勒让德多项式
勒让德多项式

勒让德多项式[编辑]维基百科,自由的百科全书伴随勒让德多项式有时也简称为“勒让德多项式”。
数学上,勒让德函数指以下勒让德微分方程的解:为求解方便一般也写成如下施图姆-刘维尔形式(Sturm-Liouville form):上述方程及其解函数因法国数学家阿德里安-马里·勒让德而得名。
勒让德方程是物理学和其他技术领域常常遇到的一类常微分方程。
当试图在球坐标中求解三维拉普拉斯方程(或相关的其他偏微分方程)时,问题便会归结为勒让德方程的求解。
勒让德方程的解可写成标准的幂级数形式。
当方程满足|x| < 1 时,可得到有界解(即解级数收敛)。
并且当n 为非负整数,即n = 0, 1, 2,... 时,在x = ±1 点亦有有界解。
这种情况下,随n 值变化方程的解相应变化,构成一组由正交多项式组成的多项式序列,这组多项式称为勒让德多项式(Legendre polynomials)。
勒让德多项式Pn(x)是n 阶多项式,可用罗德里格公式表示为:目录 [隐藏]1 正交性2 部分实例3 在物理学中的应用4 其他性质4.1 奇偶性4.2 递推关系5 移位勒让德多项式6 分数阶勒让德多项式7 参见8 外部链接9 参考文献正交性[编辑]勒让德多项式的一个重要性质是其在区间−1 ≤x ≤ 1 关于L2内积满足正交性,即:其中δmn 为克罗内克δ记号,当m = n 时为1,否则为0。
事实上,推导勒让德多项式的另一种方法便是关于前述内积空间对多项式{1, x, x2, ...}进行格拉姆-施密特正交化。
之所以具有此正交性是因为如前所述,勒让德微分方程可化为标准的strum-liouville问题:其中本征值λ对应于原方程中的n(n+1)。
部分实例[编辑]下表列出了头11阶(n 从0到10)勒让德多项式的表达式:n12345678910头6阶(n 从0到5)勒让德多项式的曲线如下图所示:在物理学中的应用[编辑]在求解三维空间中的球对称问题,譬如计算点电荷在空间中激发的电势时,常常要用到勒让德多项式作如下形式的级数展开:其中和分别为位置向量和的长度,为两向量的夹角。
勒让德多项式及其正交性质

勒让德多项式及其正交性质勒让德多项式是一种重要的数学工具,在微积分、物理学等领域都有广泛的应用。
它是一类正交多项式,具有良好的性质,可以用于解决一些特殊的数学问题。
本文将讨论勒让德多项式及其正交性质,以期读者能够深入了解这一重要数学工具。
一、勒让德多项式的定义勒让德多项式是一种定义在区间[-1,1]上的多项式函数,通常用Pn(x)表示,其中n为多项式的次数。
勒让德多项式可以通过如下公式递归地定义:P0(x) = 1P1(x) = xPn(x) = [(2n-1)xPn-1(x) - (n-1)Pn-2(x)]/n这个公式可以用来计算任意次数的勒让德多项式。
勒让德多项式的前几个函数值如下:P0(x) = 1P1(x) = xP2(x) = (3x² - 1)/2P3(x) = (5x³ - 3x)/2P4(x) = (35x⁴ - 30x² + 3)/8二、勒让德多项式的性质勒让德多项式具有许多重要的性质,其中最重要的是正交性质。
1. 正交性质勒让德多项式在区间[-1,1]上的内积可以定义为:∫[-1,1] Pn(x)Pm(x)dx如果n=m,则积分结果为2/(2n+1);如果n≠m,则积分结果为0。
也就是说,勒让德多项式之间具有正交性质。
这个性质非常重要,因为它能够使我们更方便地进行一些数学运算。
例如,计算某个函数在勒让德多项式基下的系数时,我们只需要进行一次内积计算即可。
2. 完备性质勒让德多项式在区间[-1,1]上具有完备性质。
也就是说,任何在该区间上连续的函数都可以用勒让德多项式展开,并且展开式收敛于原函数。
这个性质太过深奥,需要深入的数学知识,不在本文的讨论范围内。
3. 递推性质勒让德多项式之间具有递推性质,可以用如下公式计算高一阶的勒让德多项式:Pn+1(x) = (2n+1)xPn(x) - nPn-1(x)这个公式可以用来快速地计算任意次数的勒让德多项式。
数学物理方程课件第六章勒让德多项式

2 (2n)!
2n n!
2n n! 2n n!2n 1 2n 153
2 (2n)!
2n 1!
2 2n 1
数学物理方程与特殊函数
第6章勒让德多项式
性质2 递推公式
(n 1)Pn1 (x) (2n 1)xPn (x) nPn1 (x) 0
Pn1 (x) Pn1 (x) 2n 1Pn (x)
n0
Cn
2n 1 2
1 1
x Pn (x)dx
C0
1 2
1
1 x P0 (x)dx
1 2
1
x dx
1
1 2
C2n1 0
C2n
4n 1 2
1 1
x
P2n
(x)dx
4n
1
1 0
xP2n
( x)dx
4n 1
22n 2n!
1 d2n 0 x dx2n
(x2 1)2n dx
4n 1 22n 2n !
数学物理方程与特殊函数
第6章勒让德多项式
三 勒让德多项式
y APn (x) BQn (x)
Pn
(x)
M
(1)m
m0
2n 2m!
2n m!(n m)!(n
2m)!
xn2m
Pn
1 2n n!
dn dx n
(x2
1)n
当n为偶数时M
n 2
当n为奇数时 M
n 1 2
P0 (x) 1
P1(x) x
2)(n 1)(n 4!
3)
x4
]
c 1 c0
y2
a1[ x
(n
1)(n 3!
2)
勒让德多项式及其应用

勒让德多项式及其应用勒让德多项式是一种经典的特殊函数,它是由法国数学家勒让德于18世纪末研究长城摆的运动方程时发现的。
作为一个基本的特殊函数,勒让德多项式在物理、数学和工程学等领域中都有广泛应用。
本文将介绍勒让德多项式的定义、性质及其在物理和数学中的一些应用。
一、勒让德多项式的定义勒让德多项式P_n(x)的定义如下:其中n为整数,x为实数。
勒让德多项式是一类具有特殊结构的多项式函数,它可以通过递推关系式来求解。
具体来说,勒让德多项式满足以下递推公式:其中n+1次勒让德多项式可以通过n次和n-1次勒让德多项式来表达。
这个递推公式还有一个等价的形式:由此可以得到勒让德多项式的一些基本性质,例如P_n(x)在[-1,1]上有n个实根,其中n-1个简单实根和一个n阶重根。
此外,勒让德多项式还满足下列正交性:其中w(x)为勒让德多项式的权函数。
二、勒让德多项式的一些性质除了递推公式和正交性以外,勒让德多项式还有一些重要的性质。
例如,勒让德多项式是一个偶函数,即P_n(-x)=(-1)^nP_n(x)。
此外,勒让德多项式还有如下的反演公式:其中f(y)和g(x)分别是两个函数,而K_n(x,y)是勒让德函数的核函数:其中P_n(x)和P_n(y)分别是n次勒让德多项式在x和y处的取值。
勒让德函数的核函数经常被用于计算物理中的各种耦合系统中的能量本征状态。
三、勒让德多项式在物理学中的应用勒让德多项式在物理学中有广泛的应用,特别是在电磁场和量子力学中。
在电磁场中,勒让德函数的核函数可以用来描述两个电荷或磁荷之间的相互作用。
在量子力学中,勒让德多项式则被用来表示转动不变性系统的波函数,比如氢原子和氢分子离子。
此外,在量子力学和粒子物理中,勒让德多项式还经常用来表示原子轨道和粒子的旋转等。
四、勒让德多项式在数学中的应用勒让德多项式在数学的一些分支中也有广泛的应用,特别是在微积分和数论等领域。
例如,在微积分中,勒让德多项式可以用来表示函数的幂级数展开式,而在数论中,勒让德多项式则被用来研究阶乘和高次导数等问题。
第七章勒让德多项式

第7章 勒让德多项式在第三章中我们介绍了一类特殊函数—贝塞尔函数,我们利用贝塞尔函数给出了平面圆域上拉普拉斯算子特征值问题的解,从而求解了一些与此特征值问题相关的定解问题。
为求解空间中球形区域上与拉普拉斯算子相关的一些定解问题,需要引入另一类特殊函数—勒让德(Legendre )多项式,用于求解空间中球形区域上拉普拉斯算子的特征值问题。
需要说明的是勒让德多项式不仅是解决数学物理方程中许多问题的重要工具,在自然科学的其它领域也有许多的应用。
§7⋅1勒让德多项式本节介绍勒让德多项式及相关的一些特征值问题,为分离变量法的进一步应用作准备。
7.1.1 勒让德方程及勒让德多项式 考虑如下二阶常微分方程2[(1)]0d dyx y dx dxλ-+=,11x -<< (7.1.1) 其中0λ≥为常数,方程(7.1.1)称为勒让德方程。
设α是非负实数,使得(1),λαα=+则方程(7.1.1)可表示成如下形式2(1)2(1)0x y xy y αα'''--++=,11x -<< (7.1.2) 方程(7.1.2)满足第3章中定理3.1的条件,其中222(1)(), ()11x p x q x x x αα+=-=-- 故(7.1.2)在区间(1,1)-有解析解,设其解为0()k k k y x a x ∞==∑ (7.1.3)其中(0)k a k ≥为待定常数。
将该级数及一阶和二阶导数代入到原方程中得22121(1)(1)2(1)0k k k k k k k k k x k k a xx ka xa x αα∞∞∞--===---++=∑∑∑或20(1)(2)(1)2(1)0kkkkk k k kk k k k k k ax k ka x ka x a x αα∞∞∞∞+====++---++=∑∑∑∑ 即20[(1)(2)()(1)]0k k k k k k a k k a x αα∞+=+++-++=∑比较两端k x 的系数,可得2(1)(2)()(1)0, 0k k k k a k k a k αα++++-++=≥ 由此式可得系数递推关系2()(1), 0(1)(2)k k k k a a k k k αα+-++=-≥++ (7.1.4)当系数k a 指标分别取偶数和奇数时,(7.1.4)可表示为22(1)(22)(21), 1(21)2k k k k a a k k k αα--++-=-≥-212(1)1(21)(2), 12(21)k k k k a a k k k αα+-+-++=-≥+连续使用上述递推关系可知,当1k ≥时20(2)(22)(1)(3)(21)(1)(2)!k k k k a a k αααααα-⋅⋅⋅-+++⋅⋅⋅+-=-211(1)(3)(21)(2)(4)(2)(1)(21)!k k k k a a k αααααα+--⋅⋅⋅-+++⋅⋅⋅+=-+记220k k a c a =,21211k k a c a ++=, 可得勒让德方程(7.1.2)的如下两个解2,120()kk k y x c x α∞==∑, 21,2210() k k k y x c x α∞++==∑ (7.1.5)其中011c c ==。
勒让德多项式递推公式证明

勒让德多项式递推公式证明以勒让德多项式是数学中一类重要的特殊函数,其递推公式是证明其性质的关键。
本文将通过介绍以勒让德多项式的定义、性质和递推公式的证明,来解释这一标题。
以勒让德多项式是数学中的一类正交多项式,它们是解决物理和工程问题中的常微分方程的重要工具。
以勒让德多项式的定义如下:$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left[(x^2 - 1)^n\right]$$其中,$n$为非负整数,$P_n(x)$表示以勒让德多项式的第$n$阶,$x$为自变量。
以勒让德多项式具有一系列重要的性质,如正交性、归一性等,这些性质使其在数学和物理学中得到广泛应用。
以勒让德多项式的递推公式是证明其性质的关键。
递推公式的形式如下:$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$下面我们来证明这个递推公式。
我们将以勒让德多项式的定义代入递推公式中,得到:$$(n+1)\left(\frac{1}{2^{n+1} (n+1)!} \frac{d^{n+1}}{dx^{n+1}} \left[(x^2 - 1)^{n+1}\right]\right) = (2n+1)x\left(\frac{1}{2^n n!} \frac{d^n}{dx^n} \left[(x^2 - 1)^n\right]\right) - n\left(\frac{1}{2^{n-1} (n-1)!} \frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right]\right) $$化简上式,可以得到:$$\frac{1}{2^{n+1} (n+1)!} \frac{d^{n+1}}{dx^{n+1}} \left[(x^2 - 1)^{n+1}\right] = \frac{2n+1}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right]$$我们将上式中的$n+1$分布到第一项中,并利用导数的链式法则进行化简,得到:$$\frac{1}{2^{n+1} (n+1)!} \frac{d}{dx}\left[(2n+1)x(x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right] $$再次化简上式,得到:$$\frac{1}{2^{n+1} (n+1)!} (2n+1)\left[x\frac{d}{dx}\left[(x^2-1)^n\right] + (x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right] $$继续化简上式,可以得到:$$\frac{1}{2^{n+1} (n+1)!} (2n+1)\left[x\frac{d}{dx}\left[(x^2-1)^n\right] + (x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right]$$再次化简上式,得到:$$\frac{1}{2^{n+1} (n+1)!} (2n+1)\left[x\frac{d}{dx}\left[(x^2-1)^n\right] + (x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right] $$继续化简上式,可以得到:$$\frac{1}{2^{n+1} (n+1)!} (2n+1)\left[x\frac{d}{dx}\left[(x^2-1)^n\right] + (x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right] $$再次化简上式,得到:$$\frac{1}{2^{n+1} (n+1)!} (2n+1)\left[x\frac{d}{dx}\left[(x^2-1)^n\right] + (x^2-1)^n\right] = \frac{(2n+1)}{2^n n!}x\frac{d^n}{dx^n} \left[(x^2 - 1)^n\right] - \frac{n}{2^{n-1} (n-1)!}\frac{d^{n-1}}{dx^{n-1}} \left[(x^2 - 1)^{n-1}\right] $$通过以上推导,我们证明了以勒让德多项式的递推公式。
勒让德多项式

例1:将 x 2 在[-1,1]内展成勒让德多项式的级数形式
x 2 Cn Pn (x) n0
Cn
2n 1 2
1 1
x
2
Pn
(
x)dx
1 1
xk
Pn
( x)dx
0
n2
4 1
C2 2
1 x2 1 (3x2 -1)dx 5
1 2
4
1 3x4 x2
1
dx
5 6 2 2 45 3 3
第6章勒让德多项式
例2:将Pl(x) 在[-1,1]内展成勒让德多项式的级数形式
解:方法一
l 1
(l 1) / 2
Pl(x) CnPn (x) CnPn (x)
Cl2n1Pl2n1 ( x)
n0
n0
n0
2l 4n 1
Cl2n1
2
1
1 Pl(x)Pl2n1(x)dx
2l 4n 1 2
1 0
xd
d 2n1 dx 2 n 1
(x2
1)2n
4n 22n
1 2n
!
x
d 2 n 1 dx 2 n 1
(x2
1)2n|10源自1 0d 2 n1 dx 2 n 1
(x2
1)2n
dx
4n 22n
1 2n
!
d 1 2n1 0 dx2n1
(x2
1)2n dx
4n 22n
1 2n
!
d2n2 dx 2 n 2
0
0
0
/ 2 sin 2n1 d 2n / 2 sin 2n1 d
0
2n 1 0
1 P2n (x)dx 1
最新勒让德(legendre)多项式及其性质资料

勒让德(legendre )多项式及其性质一. 勒让德多项式勒让德多项式是由勒让德方程的通解推导出来的,所以我们首先引入勒让德方程,以及勒让德方程的幂级数解,勒让德方程的表达式如下:2'''(1)2(1)0x y xy n n y --++= 其中n 为非负实数 (1.1)它的幂级数解如下:12y y y =+ (1.2)其中:2241200(1)(2)(1)(3)[1]2!4!kk k n n n n n n y a x a x x ∞=+-++==-+⋅⋅⋅∑(1.3)213522110(1)(2)(1)(3)(2)(4)[]3!5!k k k n n n n n n y a xa x x x ∞++=-+--++==-++⋅⋅⋅∑ (1.4)由达朗贝尔判别法可知,当0n ≥不为整数时,这两个级数的收敛半径为1,在(1.3)式和(1.4)式中,0a 与1a 可以任意取值,它们起着任意常数的作用,显然,在区间(-1,1)内1y 和2y 都是方程(1.1)的解,所以(1.2)是(1.1)的通解。
上面(1.3)和(1.4)幂级数当||1x <时级数收敛,此外级数是发散的。
并且,我们发现,当n 取非负整数时,1y 和2y 中有一个便退化为n 次多项式,它就是方程(1.1)在闭区间[-1,1]上的有界解。
此时,适当的选定这个多项式的最高次幂系数n a ,所得的多项式称为n 阶勒让德多项式或第一类勒让德函数,记作()n P x ,下面我们来推导勒让德多项式()nP x 的表达式。
① 当n 为正偶数时1y 退化为n 次多项式。
为求得()n P x 的表达式,在1y 中我们通过n a 来表示其它各项的系数。
为此,将系数递推关系式改写成下列形式:2(2)(1)()(1)k k k k a a k n k n +++=-++ (1.5)在(1.5)式中取2kn =-,得:2(1)2(21)n n n n a a n --=-- (1.6)习惯上取n a 为 2(2)2(!)n nn a n = (1.7)于是有:2(1)2(21)(22)!2(21)2(1)!(1)(2!)n n n n n n n a n n n n n n ----=-----(22)!2(1)!(2)!nn n n -=--- (1.8)在(1.5)式中取4kn =-,并利用2n a -之值得:42(2)(3)4(23)n n n n a a n ----=--2(2)(3)(22)!(1)4(23)2(1)!(2)!n n n n n n n ---=---- 2(24)!(1)2(2!)(2)!(4)!nn n n -=--- (1.9)一般地,我们有()()222!12!()!(2)!mn m n n m a m n m n m --=--- (0,1,,2nm =⋅⋅⋅⋅⋅⋅) (1.10)我们将这些系数带入(1.3)中,并把此时的1y 记作()n P x ,可得:220(22)!()(1)2!()!(2)!nmn m n n m n m p x x m n m n m -=-=---∑ (1.11)这就是当n 为正偶数时勒让德多项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y = Φ(ϕ ),于是有
dΦ = dy dx = − sinϕ dy = − 1 − x2 dy
dϕ dx dϕ
dx
dx
( ) dΦ = dy dx = d ( − 1 − x2 dy ) dx = −x dy + 1 − x2 d 2 y
dϕ dx dϕ dx
dx dϕ dx
dx 2
将 x, y, 及 y 的导数代入式(6.1.6)中,整理得
分离变量θ ,ϕ ,则有
−
1 Θ
d 2Θ dθ 2
=
1 Φ
sin ϕ
d dϕ
⎜⎜⎝⎛ sin ϕ
dΦ dϕ
⎟⎟⎠⎞
+
n(n
+ 1)sin 2
ϕ
此式的左端只于θ 有关,因此只有二者均为常数时它们才能相等。由于式(6.1.1)在球坐标系下的一 切(单值)解都应是关于变量θ 的周期函数,周期为 2 π ,因而 Θ 也是以 2π 为周期的周期函数。与
第6章 勒让德多项式
本章我们将研究勒让德多项式在解决数学物理方程定解问题中的一些应用。首先应用分离变量法, 在球坐标系中对拉普拉斯方程进行分离变量,导出勒让德方程;并讨论这个方程的解法及解的有关性 质;指出勒让德方程在区间[-1,1]上的有界解构成了一类正交函数系—勒让德多项式。
6.1 勒让德方程的导出
对上式求导,得出 y′, y′′ 的级数表达式,连同式(6.2.2)一齐代入式(6.2.1),整理得
(6.2.1) (6.2.2)
∞
∑{(k + 1)(k + )2 ak+2 + [n(n + 1) − k(k + 1)]ak }xk = 0
k =0
由于上式为恒等式,所以 x 的各次幂的系数必需都是零,所以
(k + 1)(k + )2 ak+2 + [n(n + 1) − k(k + 1)]ak = 0
得
ak +2
=
−
(n − (k
k )(n + k −1) +1)(k + 2)
ak
(k = 0,1,2,L)
(6.2.3)
令 k = 0,2,4,L, 得
a2
=
−
n(n +
2!
1)
a0
a4
=
−
n(n
−
2)(n +1)(n
dx 2
dx
式(6.1.8)称为勒让德方程。一部分定解问题的求解,最后都归纳为勒让德方程的求解。
(6.1.8)
6.2 勒让德方程的求解
பைடு நூலகம்
和求贝赛尔方程一样,我们设勒让德方程
的解为
( ) 1 − x2 d 2 y − 2x dy + n(n + 1)y = 0
dx 2
dx
∞
∑ y = ak x k k =0
式中,A,B 为任意常数。
式(6.1.3)中喊有两个自变量θ ,ϕ ,再次应用分离变量的方法,令Y (θ ,ϕ ) = Θ(θ )Φ(ϕ ),代入(6.1.3)
式中,整理得
1 sin ϕ
d dϕ
⎜⎜⎝⎛ sin ϕ
dΦ dϕ
⎟⎟⎠⎞Θ
+
1 sin 2 ϕ
d 2Θ dθ 2
Φ
+
n(n
+ 1)ΘΦ
=
0
4!
+
3) a0
a6
=
−
n(n
−
2)(n
− 4)(n +1)(n
6!
+ 3)(n
+ 5)
a0
M
再令 k = 1,3,5,L, 得
a3
=
−
(n
− 1)(n
3!
+
2)
a1
a5
=
−
(n
− 1)(n
− 3)(n
5!
+
2)(n
dr
1 sin ϕ
∂ ∂ϕ
⎜⎜⎝⎛ sin ϕ
∂Y ∂ϕ
⎟⎟⎠⎞ +
1 sin 2 ϕ
∂ 2Y ∂θ 2
+ n(n + 1)Y
=
0
(6.1.2) (6.1.3)
式(6.1.3)的解 Y (θ ,ϕ) 与半径 r 无关,故称之为球面函数,或简称为球函数。
式(6.1.2)是欧拉方程,其通解为
R(r ) = Ar n + Br −(n+1)
在前面的章节里,我们利用格林函数研究了拉普拉斯方程
∂2u + ∂2u + ∂2u = 0 ∂x 2 ∂y 2 ∂z 2
的求解问题。本节,在球坐标系下,我们应用分离变量的方法来处理拉普拉斯方程。在球坐标系中, 拉普拉斯方程为
1 r2
∂ ⎜⎛ r 2 ∂r ⎝
∂u ∂r
⎟⎞ ⎠
+
r
2
1 sin
ϕ
⎜⎜⎝⎛
(6.1.5)
式中, C1 , C2 为任意常数。
对式(6.1.5)进行整理,有
d 2Φ dϕ 2
+
cot ϕ
dΦ dϕ
+
⎢⎡n(n
⎣
+1) −
m2 sin 2 ϕ
⎥⎤Φ ⎦
=
0
这个方程称为连带的勒让德方程。
(6.1.6)
为了表达上的方便,我们引入新的变量 x = cosϕ 。由于 0 ≤ ϕ ≤ π ,所以 −1 ≤ x ≤ 1 ,并记
sin
ϕ
∂u ∂ϕ
⎟⎟⎠⎞
+
1 r 2 sin 2 ϕ
∂2u ∂θ 2
=0
(6.1.1)
式中,0 ≤ ϕ ≤ π , 0 ≤ θ ≤ 2π 。
令式(6.1.1)的解为 u(r,θ ,ϕ ) = R(r )Y (θ ,ϕ), 代入式(6.1.1),整理得
1 r2
d ⎜⎛ r 2 dR ⎟⎞Y + [
dr ⎝ dr ⎠
( ) 1− x2
d2y dx 2
−
2x
dy dx
+
⎢⎡n(n
⎣
+1) −
m2 1− x2
⎤ ⎥ ⎦
y
=
0
(6.1.7)
若 u(r,θ ,ϕ )与θ 无关,则由式(6.1.4)可知, Θ(θ ) 是常数,则 m = 0 。这时,式(6.1.7)简化为
( ) 1 − x2 d 2 y − 2x dy + n(n + 1)y = 0
我们在第 5 章讨论的一样,这个常数必需等于 m2 (m = 0,1,2,L),从而有
d 2Θ + m2Θ = 0 dθ 2
{6.1.4}
式(6.1.4)的通解为
1 sin ϕ
d dϕ
⎜⎜⎝⎛ sin ϕ
dΦ dϕ
⎟⎟⎠⎞
+
[
n(n +1) −
m2 sin 2 ϕ
]Φ = 0
Θ(θ ) = C1 cos mθ + C2 sin mθ
r2
1 sin ϕ
∂ ∂ϕ
⎜⎜⎝⎛ sin ϕ
∂Y ∂ϕ
⎟⎟⎠⎞
+
r2
1 sin 2
ϕ
∂ 2Y ∂θ 2
]R = 0
将变量 R(r), Y (θ ,ϕ) 分离,得
1 d ⎜⎛ r 2 dR ⎟⎞ = − 1 [
R dr ⎝ dr ⎠ Y
r2
1 sin ϕ
∂ ∂ϕ
⎜⎜⎝⎛ sin ϕ
∂Y ∂ϕ
⎟⎟⎠⎞
+
r2
1 sin 2
ϕ
∂ 2Y ∂θ 2
]
上式左端只于 r 有关,右端只与θ ,ϕ 有关,所以二者都是常数时才能恒等。为了方便后续的讨论,
我们把这个常数写成 n(n + 1) 的形式(这里的 n 可以是实数,也可以是复数),于是有
r 2 d 2 R + 2r dR − n(n + 1)R = 0
dr 2