角坐标系中,点A (-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=32-x 的值为1. 2.当x=3时,函数y=21-x 的值为1.3.当x=-1时,函数y=321-x 的值为1.知识点4:基本函数的概念及性质1.函数y=-8x 是一次函数. 2.函数y=4x+1是正比例函数. 3.函数x y 21-=是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(212+-=x y 的顶点坐标是(1,2).7.反比例函数xy 2=的图象在第一、三象限. 知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=23. 2.sin 260°+ cos 260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1.5.cos60°+ sin30°= 1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线. 7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径.知识点9:圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切. 2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点.知识点10:正多边形基本性质1.正六边形的中心角为60°. 2.矩形是正多边形.3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形.知识点11:一元二次方程的解1.方程042=-x 的根为 .A .x=2B .x=-2C .x 1=2,x 2=-2D .x=4 2.方程x 2-1=0的两根为 .A .x=1B .x=-1C .x 1=1,x 2=-1D .x=2 3.方程(x-3)(x+4)=0的两根为 .A.x 1=-3,x 2=4B.x 1=-3,x 2=-4C.x 1=3,x 2=4D.x 1=3,x 2=-4 4.方程x(x-2)=0的两根为 .A .x 1=0,x 2=2B .x 1=1,x 2=2C .x 1=0,x 2=-2D .x 1=1,x 2=-2 5.方程x 2-9=0的两根为 .A .x=3B .x=-3C .x 1=3,x 2=-3D .x 1=+3,x 2=-3知识点12:方程解的情况及换元法1.一元二次方程02342=-+x x 的根的情况是 . A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根2.不解方程,判别方程3x 2-5x+3=0的根的情况是 .A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根3.不解方程,判别方程3x 2+4x+2=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根4.不解方程,判别方程4x 2+4x-1=0的根的情况是 . A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根5.不解方程,判别方程5x 2-7x+5=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根6.不解方程,判别方程5x 2+7x=-5的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根7.不解方程,判别方程x 2+4x+2=0的根的情况是 . A.有两个相等的实数根 B. 有两个不相等的实数根 C.只有一个实数根 D. 没有实数根8. 不解方程,判断方程5y 2+1=25y 的根的情况是A.有两个相等的实数根B. 有两个不相等的实数根C.只有一个实数根D. 没有实数根9. 用 换 元 法 解方 程 4)3(5322=---xx x x 时, 令 32-x x = y ,于是原方程变为 . A.y 2-5y+4=0 B.y 2-5y-4=0 C.y 2-4y-5=0 D.y 2+4y-5=010. 用换元法解方程4)3(5322=---x x x x 时,令23x x -= y ,于是原方程变为 .A.5y 2-4y+1=0 B.5y 2-4y-1=0 C.-5y 2-4y-1=0 D. -5y 2-4y-1=0 11. 用换元法解方程(1+x x )2-5(1+x x )+6=0时,设1+x x=y ,则原方程化为关于y 的方程是 . A.y 2+5y+6=0 B.y 2-5y+6=0 C.y 2+5y-6=0 D.y 2-5y-6=0知识点13:自变量的取值范围1.函数2-=x y 中,自变量x 的取值范围是 . A.x ≠2 B.x ≤-2 C.x ≥-2 D.x ≠-2 2.函数y=31-x 的自变量的取值范围是 . A.x>3 B. x ≥3 C. x ≠3 D. x 为任意实数3.函数y=11+x 的自变量的取值范围是 . A.x ≥-1 B. x>-1 C. x ≠1 D. x ≠-1 4.函数y=11--x 的自变量的取值范围是 . A.x ≥1 B.x ≤1 C.x ≠1 D.x 为任意实数 5.函数y=25-x 的自变量的取值范围是 . A.x>5 B.x ≥5 C.x ≠5 D.x 为任意实数知识点14:基本函数的概念1.下列函数中,正比例函数是 .A. y=-8xB.y=-8x+1C.y=8x 2+1D.y=x8- 2.下列函数中,反比例函数是 . A. y=8x 2 B.y=8x+1 C.y=-8x D.y=-x8 3.下列函数:①y=8x 2;②y=8x+1;③y=-8x ;④y=-x8.其中,一次函数有 个 . A.1个 B.2个 C.3个 D.4个知识点15:圆的基本性质1.如图,四边形ABCD 内接于⊙O,已知∠C=80°,则∠A 的度数是 . A. 50° B. 80° C. 90° D. 100° 2.已知:如图,⊙O 中, 圆周角∠BAD=50°,则圆周角∠BCD 的度数是 . A.100° B.130° C.80° D.50° 3.已知:如图,⊙O 中, 圆心角∠BOD=100°,则圆周角∠BCD 的度数是 . A.100° B.130° C.80° D.50° 4.已知:如图,四边形ABCD 内接于⊙O ,则下列结论中正确的是 . A.∠A+∠C=180° B.∠A+∠C=90° C.∠A+∠B=180° D.∠A+∠B=905.半径为5cm 的圆中,有一条长为6cm 的弦,则圆心到此弦的距离为 .A.3cmB.4cmC.5cmD.6cm6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD 的度数是 . A.100° B.130° C.80° D.50 7.已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 .A.100°B.130°C.200°D.50 8. 已知:如图,⊙O 中, 圆周角∠BCD=130°,则圆心角∠BOD 的度数是 .A.100°B.130°C.80°D.50°9. 在⊙O 中,弦AB 的长为8cm,圆心O 到AB 的距离为3cm,则⊙O 的半径为 cm. A.3 B.4 C.5 D. 10 10. 已知:如图,⊙O 中,弧AB 的度数为100°,则圆周角∠ACB 的度数是 . A.100° B.130° C.200° D.50°12.在半径为5cm 的圆中,有一条弦长为6cm,则圆心到此弦的距离为 .•DB CAO ••BOCAD•C BAO •BOCAD•BOCAD•BOCAD•CBAOA. 3cmB. 4 cmC.5 cmD.6 cm知识点16:点、直线和圆的位置关系1.已知⊙O的半径为10㎝,如果一条直线和圆心O的距离为10㎝,那么这条直线和这个圆的位置关系为 .A.相离B.相切C.相交D.相交或相离2.已知圆的半径为6.5cm,直线l和圆心的距离为7cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D. 相离或相交3.已知圆O的半径为6.5cm,PO=6cm,那么点P和这个圆的位置关系是A.点在圆上B. 点在圆内C. 点在圆外D.不能确定4.已知圆的半径为6.5cm,直线l和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是.A.0个B.1个C.2个D.不能确定5.一个圆的周长为a cm,面积为a cm2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是 .A.相切B.相离C.相交D. 不能确定6.已知圆的半径为6.5cm,直线l和圆心的距离为6cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.不能确定7. 已知圆的半径为6.5cm,直线l和圆心的距离为4cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D. 相离或相交8. 已知⊙O的半径为7cm,PO=14cm,则PO的中点和这个圆的位置关系是 .A.点在圆上B. 点在圆内C. 点在圆外D.不能确定知识点17:圆与圆的位置关系1.⊙O1和⊙O2的半径分别为3cm和4cm,若O1O2=10cm,则这两圆的位置关系是 .A. 外离B. 外切C. 相交D. 内切2.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的位置关系是.A.内切B. 外切C. 相交D. 外离3.已知⊙O1、⊙O2的半径分别为3cm和5cm,若O1O2=1cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含4.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2==7cm,则这两个圆的位置关系是.A.外离B. 外切C.相交D.内切5.已知⊙O1、⊙O2的半径分别为3cm和4cm,两圆的一条外公切线长43,则两圆的位置关系是.A.外切B. 内切C.内含D. 相交6.已知⊙O1、⊙O2的半径分别为2cm和6cm,若O1O2=6cm,则这两个圆的位置关系是.A.外切B.相交C. 内切D. 内含知识点18:公切线问题1.如果两圆外离,则公切线的条数为.A. 1条B.2条C.3条D.4条2.如果两圆外切,它们的公切线的条数为.A. 1条B. 2条C.3条D.4条3.如果两圆相交,那么它们的公切线的条数为.A. 1条B. 2条C.3条D.4条4.如果两圆内切,它们的公切线的条数为 .A. 1条B. 2条C.3条D.4条5. 已知⊙O 1、⊙O 2的半径分别为3cm 和4cm,若O 1O 2=9cm,则这两个圆的公切线有 条. A.1条 B. 2条 C. 3条 D. 4条6.已知⊙O 1、⊙O 2的半径分别为3cm 和4cm,若O 1O 2=7cm,则这两个圆的公切线有 条. A.1条 B. 2条 C. 3条 D. 4条知识点19:正多边形和圆1.如果⊙O 的周长为10πcm ,那么它的半径为 . A. 5cm B.10cm C.10cm D.5πcm 2.正三角形外接圆的半径为2,那么它内切圆的半径为 . A. 2 B.3 C.1 D.23.已知,正方形的边长为2,那么这个正方形内切圆的半径为 . A. 2 B. 1 C.2 D.3 4.扇形的面积为32π,半径为2,那么这个扇形的圆心角为= . A.30° B.60° C.90° D. 120°5.已知,正六边形的半径为R,那么这个正六边形的边长为 . A.21R B.R C.2R D.R 3 6.圆的周长为C,那么这个圆的面积S= .A.2C π B.π2C C.π22C D.π42C7.正三角形内切圆与外接圆的半径之比为 . A.1:2 B.1:3 C.3:2 D.1:2 8. 圆的周长为C,那么这个圆的半径R= . A.2C π B. C π C.π2C D. πC9.已知,正方形的边长为2,那么这个正方形外接圆的半径为 . A.2 B.4 C.22 D.2310.已知,正三角形的半径为3,那么这个正三角形的边长为 . A. 3 B.3 C.32 D.33知识点20:函数图像问题1.已知:关于x 的一元二次方程32=++c bx ax 的一个根为21=x ,且二次函数c bx ax y ++=2的对称轴是直线x=2,则抛物线的顶点坐标是 .A. (2,-3)B. (2,1)C. (2,3)D. (3,2)2.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是 . A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2) 3.一次函数y=x+1的图象在 .A.第一、二、三象限B. 第一、三、四象限C. 第一、二、四象限D. 第二、三、四象限 4.函数y=2x+1的图象不经过 .A.第一象限B. 第二象限C. 第三象限D. 第四象限 5.反比例函数y=x2的图象在 . A.第一、二象限 B. 第三、四象限 C. 第一、三象限 D. 第二、四象限 6.反比例函数y=-x10的图象不经过 . A 第一、二象限 B. 第三、四象限 C. 第一、三象限 D. 第二、四象限 7.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是 . A.(-3,2) B.(-3,-2) C.(3,2) D.(3,-2) 8.一次函数y=-x+1的图象在 .A .第一、二、三象限 B. 第一、三、四象限 C. 第一、二、四象限 D. 第二、三、四象限9.一次函数y=-2x+1的图象经过 . A .第一、二、三象限 B.第二、三、四象限 C.第一、三、四象限 D.第一、二、四象限10. 已知抛物线y=ax 2+bx+c (a>0且a 、b 、c 为常数)的对称轴为x=1,且函数图象上有三点A(-1,y 1)、B(21,y 2)、C(2,y 3),则y 1、y 2、y 3的大小关系是 .A.y 3<y 1<y 2B. y 2<y 3<y 1C. y 3<y 2<y 1D. y 1<y 3<y 2知识点21:分式的化简与求值1.计算:)4)(4(yx xyy x y x xy y x +-+-+-的正确结果为 . A. 22x y - B. 22y x - C. 224y x - D. 224y x -2.计算:1-(121)11222+-+-÷--a a a a a a 的正确结果为 . A. a a +2B. a a -2C. -a a +2D. -a a -23.计算:)21(22x xx -÷-的正确结果为 . A.x B.x1C.-x 1D. -x x 2-4.计算:)111()111(2-+÷-+x x 的正确结果为 . A.1 B.x+1 C.x x 1+ D.11-x5.计算)11()111(-÷-+-x x x x 的正确结果是 . A.1-x x B.-1-x x C.1+x x D.-1+x x6.计算)11()(yx x y y y x x -÷-+-的正确结果是 . A.y x xy - B. -y x xy - C.y x xy + D.- yx xy +7.计算:22222222222)(y xy x xy y x y x y x y x y x +++-+--⋅-的正确结果为 . A.x-y B.x+y C.-(x+y) D.y-x8.计算:)1(1xx x x -÷-的正确结果为 . A.1 B.11+x C.-1 D.11-x9.计算x xx x x x -÷+--24)22(的正确结果是 . A.21-x B. 21+x C.- 21-x D.- 21+x 知识点22:二次根式的化简与求值1. 已知xy>0,化简二次根式2x y x -的正确结果为 .A.yB.y -C.-yD.-y -2.化简二次根式21a a a +-的结果是 . A.1--a B.-1--a C.1+a D.1--a3.若a<b ,化简二次根式aba -的结果是 . A.ab B.-ab C.ab - D.-ab -4.若a<b ,化简二次根式ab a b a a 2)(---的结果是 . A.a B.-a C.a - D.a --5. 化简二次根式23)1(--x x 的结果是 .A.x x x --1 B.xx x ---1 C.x x x --1 D.1--x xx6.若a<b ,化简二次根式ab a b a a 2)(---的结果是 . A.a B.-a C.a - D.a --7.已知xy<0,则y x 2化简后的结果是 .A.y xB.-y xC.y x -D.y x -8.若a<b ,化简二次根式ab a b a a 2)(---的结果是 . A.a B.-a C.a - D.a --9.若b>a ,化简二次根式a 2ab -的结果是 .A.ab aB.ab a --C.ab a -D.ab a - 10.化简二次根式21a a a +-的结果是 . A.1--a B.-1--a C.1+a D.1--a11.若ab<0,化简二次根式321b a a-的结果是 . A.b b B.-b b C. b b - D. -b b -知识点23:方程的根1.当m= 时,分式方程x x m x x --=+--2312422会产生增根. A.1 B.2 C.-1 D.2 2.分式方程x x x x --=+--23121422的解为 . A.x=-2或x=0 B.x=-2 C.x=0 D.方程无实数根 3.用换元法解方程05)1(2122=--++x x x x ,设x x 1-=y ,则原方程化为关于y 的方程 . A.y 2+2y-5=0 B.y 2+2y-7=0 C.y 2+2y-3=0 D.y 2+2y-9=04.已知方程(a-1)x 2+2ax+a 2+5=0有一个根是x=-3,则a 的值为 . A.-4 B. 1 C.-4或1 D.4或-1 5.关于x 的方程0111=--+x ax 有增根,则实数a 为 . A.a=1 B.a=-1 C.a=±1 D.a= 26.二次项系数为1的一元二次方程的两个根分别为-2-3、2-3,则这个方程是 .A.x 2+23x-1=0B.x 2+23x+1=0C.x 2-23x-1=0D.x 2-23x+1=07.已知关于x 的一元二次方程(k-3)x 2-2kx+k+1=0有两个不相等的实数根,则k 的取值范围是 . A.k>-23 B.k>-23且k ≠3 C.k<-23 D.k>23且k ≠3 知识点24:求点的坐标1.已知点P 的坐标为(2,2),PQ ‖x 轴,且PQ=2,则Q 点的坐标是 . A.(4,2) B.(0,2)或(4,2) C.(0,2) D.(2,0)或(2,4)2.如果点P 到x 轴的距离为3,到y 轴的距离为4,且点P 在第四象限内,则P 点的坐标为 . A.(3,-4) B.(-3,4) C.4,-3) D.(-4,3) 3.过点P(1,-2)作x 轴的平行线l 1,过点Q(-4,3)作y 轴的平行线l 2, l 1、l 2相交于点A ,则点A 的坐标是 . A.(1,3) B.(-4,-2) C.(3,1) D.(-2,-4)知识点25:基本函数图像与性质1.若点A(-1,y 1)、B(-41,y 2)、C(21,y 3)在反比例函数y=xk(k<0)的图象上,则下列各式中不正确的是 . A.y 3<y 1<y 2 B.y 2+y 3<0 C.y 1+y 3<0 D.y 1•y 3•y 2<0 2.在反比例函数y=xm 63-的图象上有两点A(x 1,y 1)、B(x 2,y 2),若x 2<0<x 1 ,y 1<y 2,则m 的取值范围是 . A.m>2 B.m<2 C.m<0 D.m>0 3.已知:如图,过原点O 的直线交反比例函数y=x2的图象于A 、B 两点,AC ⊥x 轴,AD ⊥y 轴,△ABC 的面积为S,则 .A.S=2B.2<S<4C.S=4D.S>4 4.已知点(x 1,y 1)、(x 2,y 2)在反比例函数y=-x2的图象上, 下列的说法中: ①图象在第二、四象限;②y 随x 的增大而增大;③当0<x 1<x 2时, y 1<y 2;④点(-x 1,-y 1) 、(-x 2,-y 2)也一定在此反比例函数的图象上,其中正确的有 个.A.1个B.2个C.3个D.4个 5.若反比例函数xky =的图象与直线y=-x+2有两个不同的交点A 、B ,且∠AOB<90º,则k 的取值范围必是 .A. k>1B. k<1C. 0<k<1D. k<06.若点(m ,m1)是反比例函数x n n y 122--=的图象上一点,则此函数图象与直线y=-x+b (|b|<2)的交点的个数为 .A.0B.1C.2D.4 7.已知直线b kx y +=与双曲线x ky =交于A (x 1,y 1),B (x 2,y 2)两点,则x 1·x 2的值 .A.与k 有关,与b 无关B.与k 无关,与b 有关C.与k 、b 都有关D.与k 、b 都无关知识点26:正多边形问题1.一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形、正四边形、正六边形,那么另个一个为 .A. 正三边形B.正四边形C.正五边形D.正六边形2.为了营造舒适的购物环境,某商厦一楼营业大厅准备装修地面.现选用了边长相同的正四边形、正八边形这两种规格的花岗石板料镶嵌地面,则在每一个顶点的周围,正四边形、正八边形板料铺的个数分别是.A.2,1B.1,2C.1,3D.3,13.选用下列边长相同的两种正多边形材料组合铺设地面,能平整镶嵌的组合方案是.A.正四边形、正六边形B.正六边形、正十二边形C.正四边形、正八边形D.正八边形、正十二边形4.用几何图形材料铺设地面、墙面等,可以形成各种美丽的图案.张师傅准备装修客厅,想用同一种正多边形形状的材料铺成平整、无空隙的地面,下面形状的正多边形材料,他不能选用的是.A.正三边形B.正四边形C. 正五边形D.正六边形5.我们常见到许多有美丽图案的地面,它们是用某些正多边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面.某商厦一楼营业大厅准备装修地面.现有正三边形、正四边形、正六边形、正八边形这四种规格的花岗石板料(所有板料边长相同),若从其中选择两种不同板料铺设地面,则共有种不同的设计方案.A.2种B.3种C.4种D.6种6.用两种不同的正多边形形状的材料装饰地面,它们能铺成平整、无空隙的地面.选用下列边长相同的正多边形板料组合铺设,不能平整镶嵌的组合方案是.A.正三边形、正四边形B.正六边形、正八边形C.正三边形、正六边形D.正四边形、正八边形7.用两种正多边形形状的材料有时能铺成平整、无空隙的地面,并且形成美丽的图案,下面形状的正多边形材料,能与正六边形组合镶嵌的是(所有选用的正多边形材料边长都相同).A.正三边形B.正四边形C.正八边形D.正十二边形8.用同一种正多边形形状的材料,铺成平整、无空隙的地面,下列正多边形材料,不能选用的是.A.正三边形B.正四边形C.正六边形D.正十二边形9.用两种正多边形形状的材料,有时既能铺成平整、无空隙的地面,同时还可以形成各种美丽的图案.下列正多边形材料(所有正多边形材料边长相同),不能和正三角形镶嵌的是.A.正四边形B.正六边形C.正八边形D.正十二边形知识点27:科学记数法1.为了估算柑桔园近三年的收入情况,某柑桔园的管理人员记录了今年柑桔园中某五株柑桔树的柑桔产量,结果如下(单位:公斤):100,98,108,96,102,101.这个柑桔园共有柑桔园2000株,那么根据管理人员记录的数据估计该柑桔园近三年的柑桔产量约为公斤.A.2×105B.6×105C.2.02×105D.6.06×1052.为了增强人们的环保意识,某校环保小组的六名同学记录了自己家中一周内丢弃的塑料袋数量,结果如下(单位:个):25,21,18,19,24,19.武汉市约有200万个家庭,那么根据环保小组提供的数据估计全市一周内共丢弃塑料袋的数量约为.A.4.2×108B.4.2×107C.4.2×106D.4.2×105知识点28:数据信息题1.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为.A. 45B. 51C. 54D. 572.某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图,是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的频率分布直方图,已知从左到右前4个小组频率分别为0.02,0.1,0.12,0.46.下列说法:①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内; ③学生成绩的中位数在第四小组(22.5~26.5)范围内. 其中正确的说法是 .A.①②B.②③C.①③D.①②③ 3.某学校按年龄组报名参加乒乓球赛,规定“n 岁年龄组”只允许满n 岁但未满n+1岁的学生报名,学生报名情况如直方图所示.下列结论,其中正确的是 . A.报名总人数是10人; B.报名人数最多的是“13岁年龄组”;C.各年龄组中,女生报名人数最少的是“8岁年龄组”;D.报名学生中,小于11岁的女生与不小于12岁的男生人数相等.4.某校初三年级举行科技知识竞赛,50名参赛学生的最后得分(成绩均为整数)的频率分布直方图如图,从左起第一、二、三、四、五个小长方形的高的比是1:2:4:2:1,根据图中所给出的信息,下列结论,其中正确的有 .①本次测试不及格的学生有15人;②69.5—79.5这一组的频率为0.4;③若得分在90分以上(含90分)可获一等奖, 则获一等奖的学生有5人.A ①②③B ①②C ②③D ①③5.某校学生参加环保知识竞赛,将参赛学生的成绩(得分取整数)进行整理后分成五组,绘成频率分布直方图如图,图中从左起第一、二、三、四、五个小长方形的高的比是1:3:6:4:2,第五组的频数为6,则成绩在60分以上(含60分)的同学的人数 . A.43 B.44 C.45 D.486.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为 .A 45B 51C 54D 577.某班学生一次数学测验成绩(成绩均为整数)进行统计分 析,各分数段人数如图所示,下列结论,其中正确的有( )①该班共有50人; ②49.5—59.5这一组的频率为0.08; ③本次测验分数的中位数在79.5—89.5这一组; ④学生本次测验成绩优秀(80分以上)的学生占全班人数的56%.A.①②③④ B.①②④ C.②③④ D.①③④ 8.为了增强学生的身体素质,在中考体育中考中取得优异成绩,某校初三(1)班进行了立定跳远测试,并将成绩整理后, 绘制了频率分布直方图(测试成绩保留一位小数),如图所示,已知从左到右4个组的频率分别是0.05,0.15,0.30,0.35,第五 小组的频数为9 , 若规定测试成绩在2米以上(含2米) 为合格, 则下列结论:其中正确的有 个 . ①初三(1)班共有60名学生; ②第五小组的频率为0.15;③该班立定跳远成绩的合格率是80%. A.①②③ B.②③ C.①③ D.①②知识点29: 增长率问题绩1.今年我市初中毕业生人数约为12.8万人,比去年增加了9%,预计明年初中毕业生人数将比今年减少9%.下列说法:①去年我市初中毕业生人数约为%918.12+万人;②按预计,明年我市初中毕业生人数将与去年持平;③按预计,明年我市初中毕业生人数会比去年多.其中正确的是 . A. ①② B. ①③ C. ②③ D. ① 2.根据湖北省对外贸易局公布的数据: 我省全年对外贸易总额为16.3亿美元,较 对外贸易总额增加了10%,则 对外贸易总额为 亿美元. A.%)101(3.16+ B.%)101(3.16- C.%1013.16+ D. %1013.16-3.某市前年80000初中毕业生升入各类高中的人数为44000人,去年升学率增加了10个百分点,如果今年继续按此比例增加,那么今年110000初中毕业生,升入各类高中学生数应为 .A.71500B.82500C.59400D.605 4.我国政府为解决老百姓看病难的问题,决定下调药品价格.某种药品在 涨价30%后, 降价70%后至78元,则这种药品在 涨价前的价格为 元.78元 B.100元 C.156元 D.200元5.某种品牌的电视机若按标价降价10%出售,可获利50元;若按标价降价20%出售,则亏本50元,则这种品牌的电视机的进价是 元.( )A.700元B.800元C.850元D.1000元 6.从1999年11月1日起,全国储蓄存款开始征收利息税的税率为20%,某人在 6月1日存入人民币10000元,年利率为2.25%,一年到期后应缴纳利息税是 元.A.44B.45C.46D.487.某商品的价格为a 元,降价10%后,又降价10%,销售量猛增,商场决定再提价20%出售,则最后这商品的售价是 元.A.a 元B.1.08a 元C.0.96a 元D.0.972a 元8.某商品的进价为100元,商场现拟定下列四种调价方案,其中0<n<m<100,则调价后该商品价格最高的方案是 .A.先涨价m%,再降价n%B.先涨价n%,再降价m%C.先涨价2n m +%,再降价2nm +% D.先涨价mn %,再降价mn %9.一件商品,若按标价九五折出售可获利512元,若按标价八五折出售则亏损384元,则该商品的进价为 .A.1600元B.3200元C.6400元D.8000元 10.自1999年11月1日起,国家对个人在银行的存款利息征收利息税,税率为20%(即存款到期后利息的20%),储户取款时由银行代扣代收.某人于1999年11月5日存入期限为1年的人民币16000元,年利率为2.25%,到期时银行向储户支付现金 元.16360元 B.16288 C.16324元 D.16000元知识点30:圆中的角1.已知:如图,⊙O 1、⊙O 2外切于点C ,AB 为外公切线,AC 的延长线交⊙O 1于点D,若AD=4AC,则∠ABC 的度数为 . A.15° B.30° C.45° D.60°2.已知:如图,PA 、PB 为⊙O 的两条切线,A 、B 为切点,AD ⊥PB 于D 点,AD 交⊙O 于点E,若∠DBE=25°,则∠P= . A.75° B.60° C.50° D.45°• oAPBDE •EDBOAC••O 2O 1B CA D3.已知:如图, AB 为⊙O 的直径,C 、D 为⊙O 上的两点,AD=CD ,∠CBE=40°,过点B 作⊙O 的切线交DC 的延长线于E 点,则∠CEB= .A. 60°B.65°C.70°D.75°4.已知EBA 、EDC 是⊙O 的两条割线,其中EBA 过圆心,已知弧AC 的度数是105°,且AB=2ED ,则∠E 的度数为 .A.30°B.35°C.45°D.75 5.已知:如图,Rt △ABC 中,∠C=90°,以AB 上一点O 为圆心,OA 为半径作⊙O 与BC 相切于点D, 与AC 相交于点E,若∠ABC=40°,则∠CDE= .A.40°B.20°C.25°D.30°6.已知:如图,在⊙O 的内接四边形ABCD 中,AB 是直径, ∠BCD=130º,过D 点的切线PD 与直线AB 交于P 点,则∠ADP 的度数为 . A.40º B.45º C.50º D.65º7.已知:如图,两同心圆的圆心为O ,大圆的弦AB 、 AC 切小圆于D 、E 两点,弧DE 的度数为110°, 则弧AB 的度数为 .A.70°B.90°C.110°D.1308. 已知:如图,⊙O 1与⊙O 2外切于点P ,⊙O 1的弦AB 切⊙O 2于C 点,若∠APB=30º,则∠BPC= .A.60ºB.70ºC.75ºD.90º知识点31:三角函数与解直角三角形1.在学习了解直角三角形的知识后,小明出了一道数学题:我站在综合楼顶,看到对面教学楼顶的俯角为30º,楼底的俯角为45º,两栋楼之间的水平距离为20米,请你算出教学楼的高约为 米.(结果保留两位小数,2≈1.4 ,3≈1.7)A.8.66B.8.67C.10.67D.16.672.在学习了解直角三角形的知识后,小明出了一道数学题:我站在教室门口,看到对面综合楼顶的仰角为30º,楼底的俯角为45º,两栋楼之间的距离为20米,请你算出对面综合楼的高约为米.(2≈1.4 ,3≈1.7)A.31B.35C.39D.54 3.已知:如图,P 为⊙O 外一点,PA 切⊙O 于点A,直线PCB 交⊙O 于C 、B, AD ⊥BC 于D,若PC=4,PA=8,设∠ABC=α,∠ACP=β,则sin α:sin β= . A.31 B.21C.2D. 4 4.如图,是一束平行的阳光从教室窗户射入的平面示意图,光线与地面所成角∠AMC=30°,在教室地面的影子MN=23米.若窗户的下檐到教室地面的距离BC=1米,则窗户的上檐到教室地面的距离AC 为 米. A. 23米 B. 3米 C. 3.2米 D.233米 5.已知△ABC 中,BD 平分∠ABC ,DE ⊥BC 于E 点,且DE:BD=1:2,DC:AD=3:4,CE=76,BC=6,则△ABC 的面积为 .·BAC DOP•EOA DBC• • O 1O 2ABCP•D BOA C E • AB OE DCABE DAC•┑αβO ADBC PA.3B.123C.243D.12知识点32:圆中的线段1.已知:如图,⊙O 1与⊙O 2外切于C 点,AB 一条外公切线,A 、B 分别为切点,连结AC 、BC.设⊙O 1的半径为R ,⊙O 2的半径为r ,若tan ∠ABC=2,则rR的值为 . A .2 B .3 C .2 D .32.已知:如图,⊙O 1、⊙O 2内切于点A ,⊙O 1的直径AB 交⊙O 2于点C ,O 1E ⊥AB 交⊙O 2于F 点,BC=9,EF=5,则CO 1= A.9 B.13 C.14 D.16 3.已知:如图,⊙O 1、⊙O 2内切于点P, ⊙O 2的弦AB 过O 1点且交⊙O 1于C 、D 两点,若AC :CD :DB=3:4:2,则⊙O 1与⊙O 2的直径之比为 . A.2:7 B.2:5 C.2:3 D.1:34.已知:如图,⊙O 1与⊙O 2外切于A 点,⊙O 1的半径为r ,⊙O 2的半径为R,且r:R=4:5,P 为⊙O 1一点,PB 切⊙O 2于B 点,若PB=6,则PA= . A.2 B.3 C.4 D.56.已知:如图,PA 为⊙O 的切线,PBC 为过O 点的割线,PA=45,⊙O 的半径为3,A.413B.13133C.13265D.1326154.已知:如图, Rt ΔABC ,∠C=90°,AC=4,BC=3,⊙O 1内切于ΔABC ,⊙O 2切BC ,且与AB 、AC 的延长线都相切,⊙O 1的半径R 1,⊙O 2的半径为R 2,则21R R= .A.21B.32C.43D.545.已知⊙O 1与边长分别为18cm 、25cm 的矩形三边相切,⊙O 2与⊙O 1外切,与边BC 、CD 相切,则⊙O 2的半径为 .A.4cmB.3.5cmC.7cmD.8cm6.已知:如图,CD 为⊙O 的直径,AC 是⊙O 的切线,AC=2,过A 点的割线AEF 交CD 的延长线于B 点,且AE=EF=FB ,则⊙O 的半径为 . A.7145 B.14145 C.714 D.14147.已知:如图, ABCD ,过B 、C 、D 三点作⊙O ,⊙O 切AB 于B 点,交AD 于E 点.若AB=4,CE=5,则DE 的长为 .· · O 1O 2BAC • •BE C AO 2O 1F• • AO 2CO1DB• •DPO 1O 2A C •BAO CD E••O 2 O 1 ADBC•ODCBAEFA.2B.59 C.516D.1 8. 如图,⊙O 1、⊙O 2内切于P 点,连心线和⊙O 1、⊙O 2分别交于A 、B 两点,过P 点的直线与⊙O 1、⊙O 2分别交于C 、D 两点,若∠BPC=60º,AB=2,则CD= . A.1 B.2 C.21 D.41知识点33:数形结合解与函数有关的实际问题1.某学校组织学生团员举行“抗击非典,爱护城市卫生”宣传活动,从学校骑车出发,先上坡到达A 地,再下坡到达B 地,其行程中的速度v(百米/分)与时间t(分)关系图象如图所示.若返回时的上下坡速度仍保持不变,那么他们从B 地返回学校时的平均速度为 百米/分.34110 B.27 C.43110 D.932102.有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y 升与时间x 分之间的函数关系如图所示.则在第7分钟时,容器内的水量为 升. A.15 B.16 C.17 D.183. 甲、乙两个个队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少 . A.12天 B.13天 C.14天 D.15天4. 某油库有一储油量为40吨的储油罐.在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的储油量(吨)与时间(分)的函数关系如图所示.现将装满油的储油罐只开出油管,不开进油管,则放完全部油所需的时间是 分钟. A.16分钟 B.20分钟 C.24分钟 D.44分钟5. 校办工厂某产品的生产流水线每小时可生产100件产品,生产前没有积压.生产3小时后另安排工人装箱(生产未停止),若每小时装产品150件,未装箱的产品数量y 是时间t 的函数,则这个函数的大致图像只能是 .6. 如图,某航空公司托运行李的费用y(元)与托运行李的重量x(公斤)的关系为一次函数,由图中可知,行李不超过 公斤时,可以免费托运.A.18 B.19C.20D.217. 小明利用星期六、日双休骑自行车到城外小姨家去玩.星期六从家中出发,先上坡,平路,再走下坡路到小姨家.行程情况如图所示.星期日小明又沿原路返回自己家.小明上坡、平路、下坡行驶的速度相对不变,则星期日,小明返回家的时间是 分钟分))))。