九年级上册数学知识点总结
九年级上册数学总结知识点

九年级上册数学总结知识点一、集合的概念与运算1. 集合的定义和表示方法2. 集合间的包含关系3. 集合的运算:并集、交集、差集、补集4. 集合的性质:全集、空集、互斥集、互不相交集二、函数与方程1. 函数的定义和性质2. 函数图像的基本性质3. 一次函数与二次函数4. 方程的基本概念:根、解、方程的种类5. 方程的解法:代入法、消元法、配方法、因式分解法三、三角形与相似1. 三角形的分类与性质:等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形2. 直角三角形的勾股定理和斜边定理3. 相似三角形的判定条件4. 相似三角形的性质:比例关系、类比比例、全等定理四、函数的图像与性质1. 函数图像的基本变换:平移、伸缩、翻转2. 二次函数的图像特征:顶点、对称轴、开口方向3. 绝对值函数和分段函数的图像特征4. 函数的单调性与极值点的求解五、平面坐标系与图形1. 平面直角坐标系的建立与使用2. 线段的长度计算3. 点和直线的位置关系:同一直线、垂直、平行、相交等4. 常见图形的性质与计算:矩形、正方形、三角形、圆六、数据的处理与统计1. 数据的收集和整理2. 统计量的计算:平均数、中位数、众数、极差3. 数据的图表展示:条形图、折线图、散点图4. 概率的基本概念与计算七、圆的性质与计算1. 圆的基本概念与性质:圆心、半径、直径、弧长、扇形面积2. 圆的相关角和切线的性质3. 弧度制与度数制的换算4. 圆的计算问题:弧长问题、扇形面积问题八、空间图形与几何体1. 空间图形的投影与视图2. 空间中的点、线、面的性质与判定3. 空间中的几何体:正方体、长方体、圆柱体、圆锥体、球体4. 空间几何体的计算:体积、表面积等以上是九年级上册数学的主要知识点总结,通过掌握这些知识,可以帮助学生更好地理解和应用数学知识,提升数学解题能力。
通过反复练习和思考,相信学生们能够更加熟练地掌握这些知识,取得更好的成绩。
九年级上下册数学知识点

九年级上下册数学知识点
一、上册数学知识点
1. 数与式
- 整数与有理数的运算
- 代数表达式的简化与变形
- 绝对值与不等式
2. 方程与不等式
- 一元一次方程与不等式
- 二元一次方程组的解法
- 含参方程及其应用
3. 函数的初步认识
- 函数的概念与表示方法
- 线性函数与二次函数的图像和性质
- 函数的基本运算
4. 几何图形初步
- 平行线与角的关系
- 三角形的基本性质
- 四边形的性质与分类
5. 几何图形的计算
- 面积与体积的计算
- 相似三角形的性质与应用
- 圆的基本性质与计算
二、下册数学知识点
1. 比例与相似
- 比例的概念与性质
- 相似三角形的判定与性质
- 比例线段的应用
2. 解直角三角形
- 锐角三角函数
- 解直角三角形的应用
- 三角函数的图像与性质
3. 统计与概率
- 统计的基本概念与方法
- 概率的初步认识
- 随机事件的概率计算
4. 数据的收集与处理
- 数据的表示方法
- 频数分布与直方图
- 抽样与估计
5. 平面直角坐标系
- 坐标系的基本概念
- 坐标系中的几何变换
- 函数图像的交点问题
6. 综合应用题
- 数学知识在实际问题中的应用 - 解决问题的策略与方法
- 开放性与探究性问题
请注意,以上内容仅为九年级数学上下册的主要知识点概览,具体的教学内容和顺序可能会根据不同地区的教学大纲和教材有所差异。
教师和学生应参考具体的教材和课程标准进行学习和复习。
九年级上册数学知识点总结

九年级上册数学知识点总结一、整数和有理数整数是由正整数、负整数和0组成,可以进行加、减、乘、除等运算。
有理数是整数和分数的集合,分数是整数和整数的比值。
整数和有理数的运算规律与整数运算相同,包括加法、减法、乘法和除法。
二、代数与方程1.代数表达式代数表达式是用字母和数字通过运算符号连接起来的数学式子,可以用来表示数值关系和算式运算。
2.方程与不等式方程是等号连接的两个代数表达式,表示两个量相等的关系。
不等式是不等号连接的两个代数表达式,表示两个量大小关系。
3.一元一次方程一元一次方程是只含有一个未知数,并且该未知数的最高次数为1的方程。
可以使用逆运算的原则,通过加减乘除等运算解得未知数的值。
4.二元一次方程组二元一次方程组是包含两个未知数、两个方程的方程组。
可以使用消元法或代入法解方程组。
三、平面图形与坐标系1.平面图形平面图形包括线段、角、三角形、四边形等。
通过计算边长、角度和面积等属性,可以解决与平面图形相关的问题。
2.坐标系与平面直角坐标系坐标系是由两个相互垂直的直线来确定的,用于描述点在平面上的位置。
平面直角坐标系是最常见的坐标系,包括横轴和纵轴,用数字来表示点的位置。
四、利率与利息利率指一定时期内利息与本金的比率,表示资金的增长速度。
利息是利率乘以本金得到的收益。
五、统计与概率1.抽样调查抽样调查是通过从总体中随机选择一部分样本进行调查,从而获得总体特征的方法。
2.频数与频率频数是指某个事件发生的次数或某个数据出现的次数。
频率是指某事件发生的概率或某数据出现的概率。
六、函数与图像1.函数与映射函数是两个集合之间的对应关系,每个自变量都有唯一的函数值与之对应。
2.函数图像函数图像是表达函数在坐标系中的图形,可以通过绘制函数的图像来研究函数的性质和变化规律。
七、几何变换几何变换包括平移、旋转、镜像和放缩等操作,通过改变图形的位置、角度和形状,可以研究图形的性质和变化规律。
八、三角函数三角函数是用来研究角的一种数学函数,包括正弦、余弦、正切等。
数学九年级上册每章知识点

数学九年级上册每章知识点第一章:有理数1. 有理数的概念和分类- 有理数的定义- 正数、负数和零的分类- 有理数的大小比较2. 有理数的加法和减法- 有理数的加法原则- 有理数的减法原则3. 有理数的乘法和除法- 有理数的乘法原则和性质- 有理数的除法原则和性质4. 有理数的运算性质- 加法和减法的交换律、结合律和分配律- 乘法和除法的交换律、结合律和分配律第二章:线性方程和一次不等式1. 变量和代数式- 变量的概念- 代数式的概念和性质2. 一元一次方程- 一元一次方程的定义和基本形式- 解一元一次方程的方法3. 一元一次不等式- 一元一次不等式的定义和基本形式- 解一元一次不等式的方法4. 实际问题与一元一次方程或不等式- 将实际问题转化成一元一次方程或不等式- 解决实际问题的步骤和方法第三章:多项式与因式分解1. 代数式的加减法- 代数式的加法原则和性质- 代数式的减法原则和性质2. 一元多项式- 一元多项式的定义和基本形式- 一元多项式的加减法原则3. 一元多项式的乘法- 一元多项式的乘法原则和性质- 一元多项式的乘法公式4. 因式分解- 因式分解的定义和基本方法- 因式分解的应用第四章:平面直角坐标系与图形初步1. 平面直角坐标系- 平面直角坐标系的概念和构造- 坐标表示和坐标轴上的点2. 点、线和线段- 点的坐标和图形的位置关系- 直线和线段的定义和表示3. 直角和垂线- 直角的概念和判定条件- 垂线的概念和判定条件4. 三角形和四边形- 三角形的分类和性质- 四边形的分类和性质第五章:相似与全等1. 平行线与比例- 平行线的概念和判定条件- 比例的概念和性质2. 相似三角形- 相似三角形的定义和判定条件- 相似三角形的性质和应用3. 全等三角形- 全等三角形的定义和判定条件- 全等三角形的性质和应用4. 相似和全等图形的应用- 利用相似和全等图形求解实际问题- 利用相似和全等图形进行图形的设计以上是数学九年级上册每章的知识点概述。
九年级上册数学知识点

九年级上册数学知识点一、有理数1. 整数2. 分数3. 小数二、代数表达式和简单方程1. 代数表达式的定义与运算2. 一元一次方程3. 方程的解4. 解一元一次方程的基本方法三、图形的性质和变换1. 空间几何图形- 三角形- 四边形- 多边形2. 平面镜像与旋转- 线对称与点对称- 图形的旋转四、概率和统计1. 概率的定义与计算- 随机事件- 事件发生的概率计算 2. 统计与表示- 数据的收集与整理- 平均数与中位数五、函数1. 函数的概念与表示2. 线性函数- 函数的增减性与最值 - 线性函数的图像与性质六、几何初步1. 直线、射线和线段2. 角及其性质3. 平行线和平行四边形七、相似与全等三角形1. 相似三角形- 相似三角形的判定与性质 - 相似三角形的应用2. 全等三角形- 全等三角形的判定与性质 - 全等三角形的应用八、立体几何初步1. 空间几何体的性质- 点、线、面的关系- 空间几何体的视图2. 投影与截面- 立体图形的投影- 立体图形的截面九、二次根式与实数1. 二次根式的性质与运算- 平方根与立方根- 二次根式的四则运算2. 实数的定义与运算- 有理数与无理数的概念- 实数的加减乘除运算十、解直角三角形1. 直角三角形的概念与性质2. 利用三角函数解直角三角形以上是九年级上册数学的主要知识点,通过对这些知识的系统学习,你将掌握数学中的基本概念、方法和技巧。
在实际应用中,这些知识将为你提供解决问题的工具和途径。
希望你能够认真学习,不断提高自己的数学能力。
九年级上册数学知识点归纳

九年级上册数学知识点归纳一、代数基础1.1 代数式与多项式•代数式的概念和基本性质•多项式的定义、次数、最高次项、最高次系数和降次1.2 整式运算•基本运算法则(加、减、乘、除)•多项式的因式分解1.3 方程与不等式•一元一次方程的定义、解法及应用一元二次方程的定义、解法及应用•一元一次不等式和一元二次不等式的定义、解法及应用二、平面几何2.1 点、直线、角、三角形•点、直线、射线、线段的定义•角的概念、性质和分类•三角形的定义、分类、性质(三角形角度定理、三角形边长关系定理)2.2 四边形和多边形•四边形的定义、性质(平行四边形、菱形、矩形、正方形、梯形)•多边形的定义和性质(对称性、全等性、相似性)2.3 圆的基本性质•圆的定义、圆心、半径、直径、弦、弧、圆周角•圆的切线和切点的概念和性质三、立体几何3.1 空间图形的概念和性质•空间图形的分类(点、线、面、体)•空间图形的基本性质(包括线段长度、角度大小、面积和体积)3.2 空间坐标系的建立和应用•空间坐标系的建立(右手法则)•空间坐标系中点、距离、中点公式、斜率公式3.3 空间几何体的计算•立体图形的表面积和体积的计算方法(包括长方体、正方体、棱锥、棱台、球)四、数与函数4.1 实数的概念和性质•实数的分类、基本性质(包括代数性质、有序性、完备性)4.2 一次函数的概念和性质•一次函数的定义、函数图像、图像特征、斜率、截距、变化规律和应用4.3 二次函数的概念和性质•二次函数的定义、函数图像、图像特征、参数的关系及其应用•二次函数解析式的确定方法五、统计与概率5.1 数据的收集和整理•数据的收集方法及其优缺点•数据的整理方法(频率分布表、直方图、折线图、饼图)5.2 概率的概念和基本性质•随机性和概率、概率的基本性质•事件及其概率的计算方法、频率和概率5.3 统计量•数值型数据的统计量(包括极差、平均数、中位数、众数、标准差)•统计推断的基本思想和应用(区间估计、假设检验)以上是九年级上学期数学知识点的归纳,希望对大家有所帮助。
九年级上册数学知识点全总结

九年级上册数学知识点全总结在九年级上册的数学学习中,我们接触到了许多重要的数学知识点,涉及了数与代数、几何与图形、函数与方程、统计与概率等多个方面。
下面,我们将对这些知识点进行全面总结。
一、数与代数1. 整数运算:整数加减乘除的规则及性质,同时学习了负数的概念和运算。
2. 分数与小数:分数与小数的相互转换,分数的四则运算以及分数的化简、约分等方法。
3. 实数运算:实数的运算律和性质,在此基础上学习了绝对值的概念和运算法则,了解了实数轴的相关知识。
4. 幂与指数:幂的定义和性质,指数与幂的关系及规律,学习了幂的乘除法则以及零次幂和一次幂的特殊性质。
5. 根式与整式:根式的定义和性质,整式的运算法则,熟悉了多项式的加减法规则。
二、几何与图形1. 角与直线:学习了角的类型和度量,认识了同位角、对顶角、余角等概念,同时也掌握了平行线与垂直线的性质。
2. 三角形:三角形的分类与性质,熟悉了角平分线、中位线、高线等重要线段与特殊点。
3. 平面镶嵌:学习了平面上的镶嵌图形,通过分析规律解决镶嵌问题,提高了观察和推理能力。
4. 圆与圆内接四边形:圆的相关概念与性质,学习了圆的弧长、扇形面积等计算方法,深入理解了圆与四边形的关系。
5. 空间几何体:学习了立体图形的名称与性质,掌握了棱、面和顶点的概念,了解了棱柱、棱锥、球等重要几何体。
三、函数与方程1. 平移、伸缩与反转:学习了函数图像的平移、伸缩与反转规律,掌握了二次函数、绝对值函数的特性。
2. 一次函数与二次函数:学习了一次函数和二次函数的表达式、图像与性质,了解了它们的特点与应用。
3. 一元一次方程:方程与等式的关系,解一元一次方程的基本方法,熟悉了方程解的概念和解集的表示方法。
4. 一元二次方程:学习了解一元二次方程的基本方法,熟悉了二次方程的根与判别式等概念,同时也了解了二次函数与二次方程的关系。
四、统计与概率1. 数据分析与统计:学习了数据的整理、统计和表示方法,掌握了众数、中位数和平均数等重要概念。
数学九年级上册全知识点

数学九年级上册全知识点一、整数的概念和运算1. 整数的概念2. 整数的绝对值3. 整数的相反数4. 整数的加法和减法二、有理数的概念和运算1. 有理数的概念2. 有理数的相反数和绝对值3. 有理数的加法和减法4. 有理数的乘法和除法5. 有理数的混合运算三、平方根和立方根1. 平方根的概念和性质2. 平方根的求解3. 立方根的概念和性质4. 立方根的求解四、二次根式1. 二次根式的概念和性质2. 二次根式的化简和分解3. 二次根式的加法和减法4. 二次根式的乘法和除法五、比例与比例的性质1. 比例的概念和表示方法2. 比例的性质和判断3. 比例的四种特殊情况4. 比例的运算六、百分数1. 百分数的概念和表示方法2. 百分数的转化3. 百分数的运算七、利率和利息1. 利率的概念和计算2. 简单利息的计算3. 复利的计算八、容积和表面积1. 球的容积和表面积2. 圆柱体的容积和表面积3. 直角三角形的斜边长和面积九、统计与概率1. 统计的概念和方法2. 频率和频率分布3. 概率的基本概念和计算方法十、平面几何图形1. 平行线和垂直线2. 直角三角形和勾股定理3. 三角形的性质和分类4. 四边形的性质和分类5. 圆的性质和圆内外关系十一、函数的概念和表示1. 函数的概念和特征2. 函数的表示方法3. 函数的图像和性质以上是数学九年级上册的全知识点,涵盖了整数、有理数、平方根、立方根、二次根式、比例、百分数、利率和利息、容积和表面积、统计与概率、平面几何图形以及函数等多个重要内容。
通过系统学习这些知识点,同学们可以更好地理解和应用数学知识,提高数学解题的能力和思维水平。
希望同学们能够认真学习并善于运用这些知识点,取得优异的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册知识点总结(数学)2017年12月第二十一章 一元二次方程22.1 一元二次方程知识点一 一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
注意一下几点:① 只含有一个未知数;②未知数的最高次数是2;③是整式方程。
知识点二 一元二次方程的一般形式一般形式:)0(02≠=++a c bx ax 其中,2ax 是二次项,a 是二次项系数; bx 是一次项,b 是一次项系数;c 是常数项。
知识点三 一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。
方程的解的定义是解方程过程中验根的依据。
22.2 降次——解一元二次方程 22.2.1 配方法知识点一 直接开平方法解一元二次方程(1) 如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
一般地,对于形如)0(2≥=a a x 的方程,根据平方根的定义可解得ax a x -=+=21 .(2) 直接开平方法适用于解形如p x =2或)0(2≠=+m p a mx )(形式的方程,如果 p≥0,就可以利用直接开平方法。
(3) 用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
(4) 直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为 1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
知识点二 配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:一移、二除、三配、四开。
(1) 把常数项移到等号的右边; (2) 方程两边都除以二次项系数;(3) 方程两边都加上一次项系数一半的平方,把左边配成完全平方式; (4) 若等号右边为非负数,直接开平方求出方程的解。
22.2.2 公式法知识点一 公式法解一元二次方程(1) 一般地,对于一元二次方程 )0(02≠=++a c bx ax ,如果 042≥-ac b ,那么方程的两个根为 a acb b x 242-±-=,这个公式叫做一元二次方程的求根公式,利用求根公式,我们可以由一元二方程的系数a,b,c 的值直接求得方程的解,这种解方程的方法叫做公式法。
(2) 一元二次方程求根公式的推导过程,就是用配方法解一般形式的一元二次方程)0(02≠=++a c bx ax 的过程。
(3) 公式法解一元二次方程的具体步骤:① 方程化为一般形式:)0(02≠=++a c bx ax ,一般a 化为正值 ② 确定公式中a,b,c 的值,注意符号; ③ 求出ac b 42-的值;④ 若042≥-ac b 则把a,b,c 和b-4ac 的值代入公式即可求解,042<-ac b ,则方程无实数根。
知识点二 一元二次方程根的判别式式子ac b 42-叫做方程)0(02≠=++a c bx ax 根的判别式,通常用希腊字母△表示它,即ac b 42-=∆,22.2.3 因式分解法知识点一 因式分解法解一元二次方程(1) 把一元二次方程的一边化为 0,而另一边分解成两个一次因式的积,进而转化为求两个一元一次方程的解,这种解方程的方法叫做因式分解法。
(2) 因式分解法的详细步骤:① 移项,将所有的项都移到左边,右边化为0;② 把方程的左边分解成两个因式的积,可用的方法有提公因式、平方差公式和完全平方公式;③ 令每一个因式分别为零,得到一元一次方程; ④ 解一元一次方程即可得到原方程的解。
知识点二 用合适的方法解一元一次方程22.2.4 一元二次方程的根与系数的关系(了解) 若一元二次方程02=++q px x 的两个根为1x ,2x 则有q x x p x x =-=+2121,若一元二次方程)0(02≠=++a c bx ax 有两个实数根1x ,2x 则有acx x a b x x =-=+2121,22.3 实际问题与一元二次方程知识点一 列一元二次方程解应用题的一般步骤:(1) 审:是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的等量关系。
(2) 设:是指设元,也就是设出未知数。
(3) 列:就是列方程,这是关键步骤,一般先找出能够表达应用题全部含义的一个相等含义,然后列代数式表示这个相等关系中的各个量,就得到含有未知数的等式,即方程。
(4) 解:就是解方程,求出未知数的值。
(5) 验:是指检验方程的解是否保证实际问题有意义,符合题意。
(6) 答:写出答案。
知识点二 列一元二次方程解应用题的几种常见类型 (1) 数字问题三个连续整数:若设中间的一个数为x ,则另两个数分别为x-1,x+1。
三个连续偶数(奇数):若中间的一个数为x ,则另两个数分别为x-2,x+2。
三位数的表示方法:设百位、十位、个位上的数字分别为a,b,c ,则这个三位数是100a+10b+c. (2) 增长率问题设初始量为a ,终止量为b ,平均增长率或平均降低率为x ,则经过两次的增长或降低后的等量关系为 b x a =±2)1((3)利润问题利润问题常用的相等关系式有:①总利润=总销售价-总成本;②总利润=单位利润×总销售量;③利润=成本×利润率(4)图形的面积问题 根据图形的面积与图形的边、高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。
第二十二章 二次函数知识点一:二次函数的定义 1.二次函数的定义:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数. 其中a 是二次项系数,b 是一次项系数,c 是常数项.知识点二:二次函数的图象与性质⇒⇒抛物线的三要素:开口、对称轴、顶点 2.二次函数()2y a x h k =-+的图象与性质(1)二次函数基本形式2y ax =的图象与性质:a 的绝对值越大,抛物线的开口越小(2)2=+的图象与性质:上加下减y ax c(3)()2=-的图象与性质:左加右减y a x h(4)二次函数()2=-+的图象与性质y a x h k3. 二次函数c bx ax y ++=2的图像与性质 (1)当0a >时,抛物线开口向上,对称轴为2bx a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a=-时,y 有最小值244ac b a-.(2)当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.4. 二次函数常见方法指导(1)二次函数2y ax bx c =++图象的画法 ①画精确图 五点绘图法(列表-描点-连线)利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、 对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图. ②画草图 抓住以下几点:开口方向,对称轴,与x 轴的交点,顶点. (2)二次函数图象的平移 平移步骤:① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 可以由抛物线2ax y =经过适当的平移得到。
具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 2平移规律:概括成八个字“左加右减,上加下减”. (3)用待定系数法求二次函数的解析式 ①一般式:.已知图象上三点或三对)(y x ,,的值,通常选择一般式. ②顶点式:.已知图象的顶点或对称轴,通常选择顶点式. ③交点式:.已知图象与轴的交点坐标、,通常选择交点式.(4)求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=. ②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. (5)抛物线c bx ax y ++=2中,c b a ,,的作用①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样. ②b 和a 共同决定抛物线对称轴的位置 由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故 如果0=b 时,对称轴为y 轴;如果0>a b(即a 、b 同号)时,对称轴在y 轴左侧; 如果0<ab(即a 、b 异号)时,对称轴在y 轴右侧.③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置当0=x 时,c y =,所以抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ),故 如果0=c ,抛物线经过原点; 如果0>c ,与y 轴交于正半轴; 如果0<c ,与y 轴交于负半轴.知识点三:二次函数与一元二次方程的关系5.函数c bx ax y ++=2,当0y =时,得到一元二次方程20ax bx c ++=,那么一元二次方程的解就是二次函数的图象与x 轴交点的横坐标,因此二次函数图象与x 轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x 轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x 轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x 轴没有交点,这时,则方程没有实根.通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个相等实数解方程没有实数解6.拓展:关于直线与抛物线的交点知识(1)y 轴与抛物线c bx ax y ++=2得交点为(0,)c .(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).(3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切;③没有交点⇔0<∆⇔抛物线与x 轴相离.(4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组2y kx n y ax bx c =+⎧⎨=++⎩的解的数目来确定: ①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故 ac x x a b x x =⋅-=+2121,()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=444222122122121知识点四:利用二次函数解决实际问题7.利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.第二十三章旋转23.1 图形的旋转知识点一旋转的定义在平面内,把一个平面图形绕着平面内某一点O 转动一个角度,就叫做图形的旋转,点O 叫做旋转中心,转动的角叫做旋转角。