全国初中数学竞赛试题及答案79416
初中中数学竞赛试题及答案

初中中数学竞赛试题及答案初中数学竞赛试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. πC. 0.33333D. √22. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0或13. 若a,b,c是三角形的三边,且满足a^2 + b^2 = c^2,则这个三角形是:A. 直角三角形B. 等边三角形C. 等腰三角形D. 钝角三角形4. 一个多项式f(x) = x^3 - 6x^2 + 11x - 6,它的根是:A. 1, 2, 3B. 2, 3, 4C. 1, 3, 4D. 2, 2, 35. 一个圆的半径为5,圆心到直线的距离为4,那么直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 内切6. 以下哪个是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 椭圆7. 一个数列1, 3, 5, ..., 19,这个数列共有多少项?A. 10B. 11C. 12D. 138. 一个等差数列的首项是2,公差是3,那么第10项是:A. 29B. 32C. 35D. 389. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积增加8平方米,求原长方形的宽是多少?A. 2米B. 3米C. 4米D. 5米10. 一个分数的分子与分母的和是21,如果分子增加5,分母增加1,新的分数等于1,求原分数是多少?A. 3/18B. 4/17C. 5/16D. 6/15二、填空题(每题4分,共20分)11. 如果一个数的平方根等于它本身,那么这个数是________。
12. 一个数的绝对值是它本身,这个数是非负数,即这个数是________。
13. 一个多项式f(x) = x^2 - 5x + 6可以分解为________。
14. 一个数的立方根等于它本身,这个数是________。
15. 如果一个数列的前三项是1, 2, 3,且每一项都是前一项的两倍,这个数列的第5项是________。
全国初中数学竞赛试题及解答

ABCD全国初中数学竞赛试卷及解析一、选择题(本题共6小题,每小题5分,满分30分.每小题均给出了代号为A ,B ,C ,D 的四个结论,其中只有一个是正确的。
请将正确答案的代号填在题后的括号里)1、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若c b a ,则M 与P 的大小关系是( )A 、P MB 、P MC 、P MD 、不确定 答案:B 解析:∵3c b a M ,2b a N ,222c b a c N P ,122cb a P M ∵c b a ∴0122122c c c c b a P M ,即0 P M ,即P M 2、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(a b ),再前进c 千米,则此人离起点的距离S 与时间t 的关系示意图是( )答案:C解析:因为图(A )中没有反映休息所消耗的时间;图(B )虽表明折返后S 的变化,但没有表示消耗的时间;图(D )中没有反映沿原始返回的一段路程,唯图(C )正确地表述了题意。
3、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( ) A 、甲比乙大5岁 B 、甲比乙大10岁 C 、乙比甲大10岁 D 、乙比甲大5岁 答案:A解析:由题意知3×(甲-乙)151025 ∴甲-乙=5。
4、一个一次函数图象与直线49545x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有( )A 、4个B 、5个C 、6个D 、7个 答案:B解析:在直线AB 上,横、纵坐标都是整数的点的坐标是N x 41 ,N y 525 ,(N 是整数).在线段AB 上这样的点应满足041 N ,且0525 N ,∴541N ,即1 N ,2,3,4,55、设a ,b ,c 分别是ABC 的三边的长,且cb a ba b a,则它的内角A 、B 的关系是( )A 、AB 2 B 、A B 2C 、A B 2D 、不确定 答案:B解析:由c b a b a b a得c a bb a ,延长CB 至D ,使AB BD ,于是c a CD 在ABC 与DAC 中,C C ,且DC ACAC BC∴ABC ∽DAC ,D BAC ∵D BAD∴BAC D BAD D ABC 226、已知ABC 的三边长分别为a ,b ,c ,面积为S ,111C B A 的三边长分别为1a ,1b ,1c ,面积为1S ,且1a a ,1b b ,1c c ,则S 与1S 的大小关系一定是( )A 、1S SB 、1S SC 、1S SD 、不确定 答案:D解析:分别构造ABC 与111C B A 如下:①作ABC ∽111C B A ,显然1211a a S S ,即1S S ;②设101b a ,20c ,则1 c h ,10 S ,10111 c b a ,则10100431S ,即1S S ;③设101 b a ,20 c ,则1 c h ,10 S ,2911 b a ,101 c ,则2 c h ,101 S ,即1S S ;因此,S 与1S 的大小关系不确定。
全国初中数学竞赛试题

全国初中数学竞赛试题【试题一】:代数基础1. 已知 \( a, b, c \) 是一个三角形的三边长,且满足 \( a^2 + b^2 = c^2 \),求证 \( a + b \geq c \)。
【试题二】:几何问题2. 给定一个圆,圆心为 \( O \),半径为 \( r \)。
在圆上任取两点\( A \) 和 \( B \),连接 \( OA \) 和 \( OB \)。
求证 \( \angle AOB \) 的度数小于 \( 180^\circ \)。
【试题三】:数列与级数3. 一个等差数列的首项是 \( a_1 = 3 \),公差 \( d = 2 \)。
求这个数列的第 \( n \) 项 \( a_n \) 的表达式,并计算前 \( n \) 项的和 \( S_n \)。
【试题四】:函数与方程4. 已知函数 \( f(x) = x^2 - 4x + 4 \),求该函数的最小值。
【试题五】:概率统计5. 一个袋子里有 \( 5 \) 个红球和 \( 3 \) 个蓝球。
随机抽取两个球,求两个球颜色相同的概率。
【试题六】:组合数学6. 有 \( 8 \) 个不同的球,需要将它们放入 \( 3 \) 个不同的盒子中,每个盒子至少有一个球。
求不同的放法有多少种。
【试题七】:逻辑推理7. 在一个逻辑推理题中,有三个人分别说了以下的话:- 甲说:“乙是说谎者。
”- 乙说:“丙是说谎者。
”- 丙说:“甲和乙都是说谎者。
”如果三个人中只有一个人说谎,那么谁说的是真话?【试题八】:创新问题8. 一个正方体的体积是 \( 8 \) 立方厘米,求这个正方体的表面积。
【试题九】:应用题9. 一个水池可以以恒定的速率 \( r \) 进水,同时也以另一个恒定的速率 \( s \) 出水。
如果水池开始时是空的,求水池被填满的时间\( t \)。
【试题十】:综合题10. 一个圆的半径是 \( 5 \) 厘米,圆内接一个等边三角形。
全国初三初中数学竞赛测试带答案解析

全国初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.已知m 、n 是两个连续正整数,m<n ,且a=mn ,设x=,y=.下列说法正确的是( ).A .x 为奇数,y 为偶数B .x 为偶数,y 为奇数C .x 、y 都为奇数D .x 、y 都为偶数2.设a 、b 、c 和S 分别为三角形的三边长和面积,关于x 的方程b 2x 2+(b 2+c 2-a 2)x+c 2=0的判别式为Δ.则Δ与S 的大小关系为( ).A .Δ=16S 2B .Δ=-16S 2C .Δ=16SD .Δ=-16S3..设a 为的小数部分,b 为的小数部分.则的值为( ). A .+-1B .-+1C .--1D .++14.如图,D 、E 分别为△ABC 的边AB 、AC 上的点,△ACD 与△BCD 的周长相等,△ABE 与△CBE 的周长相等,记△ABC 的面积为S.若∠ACB=90°,则AD·CE 与S 的大小关系为( ).A 、S=AD·CEB 、S>AD·CEC 、S<AD·CED 、无法确定5.如图,在△ABC 中,AB=8,BC=7,AC=6,延长边BC 到点P ,使得△PAB 与△PCA 相似.则PC 的长是( ).A .7B .8C .9D .106.如图,以PQ=2r(r ∈Q)为直径的圆与一个以R(R ∈Q)为半径的圆相切于点P.正方形ABCD 的顶点A 、B 在大圆上,小圆在正方形的外部且与边CD 切于点Q.若正方形的边长为有理数,则R 、r 的值可能是( ).A.R=5,r="2"B.R=4,r=3/2C.R=4,r="2"D.R=5,r=3/2二、填空题1.已知方程x 2+x-1=0的两个根为α、β.则的值为 .2.把1,2,…,2 008个正整数分成1 004组:a 1,b 1;a 2,b 2;…;a 1 004,b 1 004,且满足a 1+b 1=a 2+b 2=…=a 1004+b 1004.对于所有的i(i=1,2,…,1 004),a i b i 的最大值为 .3.AD、BE、CF为△ABC的内角平分线.若BD+BF=CD+CE=AE+AF,则∠BAC的度数为 .4.下列四个命题:①一组对边相等且一组对角相等的四边形是平行四边形; ②一组对边相等且一条对角线平分另一条对角线的四边形是平行四边形;③一组对角相等且这一组对角的顶点所联结的对角线被另一条对角线平分的四边形是平行四边形;④一组对角相等且这一组对角的顶点所联结的对角线平分另一条对角线的四边形是平行四边形.其中,正确命题的序号是 .三、解答题1.(20分)已知△ABC中,∠A>∠B>∠C,且∠A=2∠B.若三角形的三边长为整数,面积也为整数,求△ABC面积的最小值.2.(25分)已知G是△ABC内任一点,BG、CG分别交AC、AB于点E、F.求使不等式S△BGF ·S△CGE≤kS2△ABC恒成立的k的最小值.3.(25分)已知(x+)(y+)=1.求证:x+y=0.全国初三初中数学竞赛测试答案及解析一、选择题1.已知m、n是两个连续正整数,m<n,且a=mn,设x=,y=.下列说法正确的是( ).A.x为奇数,y为偶数B.x为偶数,y为奇数C.x、y都为奇数D.x、y都为偶数【答案】C【解析】考查知识点:两个连续正整数之间的关系,平方根的意义,奇数和偶数的概念。
全国初中数学竞赛试题及解答

ABCD全国初中数学竞赛试卷及解析一、选择题(本题共6小题,每小题5分,满分30分.每小题均给出了代号为A ,B ,C ,D 的四个结论,其中只有一个是正确的。
请将正确答案的代号填在题后的括号里)1、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若c b a ,则M 与P 的大小关系是( )A 、P MB 、P MC 、P MD 、不确定 答案:B 解析:∵3c b a M ,2b a N ,222c b a c N P ,122cb a P M ∵c b a ∴0122122c c c c b a P M ,即0 P M ,即P M 2、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(a b ),再前进c 千米,则此人离起点的距离S 与时间t 的关系示意图是( )答案:C解析:因为图(A )中没有反映休息所消耗的时间;图(B )虽表明折返后S 的变化,但没有表示消耗的时间;图(D )中没有反映沿原始返回的一段路程,唯图(C )正确地表述了题意。
3、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( ) A 、甲比乙大5岁 B 、甲比乙大10岁 C 、乙比甲大10岁 D 、乙比甲大5岁 答案:A解析:由题意知3×(甲-乙)151025 ∴甲-乙=5。
4、一个一次函数图象与直线49545x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有( )A 、4个B 、5个C 、6个D 、7个 答案:B解析:在直线AB 上,横、纵坐标都是整数的点的坐标是N x 41 ,N y 525 ,(N 是整数).在线段AB 上这样的点应满足041 N ,且0525 N ,∴541N ,即1 N ,2,3,4,55、设a ,b ,c 分别是ABC 的三边的长,且cb a ba b a,则它的内角A 、B 的关系是( )A 、AB 2 B 、A B 2C 、A B 2D 、不确定 答案:B解析:由c b a b a b a得c a bb a ,延长CB 至D ,使AB BD ,于是c a CD 在ABC 与DAC 中,C C ,且DC ACAC BC∴ABC ∽DAC ,D BAC ∵D BAD∴BAC D BAD D ABC 226、已知ABC 的三边长分别为a ,b ,c ,面积为S ,111C B A 的三边长分别为1a ,1b ,1c ,面积为1S ,且1a a ,1b b ,1c c ,则S 与1S 的大小关系一定是( )A 、1S SB 、1S SC 、1S SD 、不确定 答案:D解析:分别构造ABC 与111C B A 如下:①作ABC ∽111C B A ,显然1211a a S S ,即1S S ;②设101b a ,20c ,则1 c h ,10 S ,10111 c b a ,则10100431S ,即1S S ;③设101 b a ,20 c ,则1 c h ,10 S ,2911 b a ,101 c ,则2 c h ,101 S ,即1S S ;因此,S 与1S 的大小关系不确定。
全国初中数学竞赛试题及答案(完整资料).doc

【最新整理,下载后即可编辑】中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a,b,c在数轴上的位置如图所示,那么代数式22||()||a abc a b c++-+可以化简为().(A)2c a-(B)22a b-(C)a-(D)a1(乙).如果22a=-+11123a+++的值为().(A)2-(B2(C)2 (D)22(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系xOy中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)5 3(甲).如果a b,为给定的实数,且1a b<<,那么1121a ab a b++++,,,这四个数据的平均数与中位数之差的绝对值是().(A )1 (B )214a - (C )12(D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD= 5,则CD 的长为( ). (A )23 (B )4 (C )52(D )4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )4 4(乙).如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 8 5(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).OAB CED(A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题6分,共30分) 6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是 .6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB分别交于点M ,N ,则△DMN 的面积是 .7(乙).如图所示,点A 在半径为20的圆O上,以OA 为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。
数学竞赛试题及答案初中

数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。
解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。
根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。
由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。
试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。
代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。
试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。
已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。
代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。
全国初中数学联赛试题(含参考答案)

全国初中数学联合竞赛试题参考答案第一试一、选择题(本题满分42分,每小题7分) 1、设17-=a ,则=--+12612323a a a ( A )A 、24B 、 25C 、1074+D 、1274+ 2、在ABC ∆中,最大角A ∠是最小角C ∠的两倍,且7=AB ,8=AC ,则=BC ( C ) A 、27 B 、10 C 、105 D 、37 3、用[]x 表示不大于x 的最大整数,则方程[]0322=--x x 的解的个数为( C ) A 、1 B 、2 C 、3 D 、 44、设正方形ABCD 的中心为点O ,在以五个点A 、B 、C 、D 、O 为顶点所构成的所有三角形中任意取出两个,它们的面积相等的概率为 ( B )A 、143 B 、73 C 、21 D 、74 5、如图,在矩形ABCD 中,3=AB ,2=BC ,以BC 为直径在矩形内作半圆,自点A 作半圆的切线AE ,则=∠CBE sin ( D )A 、36 B 、32C 、31D 、10106、设n 是大于1909的正整数,使得nn --20091909为完全平方数的n 的个数是 ( B )A 、3B 、 4C 、 5D 、6 二、填空题(本题满分28分,每小题7分)1、已知t 是实数,若a ,b 是关于x 的一元二次方程0122=-+-t x x 的两个非负实根,则()()1122--b a的最小值是____________.答案:3-2、设D 是ABC ∆的边AB 上的一点,作BC DE //交AC 于点E ,作AC DF //交BC 于点F ,已知ADE ∆、DBF ∆的面积分别为m 和n ,则四边形DECF 的面积为______.答案:mn 23、如果实数a ,b 满足条件122=+b a ,2212|21|a b a b a -=+++-,则____=+b a . 答案:1-4、已知a ,b 是正整数,且满足⎪⎪⎭⎫ ⎝⎛+b a 15152是整数,则这样的有序数对(a ,b )共有_对。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a,b,c在数轴上的位置如图所示,那22||()||a abc a b c++-++可以化简为().(A)2c a-(B)22a b-(C)a-(D)a1(乙).如果22a=-11123a+++的值为().(A)2-(B)2(C)2 (D)222(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系xOy中,满足不等式x2+y2≤2x +2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)53(甲).如果a b,为给定的实数,且1a b<<,那么1121a ab a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ).(A )1 (B )214a - (C )12 (D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线, △ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5, 则CD 的长为( ).(A )23 (B )4 (C )52 (D )4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )44(乙).如果关于x 的方程 20x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).(A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99二、填空题(共5小题,每小题6分,共30分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次OAB CE操作. 如果操作进行四次才停止,那么x 的取值范围是 . 6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 . 7(甲).如图,正方形ABCD 的边长为215 E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 . 7(乙).如图所示,点A 在半径为20的圆O 上,以OA 作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。
8(甲). 如果关于x 的方程x 2+kx +43k 2-3k +92= 0的两个实数根分别为1x ,2x ,那么2012220111x x 的值为 .8(乙).设n 为整数,且1≤n ≤2012. 若22(3)(3)n n n n -+++能被5整除,则所有n 的个数为 .9(甲). 2位八年级同学和m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为 . 9(乙).如果正数x ,y ,z 可以是一个三角形的三边长,那么称x y z (,,)是三角形数.若a b c (,,)和111a b c (,,)均为三角形数,且a ≤b ≤c ,则ac的取值范围是 . 10(甲)如图,四边形ABCD 内接于⊙O , AB 是直径,AD = DC . 分别延长BA ,CD , 交点为E . 作BF ⊥EC ,并与EC 的延长线 交于点F . 若AE = AO ,BC = 6,则CF 的 长为 .10(乙).已知n 是偶数,且1≤n ≤100.若有唯一的正整数对a b (,)使得22a b n =+成立,则这样的n 的个数为 .三、解答题(共4题,每题15分,共60分)11(甲).已知二次函数232y x m x m =++++(),当13x -<<时,恒有0y <;关于x 的方程xyO ECABD2320x m x m ++++=()的两个实数根的倒数和小于910-.求m 的取值范围. 11(乙). 如图所示,在直角坐标系xOy 中,点A 在y 轴负半轴上,点B 、C 分别在x 轴正、负半轴上,48,,sin 5AO AB AC C ==∠AB =。
点D 在线段AB 上,连结CD 交y 轴于点E ,且COE ADE S S ∆∆=。
试求图像经过B 、C 、E 三点的二次函数的解析式。
12(甲). 如图,⊙O 的直径为AB ,1O 过点O ,且与⊙O 内切于点B .C 为⊙O 上的点,OC 与1O 交于点D ,且OD CD >.点E 在OD 上,且DC DE =,BE 的延长线与1O 交于点F ,求证:△BOC ∽△1DO F .12(乙).如图,⊙O 的内接四边形ABCD 中,AC ,BD 是它的对角线,AC 的中点I 是△ABD 的内心. 求证: (1)OI 是△IBD 的外接圆的切线; (2)AB +AD = 2BD .13(甲). 已知整数a ,b 满足:a -b 是素数,且ab 是完全平方数. 当a ≥2012时,求a 的最小值. 13(乙).给定一个正整数n ,凸n 边形中最多有多少个内角等于150︒?并说明理由.14(甲). 求所有正整数n ,使得存在正整数122012x x x ,, ,,满足122012x x x <<<,且122012122012n x x x +++=. 14(乙).将2,3,…,n (n ≥2)任意分成两组,如果总可以在其中一组中找到数a b c ,, (可以相同),使得ba c =,求n 的最小值.参考解答一、选择题1(甲) .C解:由实数a ,b ,c 在数轴上的位置可知0b a c <<<,且b c >,所以||||()()()a b b c a a b c a b c ++=-+++--+a =-.1(乙).B解:1111111223a+=+=++++111=+==.2(甲).D解:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x 2+y 2≤2x +2y , 得0≤22(1)(1)x y -+-≤2. 因为x y ,均为整数,所以有22(1)0(1)0x y ⎧-=⎪⎨-=⎪⎩,; 22(1)0(1)1x y ⎧-=⎪⎨-=⎪⎩,; 22(1)1(1)0x y ⎧-=⎪⎨-=⎪⎩,; 22(1)1(1) 1.x y ⎧-=⎪⎨-=⎪⎩,解得11x y =⎧⎨=⎩,; 12x y =⎧⎨=⎩,; 10x y =⎧⎨=⎩,; 01x y =⎧⎨=⎩,; 00x y =⎧⎨=⎩,; 02x y =⎧⎨=⎩,; 21x y =⎧⎨=⎩,; 20x y =⎧⎨=⎩,; 22.x y =⎧⎨=⎩,以上共计9对x y (,). 3(甲).D解:由题设知,1112a a b a b <+<++<+,所以这四个数据的平均数为1(1)(1)(2)34244a ab a b a b+++++++++=, 中位数为 (1)(1)44224a a b a b++++++=, 于是 4423421444a b a b ++++-=.3(乙).B解:如图,以CD 为边作等边△CDE ,连接AE . 由于AC = BC ,CD = CE ,∠BCD =∠BCA +∠ACD =∠DCE +∠ACD =∠ACE , 所以△BCD ≌△ACE , BD = AE .又因为30ADC ∠=︒,所以90ADE ∠=︒. 在Rt △ADE 中,53AE AD ==,, 于是DE 224AE AD -=,所以CD = DE = 4.4(甲).D解:设小倩所有的钱数为x 元、小玲所有的钱数为y 元,x y ,均为非负整数. 由题设可得2(2)2()x n y y n x n +=-⎧⎨+=-⎩,, 消去x 得 (2y -7)n = y +4, 2n =721517215)72(-+=-+-y y y .因为1527y -为正整数,所以2y -7的值分别为1,3,5,15,所以y 的值只能为4,5,6,11.从而n 的值分别为8,3,2,1;x 的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为0q -<,故方程的根为一正一负.由二次函数2y x px q =--的图象知,当3x =时,0y >,所以2330p q -->,即 39p q +<. 由于p q,都是正整数,所以1p =,1≤q ≤5;或 2p =,1≤q ≤2,此时都有240p q ∆=+>. 于是共有7组p q (,)符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以01239891036363636p p p p ====,,,,因此3p 最大. 5(乙).C解:因为1(1)(1)a b ab a b +++=++,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为x ,则1111(11)(1)(1)(1)23100x +=++++, 解得 1101x +=,100x =.二、填空题6(甲).7<x ≤19解:前四次操作的结果分别为3x -2,3(3x -2)-2 = 9x -8,3(9x -8)-2 = 27x -26,3(27x -26)-2 = 81x -80.由已知得 27x -26≤487, 81x -80>487.解得 7<x ≤19.容易验证,当7<x ≤19时,32x -≤487 98x -≤487,故x 的取值范围是 7<x ≤19.6(乙).7解:在910111=+++++a c c b b a 两边乘以9=++c b a 得 103=++++++ac b c b a b a c 即7=+++++a c bc b a b a c7(甲).8解:连接DF ,记正方形ABCD 的边长为2a . 由题设易知△BFN∽△DAN ,所以21AD AN DN BF NF BN ===, 由此得2AN NF =,所以23AN AF =.在Rt △ABF 中,因为2AB a BF a ==,,所以225AF AB BF a =+,于是 25cos AB BAF AF ∠==. 由题设可知△ADE ≌△BAF ,所以 AED AFB ∠=∠,0018018090AME BAF AED BAF AFB ∠=-∠-∠=-∠-∠=. 于是 25cos AM AE BAF =⋅∠=, 2453MN AN AM AF AM =-=-=,415MND AFD S MN S AF ∆∆==. 又21(2)(2)22AFD S a a a ∆=⋅⋅=,所以2481515MND AFD S S a ∆∆==. 因为15a =8MND S ∆=.7(乙).285解:如图,设DE 的中点为M ,连接OM ,则OM DE ⊥.因为22201216OB =-=,所以161248205OB OC OM BC ⋅⨯===, 22366455CM OC OM BM =-==,. CE BD EM CM DM BM -=---()()643655BM CM =-=-285=. 8(甲).32-解:根据题意,关于x 的方程有∆=k 2-4239(3)42k k -+≥0,由此得 (k -3)2≤0.又(k -3)2≥0,所以(k -3)2=0,从而k =3. 此时方程为x 2+3x +49=0,解得x 1=x 2=32-.故2012220111x x =21x =23-.8(乙).1610解:()()()953332422222++=-+=+++-n n n n n n n n因此45|(9)n +,所以)5(mod 14≡n ,因此25k ,15±±=或k n240252012⋯⋯=÷所以共有2012-402=1610个数9(甲).8解:设平局数为a ,胜(负)局数为b ,由题设知23130a b +=,由此得0≤b ≤43.又 (1)(2)2m m a b +++=,所以22(1)(2)a b m m +=++. 于是0≤130(1)(2)b m m =-++≤43,87≤(1)(2)m m ++≤130,由此得 8m =,或9m =.当8m =时,405b a ==,;当9m =时,2035b a ==,,5522a b a +>=,不合题设. 故8m =. 9(乙).1253≤<-ca解:依题意得:(1)111(2)a b c b c a +>⎧⎪⎨+>⎪⎩,所以a c b ->,代入(2)得c a c c b a 11111+-<+<,两边乘以a 得 c a a c a +-<1,即a c ac a c -<-,化简得0322<+-c ac a ,两边除以2c 得 23()10a a c c ⎛⎫-+< ⎪⎝⎭所以253253+<<-c a 另一方面:a ≤b ≤c ,所以1≤ca综合得1253≤<-c a 另解:可令ak c=,由(1)得(1)b k c >-,代入(2)化简得2310k k -+<,解得3535k -+<<,另一方面:a ≤b ≤c ,所以1k ≤, 351k -<≤. 10(甲).223 解:如图,连接AC ,BD ,OD .由AB 是⊙O 的直径知∠BCA =∠BDA = 90°. 依题设∠BFC = 90°,四边形ABCD 是⊙O 的内接四边形,所以∠BCF =∠BAD ,所以 Rt △BCF ∽Rt △BAD ,因此BC BACF AD=. 因为OD 是⊙O 的半径,AD = CD ,所以OD 垂直平分AC ,OD ∥BC , 于是2DE OEDC OB==. 因此 223DE CD AD CE AD ===,.由△AED ∽△CEB ,知DE EC AE BE ⋅=⋅.因为322BA AE BE BA ==,, 所以 32322BA AD AD BA ⋅=⋅,BA =22AD ,故 AD CF BC BA =⋅=32222=. 10(乙).12解:依题意得()()b a b a b a n -+=-=22由于n 是偶数,a+b 、a-b 同奇偶,所以n 是4的倍数,即4n k =,当1≤n ≤100时,4的倍数共有25个,但要满足题中条件的唯一正整数对a b (,),则: 2k p k p ==或,其中p 是素数,因此,k 只能取下列12个数:2、3、5、7、11、13、17、19、23、4、9、25,从而这样的n 有12个。